Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8591
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘子明(Tzu-Ming Pan)
dc.contributor.authorChih-Hui Linen
dc.contributor.author林志輝zh_TW
dc.date.accessioned2021-05-20T19:58:43Z-
dc.date.available2010-07-20
dc.date.available2021-05-20T19:58:43Z-
dc.date.copyright2010-07-20
dc.date.issued2010
dc.date.submitted2010-07-09
dc.identifier.citation土壤採樣方法 (NIEA S102.61B) 。2005。環署檢字第0940097070號公告。行政院環境保護署環境檢驗所,桃園,臺灣。
土壤酸鹼值 (pH值) 測定方法—電極法 (NIEA S410.62C) 。2008。環署檢字第0970075579號公告。行政院環境保護署環境檢驗所,桃園,臺灣。
林志輝與潘子明。2008。國產基因轉殖抗胡瓜嵌紋病毒番茄安全評估模式之建立」群體型計畫。衛生署九十五年度委託研究計畫期末報告。行政院衛生署,臺北,臺灣。
林貞余、郭憲璋、孫宏吉、陳惠美及de la Pena。2008。抗胡瓜嵌紋病毒基因轉殖番茄之栽培與園藝特性評估。衛生署九十五年度委託研究計畫期末報告。行政院衛生署,臺北,臺灣。
巫佳霖及徐源泰。2008。採後生理變化對抗胡瓜嵌紋病毒基改番茄外源基因差異表現之影響與安全性評估。衛生署九十五年度委託研究計畫期末報告。行政院衛生署,臺北,臺灣。
柳建安、林貞余、孫宏吉、葛琳和郭忠吉。2005。番茄抗胡瓜嵌紋病毒基因轉殖與生物安全性評估。農委會科技計畫研究報告,行政院農業委員會,臺北,臺灣。
柳建安。2001。番茄抗胡瓜嵌紋病毒及真菌性病害之基因轉殖。農委會科技計畫研究報告,行政院農業委員會,臺北,臺灣。
基因改造食品之安全性評估方法修正草案,2010,行政院衛生署,台北,臺灣。
「基因改造食品過敏誘發性評估」實驗室操作手冊 ,財團法人食品工業發展研究所,新竹,臺灣。
陳本昇及康照洲。2008。胡瓜嵌紋病毒基改蕃茄之毒理研究。衛生署九十五年度委託研究計畫期末報告。行政院衛生署,臺北,臺灣。
葉素惠、林鈺珊及劉俊民。2008。抗胡瓜嵌紋病毒基因轉殖蕃茄之食品成分分析。衛生署九十五年度委託研究計畫期末報告。行政院衛生署,臺北,臺灣。
張智翔及許輔。2008。製備蕃茄抗胡瓜嵌紋病毒之重組嵌蛋白與建構其免疫分析平台。衛生署九十五年度委託研究計畫期末報告。行政院衛生署,臺北,臺灣。
彭瑞菊。2003。台南區番茄病毒病的種類及分佈。台南區農業專訊。44:15-18。
賴智偉。2008。An Introduction to Real Time PCR. http://techcomm.lifescience.ntu.edu.tw/P1/TC1-E10-082008a.pdf。
Aalberse, R. C. 2000. Structural biology of allergens. J. Allergy Clin. Immunol. 106:228-238.
Abramoff, M. D., Magelhaes, P. J., Ram, S. J. 2004. Image Processing with ImageJ. Biophotonics Int. 11:36-42.
Amman, R., Ludwig, W. 2000. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol. Ecol. 24:555–565.
AOAC Official Methods of Analysis. 1990. Protein (Crude) in animal feed, semi automated method No. 976.06.
Arias, M. E., Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., Ball, A. S. 2005. Soil health-a new challenge for microbiologists and chemists. Int. Microbiol. 8:13-21.
Arumeganathan, K., Earle, E. D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9:208-218.
Astwood, J. D., Fuchs, R. L. 1996. Preventing food allergy: emergingtechnologies. Trends Food Sci. Technol. 7:219-226.
Astwood, J. D., Leach, J. N., Fuchs, R. L. 1996. Stability of food allergens to digestion in vitro. Nat. Biotech. 14: 1269-1273.
Barceloux, D. G. 2008. Potatoes, tomatoes, and solanine toxicity (Solanum tuberosum L., Solanum lycopersicum L.) . In: Medical Toxicology of Natural Substances: Foods, Fungi, Medicinal Herbs, Toxic Plants, and Venomous Animals. John Wiley & Sons, Hoboken, NJ, USA. pp. 77-83.
Barreiro, E., Comtois, A. S., Gea, J., Laubach, V. E., Hussain, S. N. A. 2002. Protein tyrosine nitration in the ventilatory muscles. Am. J. Respir. Cell Mol. Biol. 26:438-446.
Barros, E., Lezar, S., Anttonen, M. J., van Dijk, J. P., Röhlig, R. M., Kok, E. J., Engel, K. H. 2010. Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2009.00487.x.
Blázquez, M. A., Ferrándiz, C., Madueño, F., Parcy, F. 2006. How floral meristems are built. Plant Mol. Biol. 60:855-70.
Bkčák, J., Hršel, I. 1960. The electron microscopie examination of inclusions of cucumber virus 4. Biologia Plantarum. 3:132-136.
Bonito, G., Isikhuemhen, O. S., Vilgalys, R. 2010. Identification of fungi associated with municipal compost using DNA-based techniques. Bioresour. Technol. 2010 101:1021-7
Bossio, D. A., Scow, K. M., Gunapala, N., Graham, K. J. 1998. Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36:1–12.
Bryan, D. H., Michael, A. M., David, Baulcombe, D. C. 1987. Virus resistance in transgenic plants that express Cucumber Mosaic Virus satellite RNA. Nature. 328:799-802
Bruinsma, M.,Kowalchuk, G. A., van Veen, J. A. 2003. Effects of genetically modified plats on microbial communities and processes in soil. Biol. Fertil. Soils. 37:329-337.
Buchanan-Wollaston, V., Ainsworth, C. 1997. Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Mol Biol. 33:821-834.
Busov, V., Meilan, R., Pearce, D. W., Rood, S. B., Ma, C., Tschaplinski, T. J., Strauss, S. H. 2006. Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta. 224:288-299.
Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G. M., Carnemolla, B., Orecchia, P., Zardi, L., Righetti, P. G. 2004. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 25:1327-1333.
Carr, J.P., Gal-On, A., Palukaitis, P., Zaitlin, M. 1994. Replicase-mediated resistance to Cucumber Mosaic Virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long-distance movement. Virology. 199:439-447.
Cellini, F., Chesson, A., Colquhoun, I., Davies, H. V., Engel, K. H., Gatehouse, A. M. R., Karenlampi, S., Kok, E. J., Lequay, J. J., Lehesranta, S., Noteborn, H. P. J. M., Pedersen, J., Smith, M. 2004. Unintended effects and their detection in genetically modified crops. Food Chem. Toxicol. 42:1089-1125.
Chaouachi, M., Malki, R. E., Berard, A., Romaniuk M., Laval, V., Brunel, D., Bertheau, Y. 2008. Development of a real-time PCR method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum tuberosum) , tomato (Solanum lycopersicum) , eggplant (Solanum melongena) , and pepper (Capsicum annuum) . J. Agric. Food Chem. 56:1818–1828.
Chatchatee, P., Järvinen, K. M., Bardina, L., Vila, L.; Beyer, K., Sampson, H. A. 2001. Identification of IgE and IgG binding epitopes on β- and κ-casein in cow's milk allergic patients. Clin. Exp. Allergy. 31:1256-1262.
Cheng, K. C., Beaulieu, J., Iquira, E., Belzie, F. J., Fortin, M. G., Stromvik, M. V. 2008. Effect of transgenes on global gene expression in soybean is within the natural range of variation of conventional cultivars. J. Agric. Food Chem. 56:3057-3067.
Codex Alimentarius. 2003. Codex principles and guidelines on foods derived from biotechnology. Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, Food and Agriculture Organization: Rome.
Codex Alimentarius Commission. 2001. Proposed draft guidelines for the application of the criteria approach by the committee on methods of analysis and sampling. CX/MAS 01/4, Budapest, Hungary, 2001.
Coll, A.; Nadal, A., Plalaudelmas, M., Messeguer, J., Mele, E., Puigdomench, P., Pla, M. 2008. Lack of repeatable differential expression patterns between MON810 and comparable commercial varieties of maize. Plant Mol. Biol. 68:105-117.
Corpillo, D., Gardini, G., Vaira, A. M., Basso, M., Aime, S., Accotto, G. P., Fasano, M. 2004. Proteomics as a tool to improve investigation of substantail equivalence in genetically modified organisms: The case of a virus-resustant tomato, Proteomics. 4:193-200.
Demeke, T., Jenkins, G. R. 2010. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal. Bioanal. Chem. 396:1977-1990
Diallo, M. D., Willems, A., Vloemans, N., Cousin, S., Vandekerckhove, T. T., de Lajud,e P., Neyra, M., Vyverman, W., Gillis, M., van der Gucht, K. 2004. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N2-fixing bacterial diversity in soil under Acacia tortilis ssp. raddiana and Balanites aegyptiaca in the dryland part of Senegal. Environ. Microbiol. 6:400-415.
Dice, L. R. 1945. Measures of the amount of ecologic association between species. Ecology. 26:297-302.
Dinant, S., Clark, A. M., Zhu, Y., Vilaine, F., Palauqui, J. C., Kusiak, C., Thompson, G. A. 2003. Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol. 131:114-128.
DOH Food No. 0900011746. 2001. Department of Health, Taipei, Taiwan.
Doolittle, S. P. 1916. A new infectious mosaic virus of cucmber. Phytopathology. 6:145-147.
Droge, M., Puhler, A., Selbitschka, W. 1998. Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J. Biotechnol. 64:75-90.
Dunfield, K. E., Germida, J. J. 2004. Impact of genetically modified crops on soil- and plant-associated microbial communities. J. Environ. Qual. 33:806-815.
Eede, G. V. D., Aarts, H., Buhk, G. J., Corthier, G., Flint, H. J., Hammes, W., Jacobsen, B., Midtvedt, T., Vossen, J. V. D., Wright, A. V., Wackgel, W., Wilcks, A. 2004. The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem. Toxicol. 42:1127-1156.
Einspanier, R., Klotz, A., Kraft, J., Aulrich, K., Poser, R., Schwagele, F., Jahreis, G., Flachowsky, G. 2001. The fate of forage plant DNA in farm animals: a collaborative case-study investigating cattle and chicken fed recombinant plant material. Eur. Food Res. Technol. 212:129-134.
European Commision Regulation (EC) No. 1829/2003 and 1830/2003. 2003. Off. J. Eur. Commun. L268:1-28.
European Commision Regulation (EC) No. 641/2004. 2004. Off. J. Eur. Commun. L102:1-12.
FAO/WHO. 2001. Evaluation of allergenicity of genetically modified foods. Report of a joint FAO/WHO expert consultationon allergenicity of foods derived from biotechnology FAO/WHO. Food and Agriculture Organization of the United Nations (FAO) , Rome, Italy.
FARRP allergen database 10.0. 2010. http://www.allergenonline.org/.
Felsenstein, J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2) . Cladistics. 5:164-166.
Filipecki M. and Malepszy S. 2006. Unintended consequences of plant transformation: a molecular insight. J. Appl. Genet. 47:277-286.
Fischer, S. G., Lerman, L. S. 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: Correspondence with melting theory. Proc. Natl. Acad. Sci. USA. 80:1579-1583.
Firbamk, L., Lonsdale, M., Poppy. G. 2005. Reassessing the environmental risks of GM crops. Nat. Biotechnol. 23:1475-1476.
Fishcer, R., Stoger, E., Chillberg, S., Christou, P., Twyman, P. M: 2004. Plant-based production of pharmacerticals. Curr. Opin. Plant. Biol. 7:152-158.
Flanagan, D. A., Gregory, L. G., Carter, J. P., Sen, A. K., Richardson, D. J., Sprio, S. 1999. Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA. FEMS Microbiol. Lett. 177:263-270.
Gasparic, M. B., Tengs, T., Paz, J. L. L., Holst-Jensen, A., Esteve, T., Zel, J., Gruden, K. 2010. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal. Bioanal. Chem. DOI:10.1007/s00216-009-3418-0 (2010) .
Gasson, M. J. 2000. Gene transfer from genetically modified food. Curr. Opin. Biotechnol. 11:505-508.
Girvan, M. S., Bullimore, J., Ball, A. S., Pretty, J. N., Osborn, A. M. 2004. Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens. Appl. Environ. Microbiol. 70:2692-2701.
Goud, W. A. 1983. Tomato production, processing, and quality evaluation. AVI Publishing Co., Inc., Westport, Connecticut, USA.
Hamilton III, E. W., Frank, D. A. 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology: 82:2397-2402.
Haslberger, A. G. 2003. Codex guidelines for GM foods include the analysis of unintended effects. Nat. Biotechnol. 21:739-741.
Heinemann, J. A. 1991. Genetics of gene transfer between species. Trends Genet. 7:181-185.
Heinemann, J. A., Sprauge, G. F. J. 1989. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature. 340:205-209.
Heuer, H., Krsek, M., Baker, P., Smmalla, K., Wellington, E. M. H. 1997. Analysis of actinomycete communities by specific amplification of gene encoding 16S rRNA gene and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63:3233-3241.
Holst-Jensen, A., Roning, S. B., Loseth, A., Berdal, K. G. 2003. PCR technology for screening and quantification of genetically modified organisms (GMOs) . Anal. Bioanal. Chem. 375:985-993.
Hui, E. K. W., Wang, P. C., Lo S. J. 1998. Strategies for cloning unknown cellular flanking DNA sequences from foreign integrants. Cell. Mol. Life Sci. 54:1403-1411.
Innerebner, G., Knapp, B., Vasara, T., Romantschuk, M., Insam, H. 2006. Traceability of ammonium-oxidizing bacteria in compost-treated soils. Soil Biol. Biochem. 38:1092-1100.
Ioset, J. R., Urbaniak, B., Ndjoko-Ioset, K., Wirth, J., Martin, F., Gruissem, W., Hostettmann, K., Sautter, C. 2007. Flavonoid profiling among wild type and related GM wheat varieties. Plant Mol. Biol. 65:645-654.
ISAAA Briefs 41-2010: Global Status of Commercialized Biotech/GM Crops: 2010. http://www.isaaa.org/
Jackson, L. E., Buger, M., Cavagnaro, T. R. 2008. Roots, nitrogen transformations, and ecosystem services. Annu. Rev. Plant Biol. 59:341-363.
James, A. E., DeEtta, M., Krish, J., Thomas, B. M. 2006. Molecular-based approaches to soil microbiology. Soil Sci. Soc. Am. J. 71:561.
Johnson, B., Hope, A. 2000. GM crops and equivocal environmental benefits. Nat. Biotechnol. 18:242.
Kennedy, A. C., Smith, K. L. 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil. 170:75-86.
Kim, Y. T., Park, B. K., Hwang, E. I., Yim, N. H., Kim, N. R., Kang T. H., Lee, S. H., Kim, S. U. 2004. Investigation of possible gene transfer to soil microorganisms for environmental risk assessment of genetically modified organisms. J. Microbiol. Biotechnol. 14:498-502.
Kim, T. W., Lee, J. H., Park, M. H., Kim, H. Y. 2010. Analysis of bacterial and fungal communities in Japanese- and Chinese-fermented soybean pastes using nested PCR-DGGE. Curr. Microbiol. 60:315-320.
Kokubun, N., Ishida, H., Makino, A., Mae, T. 2002. The degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase into the 44-kDa fragment in the lysates of chloroplasts incubated in darkness. Plant Cell Physiol. 43:1390-1395.
Kowalchuk, G. A., Bruinsma, M., Van Veen, J. A. 2003. Assessing responses of soil microorganisms to GM plants. Trends. Ecol. Evol. 18:403-410.
Kowachuk, G. A., Stephen, J. R., De Boer, W., Prosser, J. I., Embley, T. M., Woldendorp, J. W. 1997. Analysis of ammonia oxidizing bacteria of β subdivision of the class proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 67:4742-4751.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-685.
Lehesranta, S. J., Davies, H. V., Shephard, L. V. T., Nunan, N., McNicol, J. W., Auriola, S., Koistinen, K. M., Suomalainen, S., Kokko, H. I. 2005. Comparison of tuber proteomes of potato varieties, landrace, and genetically modified lines. Plant Physiol. 138:1690-1699.
Lin, C. H.; Sheu, F.; Lin, H. T., Pan, T. M. 2010. Allergenicity assessment of genetically modified cucumber mosaic virus (CMV) resistant tomato (Solanum lycopersicon) . J. Agric. Food Chem. 58:2302-2306.
Lipp, M., Brodmann, P., Pietsch, K., Pauwels, J, Anklam, E. 1999. IUPAC collaborative trial study of a method to detect genetically modified soybeans and maize in dried powder. J. AOAC Int. 82: 923-928.
Lorenz, M. G., Wackernagel, W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563-602.
Lu, I. J., Lin, C. H., Pan, T. M. 2010. Establishment of a system based on universal multiplex-PCR for screening genetically modified crops. Anal. Bioanal. Chem. 396:2055-2064.
Mader, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U. 2002. Soil fertility and biodiversity in organic farming. Science. 296:1694-1697.
Majeran, W., Friso, G., van Wijk, K. J., Vallon, O. 2005. The chloroplast ClpP complex in Chlamydomonas reinhardtii contains an unusual high molecular mass subunit with a large apical domain. FEBS J. 272:5558-5571.
Marcel, P., Magrit, L.; Emanuela, N.; Jorg, S.; Michael, W., Mark, T. 2008. Strategies for antiviral resistance in transgenic plants. Mol. Plant. Pathol. 9: 73-83.
Martín-Orúea, S. M., O'Donnella, A. G., Ariñoa, J., Netherwooda1, T., Gilberta, H. J., Mathersa, J. C. 2002. Degradation of transgenic DNA from genetically modified soya and maize in human intestinal simulations. Br. J. Nutr. 87:533-542
Masek, T.; Vopalensky, V.; Suchomelova, P.; Pospisek, M. 2005. Denaturing RNA electrophoresis in TAE agarose gels. Anal. Biochem. 336:46-50.
Mayfield, S. P. 1991. Over-expression of the oxygen-evolving enhancer 1 protein and its consequences on photosystem II accumulation. Planta. 185:105-110.
McAllan, A. B. 1982. The fate of nucleic acid in ruminants. Proc. Nutr. Soc. 41:309-317.
McDevitt, C., Burrell, P., Blackall, L. L., McEwan, A. G. 2000. Aerobic nitrate respiration in a nitrite-oxidising bioreactor. FEMS Microbiol. Lett. 184:113-118.
Metcalfe, D. D., Astwood, J. D., Townsend, R., Sampson, H. A., Taylor, S. L., Fuchs, R. L. 1996. Assessment of the allergenic potential of foods derived from genetically engineered crop plants. Crit. Rev. Food Sci. Nutr. 36:165-186.
Michael, W. P., Graham, W. H., Dempfle L. 2002. Relative Expression Software Tool (REST©) for group wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl. Acids Res. 30: E36.
Michelini, E., Simoni, P., Cevenini, L., Mezzanotte, L., Roda, A. 2008. New trends in bioanalytical tools for the detection of genetically modified organisms: an update. Anal. Bioanal. Chem. 392:355-367.
Millstone, E., Brunner, E., Mayer, S. 1999. Beyond ’substantial equivalence’. Nature. 401:525-526.
Morita, H., Nakano, A., Shimazu, M., Toh, H., Nakajima, F., Nagayama, M., Hisamatsu, S., Kato, Y., Takagi, M., Takami, H., Akita, H., Matsumoto, M., Masaoka, T., Murakami, M. 2009. Lactobacillus hayakitensis, L. equigenerosi and L. equi, predominant lactobacilli in the intestinal flora of healthy thorough breds. Anim. Sci. J. 80:339-346.
Mormile, M. R., Hong, B. Y., Benison, K. C. 2009. Molecular analysis of the microbial communities of Mars analog lakes in Western australia. Astrobiology. 9:919-30.
Morroni, M., Thompson, J. R., Tepfer, M. 2008. Twenty years of transgenic plants resistant to Cucumber mosaic virus. Mol. Plant Microb. Interactions. 21:675-684.
Motavalli, P. P., Kremer, R. J.; Fang, M., Means, N. E. 2004. Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations. J. Environ. Qual. 33:816-24.
Murashige, T., Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497.
Muyzer, G., de Waal, E. C., Uitterlinden, A. G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
Nakatsu, C. H. 2006. Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci. Soc. Am. J. 71:562-571.
Nordlee, J. A., Taylor, S. L., Townsend, J. A., Thomas L. A., Bush, R. K. 1996. Identification of a brazil-nut allergen in transgenic soybeans. N. Engl. J. Med. 334:688-692.
Notification 200-31. 2000. Ministry of Agriculture and Forestry of Korea, Seoul, Korea.
Notification 1775. 2000. Food and Marketing Bureau, Ministry of Agriculture, Foresty and Fisheries of Japan, Tokyo, Japan.
Order 10. 2002. Ministry of Agriculture of the People’s Republic of China, Beijing, China.
Oros-Sichler, M., Gomes, N. C. M., Neuber, G., Smalla, K. 2006. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. J. Microbiol. Methods. 65:63-75.
Patra, A. K., Luc A., Annie, C. J., Valerie, D., Susan, J. G., Nadine, G., Pierre, L., Frederique, L., Shahid, M., Sylvie, N., Laurent, P., Franck, P., James, I. P., Xavier, L. R. 2006. Effects of management regime and plant species on the enzyme activity and genetic structure of N2-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environ. Microbiol. 8:1005-1016.
Pontiroli, A., Simonet, P., Frostegard, A., Vogel, T. M., Monier, J. M. 2007. Fate of transgenic plant DNA in the environment. Environ Biosafety Res 6:15-35.
Poppy, G. 2000. GM crops: environmental risks and non-target effects. Trends Plant Sci. 5:4-6.
Powell-Abel, P.; Nelson, R. S.; De, B.; Hoffman, N.; Rogers, S. G.; Fraley, R. T.; Beachy, R. N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science. 232:738-743.
Provvidenti, R., Gonsalves, D. 1995. Inheritance of resistance to cucumber mosaic virus in a transgenic tomato line expressing the coat protein gene of the white leaf strain. J. Heredity. 86: 85-88.
Raw, J. D. 1983. Biochemistry. pp. 358. Harper and Row Publishers, Inc., New York, USA.
Raybould, A. 2007. Ecological versus ecotoxicological methods for assessing the environmental risks of transgenic crops. Plant Sci. 173:586-602.
Reese, G., Ayuso, R., Lehrer, S. B. 1999. Tropomyosin: an invertebrate pan-allergen. Int. Arch. Allergy Immunol. 119:247-258.
Richard, S., Amy, L., Li, M. C., Ngan, M., Menenzes, S., Zhao, Y. D. 2007. Analysis of gene expression data using BRB-array tools. Cancer Inform. 3:11-17.
Ricroch, A., Berge, J. B., Kuntz, M. 2010. Is the German suspension of MON 810 maize cultivation scientifically justified? Transgenic Res. 19:1-12.
Rischer, H., Oksman-Caldentey, K. M. O. 2006. Unintended effects in genetically modified crops: revealed by metabolomics? Trends Biotechnol. 24:102-104.
Rowland, I. R. 2002. Genetically modified foods, science, consumers and the media. Proc. Nutr. Soc. 61:25-29.
Ruebelt, M. C., Leimgruber, N. K., Lipp, M., Reynolds, T. L., Nemeth, M. A., Astwood, K. H. E. and Jany, K. D. 2006a. Application of two-dimensional gel electrophoresis to interrogate alterations in proteonome of genetically modified crops. 1. Assessing analytical validation. J. Agric. Food Chem. 54:2154-2161.
Ruebelt, M. C., Leimgruber, N. K., Lipp, M., Reynolds, T. L., Nemeth, M. A., Astwood, K. H. E. and Jany, K. D. 2006b. Application of two-dimensional gel electrophoresis to interrogate alterations in proteonome of genetically modified crops. 2. Assessing natural variability. J. Agric. Food Chem. 54:2162-2168.
Ruebelt, M. C., Leimgruber, N. K., Lipp, M., Reynolds, T. L., Nemeth, M. A., Astwood, K. H. E. and Jany, K. D. 2006c. Application of two-dimensional gel electrophoresis to interrogate alterations in proteonome of genetically modified crops. 3. Assessing unintended effects. J. Agric. Food Chem. 54:2169-2177.
Ruijter, J. M., Ramakers, C., Hoogaars, W. M., Karlen, Y., Bakker, O., van den Hoff, M. J., Moorman, A. F. 2009. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucl. Acids Res. 37:e45
Russian Federation Biotechnology GMO Labeling Requirement. 2006. GAIN report. RS6014.
Sambrook, J., Russel, D.W. 1989. Molecular cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Sprig Harbor, New York.
Schubbert, R., Renz, D., Schmitz, B., Doerfler, W. 1997. Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc. Natl. Acad. Sci. USA. 94:961-966.
Shannon, C.E. 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379–423.
Sheffield, V. C., Cox, D. R., Lerman, L. S., Myers, R M. 1989. Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA. 86:232-236.
Shin, D. S., Compadre, C. M., Maleki S. J., Kopper R. A., Sampson H., Huang S. K., Burks A. W., Bannon G. A. 1998. Biochemical and structural analysis of the IgE binding sites on Ara h1, an abundant and highly allergenic peanut protein. J. Biol. Chem. 273:13753-13759.
Standard 1.5.2. 2001. Food Standard of Australia and New Zealand, Canberra, Australia.
Swarts, S.G., Smith, G.S., Miao, L., Wheeler, K.T. 1996. Effects of formic acid hydrolysis on the quantitative analysis of radiation-induced DNA base damage products assayed by gas chromatography/mass spectrometry. Radiat. Environ. Biophys. 35:41-53.
Szymkowiak, E. J., Irish, E. E. 2006. JOINTLESS suppresses sympodial identity in inflorescence meristems of tomato. Planta. 223:646-658.
Taylor, P. A., Fuchs, R. L. 1992. Assessment of the allergenic potential of foods derived from genetically engineered crop plants. Crit. Rev. Food Sci. Nutr. 36:165-186.
Walkey, A., Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29-38.
Waksman, S. A. 1961. The actinomycetes: classification, identification and description of genera and species. Baltimore: The Williams and Wilkins Company. 2:61-292.
Weissensteiner, T., Griffin, H. G., Griffin, A. 2004. PCR technology-current innovations. 2nd edtion. CRC press, Washington D. C., USA.
Widmer, F. 2007. Assessing effects of transgenic crops on soil microbial communities. Adv. Biochem. Eng. Biotechnol. 107:207-34.
Widmer, F., Rasche, F., Hartmann, M., Fliessbach, A. 2006. Community structures and substrate utilization of bacteria in soils from organic and conventional farming systems of the DOK long-term field experiment. Appl. Soil Ecol. 33:294-307.
Xue, B., Gonsalves, C., Provvidenti, R. 1994. Development of transgenic tomato expression a high level of resistance to Cucumber Mosaic Virus strains of subgroups I and II. Plant Dis. 78:1038-1041.
Yagami, T., Haishima, Y., Nakamura, A., Osuna, H., Ikezawa, Z. 2000. Digestibility of allergens extracted from natural rubber latex and vegetable foods. J. Allergy Clin. Immunol. 106: 752-762.
Zhou, J., Ma, C., Xu, H., Yuan, K., Lu, X., Zhu, Z., Wu, Y., Xu, G. 2009. Metabolic profiling of transgenic rice with cryIAc and sck genes: an evaluation of unintended effects at metabolic level by using GC-FID and GC-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877:725-732.
Ziembińska, A., Ciesielski, S., Miksch, K. 2009. Ammonia oxidizing bacteria community in activated sludge monitored by denaturing gradient gel electrophoresis (DGGE) . J. Gen. Appl. Microbiol. 55:373-380.
Zolla, L., Rinalducci, S., Antonioli, P., Righetti, P. G. 2007. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a results of genetic modifications. J. Proteome Res. 7:1850-1861.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8591-
dc.description.abstract隨著基改作物的栽種生產日趨普及,以歐盟為首之諸多國家,對於基改作物的安全性與管制也越來越重視。本研究以亞洲蔬菜發展中心所研發出的國產基改抗胡瓜嵌紋病毒番茄R8為材料,進行安全性評估以及非預期效應的研究。本研究於第二章首先遵循衛生署所公布「基因改造食品」之安全評估方法進行過敏性評估。綜合本研究以及其他評估研究計畫的結果,雖然在農藝性狀與果實總糖含量上有顯著變化,但是沒有實際的安全性風險。第三章進行品系專一性即時定量聚合酶鏈反應檢測系統的建立,成功地建立具有足夠專一性、定量線性與靈敏度的檢測方法。此外藉由模擬胃液的分解,證實基改番茄R8 的果實DNA 並未有殘留於消化道的疑慮。第四章進行種植基改番茄R8 對於土壤微生物菌相的影響評估,以瞭解種植基改番茄R8 是否會對於土壤微生物生態帶來衝擊。結果顯示相較於試驗田中的其他環境因子,種植基改番茄R8對於土壤微生物不會顯著的衝擊土壤微生物生態。本研究的最後一部份為整合cDNA 微陣列分析與蛋白質二維電泳以及反轉錄-即時定量聚合酶鏈反應技術進行基改番茄R8 的非預期效應評估。結果顯示基改番茄R8 在轉殖過程中的確產生了非預期的改變,對於植株的生理發育以及果實的糖度可能產生了影響,但是並沒有發現具有安全性疑慮的非預期改變。在涵蓋性足以將所有的代謝變化進行描述的研究方法出現之前,整合多個分子層次的非預期效應研究方法有其必要性。綜合本研究結果,國產基改抗胡瓜嵌紋病毒番茄R8雖然基改番茄R8在農藝性狀、基因表現與蛋白質表現上與非基改番茄L4783有部分具有顯著差異,但是這些改變並未發現明顯的安全性的疑慮。過敏性與毒理學的評估的結果也顯示基改番茄R8 可以安全食用。近年來高通量分析技術的快速進步,以及生物分子資料庫的快速成長,使得有關植物生理代謝機制知識的快速進展。越來越深入的分子層次研究結果顯示出現行基於「實質等同」的法則所提供的資訊有可能不足以完全評估基改作物的安全性。雖然目前非預期效應的評估仍因為成本偏高及知識和技術的限制無法普遍實行,評估的結果也往往無法有清楚而完整的解釋,但對於基改作物的安全性評估來說,仍然具有相當的價值。如果現行基改作物安全性評估方法之外,加入非預期效應的評估,雖然可能無法立即清楚的判定基改作物的安全性,但隨著分析技術以及相關知識的快速進步,非預期效應評估的資料將可提升安全性評估決策的可靠性。zh_TW
dc.description.abstractFollowing the widespread of genetically modified (GM) crop in the world, many countries such as EU have great concern about GM crop regulation and safety. A transgenic CMV-resistant tomato line R8 which developed by Asian Vegetable Research and Development Center was used to study the safety assessment and unintended effect of GM crop in this research. We start with the conventional safety assessment of GM crop in the chapter 2, and the GM tomato R8 was concluded as safe following the guideline of safety assessment. In the chapter 3 of this research, a real-time PCR detection system of GM tomato R8 was established with feasible specificity, linearity and sensitivity. The digestive fate of tomato fruit DNA was also revealed by simulated gastric fluid (SGF) digestion and real-time polymerase chain reaction analysis. Rapid degradation of tomato fruit DNA in the SGF showed that there is a minimal risk of gene flow. The chapter 4 of this study is the evaluation of the effect of GM tomato on soil microbial communities using denaturing gradient gel electrophoresis. The result of soil microbial analysis showed that the effect of GM tomato R8 was minor than the environmental factors such as soil position. Thus we conclude that GM tomato R8 has no detrimental impact on soil microbial communities. The last part of this study is the evaluation of the unintended effect of GM tomato R8 with proteomic and transcriptomic analysis. The results of this study have revealed the unintended changes of gene and protein expression in GM tomato R8, which may caused the significant changes of floral development and sugar content of GM tomato R8. In summary, GM tomato R8 did have several unintended changes in the gene and protein expression which may relate to the significant changes of floral development and sugar content. However, these unintended changes do not relate to any significant safety risk. The results of allergenicity and toxicity assessment were also showed no significant safety concern. Due to the complex and uncertain process of plant gene transformation, unintended changes GM crop should always exist. As the rapid development of high-throughput analysis, the unintended effects of GM crops have caused the contradiction of “substantial equivalence” concept used in the GM crop safety assessment. We think that the evaluation of unintended effects should combine with the “substantial equivalence” in the GM crop safety assessment in order to improve reliability of the decision making process in the future.en
dc.description.provenanceMade available in DSpace on 2021-05-20T19:58:43Z (GMT). No. of bitstreams: 1
ntu-99-D93b47105-1.pdf: 9939618 bytes, checksum: 6d6a4f8c55ef8ce0a29b7d075db2754a (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要……………………………………………………………………………XI
英文摘要……………………………………………………..…………………….XII
縮寫表……………………………………………………..……………..………….IX
第一章 緒論
1-1 基因改造生物(genetically modified organisms, GMO) 的定義………………………...1
1-2 基因改造作物現況…………………………………………………………………………..1
1-3 基改作物安全性評估………………………………………………………………………..3
1-4 基改作物的管理與檢測…………………………………………………………………….5
1-5 基改作物的非預期效應……………………………………………………………………8
1-6 基改抗胡瓜嵌紋病毒番茄…………………………………………………………………11
1-7 研究架構與研究目的………………………………………………………………12
第二章 基改抗胡瓜嵌紋病毒番茄過敏性評估
2-1 基改抗胡瓜嵌紋病毒番茄安全性評估研究計畫…………………………………………15
2-2 基改抗胡瓜嵌紋病毒番茄基本資料………………………………………………………15
(一) 「基因改造植物」之描述……………………………………..……………………15
(二) 宿主植物及其食物用途……………………………………..….…………………15
1. 俗名、學名及分類學資訊……………………………………..………………15
2. 育種栽培及發展之歷史,特別是對有礙人體健康之性狀說明………………16
3. 與宿主植物安全性相關之基因型及表現型資訊…………………………….…16
a. 毒性…………………………………………………………………………..…16
b. 過敏誘發性…………………………………………………………………..…16
c. 宿主類緣種與對宿主植物之遺傳背景具顯著貢獻之植物與安全性相關之基因型及表現型…………………………………………………………..16
4. 安全食用歷史………………………………………………………………….….18
a. 傳統育種、運輸及貯存的方法………………………………………………18
b. 安全食用所需之特殊加工方法……………………………………………..…18
c. 在一般膳食中所扮演的角色………………………………………………..…18
(三) 基因提供生物(可包括類緣種) 之描述………………..……………………….…18
1. 俗名、學名及分類學資訊…………………………………………………………18
2. 安全食用歷史資訊…………………………………………………………….…18
3. 作為食品用途之資訊,以及除食品用途外之可能攝取途徑……………………19
(四) 基因改造之描述………………………………………………………………….…19
1. 轉殖之描述…………………………………………………………………….…19
a. 轉殖方法……………………………………………………………………..…19
b. 載體各結構片段之資訊……………………………………………………..…20
(1) 來源,如植物、微生物、病毒、合成………………………………………20
(2) 辨識特徵…………………………………………………………………20
(3) 於植物中預期之功能……………………………………………………20
c. 中間宿主………………………………………………………………………20
2. 提供欲轉殖入宿主植物之DNA的相關資訊……………………………..……20
a. 所有遺傳物質之特徵……………………………………………………….…20
b. 大小及辨識特徵………………………………………………………………23
c. 於最終重組體中的位置及方向及功能…………………………………..…23
(五) 基因改造之特徵………………………………………………………………….…23
1. 嵌入植物基因體之轉殖DNA的相關資訊…………………………………….…23
2. 提供基因改造植物體內任何新表現物質之資料………………………………23
3. 其他必要資料…………………………………………………………………..…23
2-3 材料與方法………………………………………………………………………………....23
(一) 基改抗胡瓜嵌紋病毒番茄過敏誘發性評估……………………………………23
1. 探討基因來源…………………………..…………………………..……23
2. 胺基酸序列過敏原資料庫搜尋比對……………………………………..……24
3. 基改番茄中轉殖基因表現量分析………………………………………..……24
a. 胡瓜嵌紋病毒鞘蛋白基因序列選殖與確認………………………….……26
b. 基改番茄中轉殖基因於不同生長時期的表現量…………………….……26
(1) 番茄樣品……………………………………………………………….26
(2) Total RNA 製備與純化…………………………...…………………….26
(3) RNA定量………………………………………………………………28
(4) 反轉錄即時定量PCR分析 (RT-qPCR) …………………………….28
(a) cDNA 合成……………………………………………………..28
(b) 即時定量PCR 引子設計……………………………………28
(c) 即時定量PCR 反應條件……………………………………….30
(d) 基因表現量的計算方式…………………………………………30
4. 重組胡瓜嵌紋病毒鞘蛋白生產………………………………………………32
a. 重組大腸桿菌培養與誘導生產胡瓜嵌紋病毒鞘蛋白….………………32
b. rCMVCP的純化與確認…………………………………...………………33
(1) rCMVCP 的純化…….……………………………………………...…33
(2) SDS-PAGE、Western、N端定序以及LC/MS/MS分析…………………33
5. 模擬胃液消化試驗……………………………………………………..35
2-4 結果………………………………………………………………………..………………..36
(一) 蛋白質來源、基因表現量與蛋白質表現量分析……………………………………..36
1. 蛋白質來源與過敏誘發性相關資料………………………………………..36
2. 新表現蛋白質的含量及表現位置……………………………………..…..36
(二) 序列搜尋比對……………………………………..…………………………………..36
(三) rCMV cp 生產純化……………………………………..……………………………..36
(四) 模擬胃液消化試驗…………………………………………………..………………..41
2-5討論……………………………………………….………………………..………………..46
(一) 基改抗胡瓜嵌紋病毒番茄過敏誘發性評估………………………..………………..45
(二) 綜合安全性評估結果………………………………………………..………………..46
2-6結論……………………………………………….………………………..………………..46
第三章 品系專一性即時定量聚合酶鏈反應檢測系統之建立與番茄果實DNA 於模擬胃液中的分解
3-1 前言………………………………………….…………………………..………………..47
3-2 材料與方法………………………………….………………………..……………….…..51
(一) 以GenomeWalkerTM 試劑套組選殖轉殖基因鄰近序列….……………….…..51
1. Genomic DNA 之製備與純化….………………………………………….51
2. 基改抗胡瓜嵌紋病毒番茄轉殖基因定序….………………………………….52
3. 選殖轉殖基因鄰近序列.……………………………………………………….52
(二) 以Inverse PCR選殖轉殖基因鄰近序列.……………………………………………..56
(三) 以TAIL-PCR選殖轉殖基因3’ 與5’ 端序列.………………………………….58
(四) 選殖片段的確認.……………………………………………………………………..58
(五) 即時定量PCR檢測系統的品系專一性引子設計及確認.……………….………….65
(六) 即時定量PCR檢測系統的建立.………………………………………..…….65
1. 探針設計與內源性基因的選擇.………………………………………….65
2. 參考質體的構築與標準曲線的建立.………………………………………….65
3. 即時定量PCR 反應條件.……………………………………………………..69
4. 系檢測統建立與確認.………………………………………………………….69
(七) 基改番茄R8番茄果實的模擬胃液消化試驗.……………………………………73
3-3 結果.………………………………………………………………………………………...73
(一) 轉殖基因鄰近序列選殖與確認.……………………………………………………...73
(二) 即時定量PCR檢測系統建立.…………………………………………………….74
(三) 基改番茄R8番茄果實的模擬胃液消化試驗.……………………………………….82
3-4 討論.………………………………………………………………………………………...88
3-5 結論………………………………………………………………………………………...90
第四章 基改抗胡瓜嵌紋病毒番茄對於土壤微生物菌相影響評估
4-1 前言.……………………………………………………………………………………….91
(一) 基改作物的基因水平轉移現象.………………………………………………...91
(二) 土壤微生物菌相與植物.……………………………………………………………...92
(三) 變性梯度膠體電泳 (denaturing gradient gel electrophoresis, DGGE) .……………. 94
(四) 評估策略.…………………………………………………………………………….95
4-2 材料與方法.…………………………………………..…………………………………….98
(一) 基改番茄試驗田與土壤樣本處理.……………………………………………….98
(二) 土壤基本性質與微生物計數分析.………………………………………………….101
(三) PCR-DGGE 分析條件.………………………………………………………….103
1. 土壤DNA 抽取.…………………………………………….………………….103
2. PCR 條件.……………………………………………….………….…………….103
3. DGGE 電泳分析.………………………………………..……………………….106
4. DGGE 結果分析.………………………………………..……………………….107
4-3 結果.…………………………………………………………………………………….108
(一) 土壤微生物計數與性質分析.……………………………………………………….108
(二) PCR-DGGE 結果分析.………………………………………………………..….108
4-4 討論.……………………………………………………………………………..……….121


第五章 以蛋白質二維電泳、cDNA 微陣列及反轉錄-即時定量聚合酶鏈反應進行基改抗胡瓜嵌紋病毒番茄非預期效應的評估
5-1 前言.………………………………………………………………………………………125
5-2 材料與方法.…………………………………………………………………………….…125
(一) 植物樣品.……………………………………………………………………….125
(二) Total RNA抽取.………………………………………………………………….125
(三) RNA樣本處理與cDNA微陣列晶片製備方法.…………………………………….130
(四) RNA品質確認及濃度測定.………………………………………..………….130
(五) cDNA 微陣列結果分析.…………………………………………….……….131
(六) RT-qPCR 確認基因表現.……………………………………………..…….131
1. RT-qPCR 分析條件.…………………………………………………….….132
(七) 蛋白質樣品抽取.…………………………………………………………..…….132
1. rehydration buffer配製.…………………………………………….……….132
2. 蛋白質樣品抽取.…………………………………………………………….132
(八) 等電集焦電泳.……………………………………………………..…………….134
(九) 第二維電泳分析.……………………………………………….………………….134
1. Blue Silver Stain 染色劑配製.………………………………………………..134
2. 第二維蛋白質電泳與影像分析.………………………………………….135
3. 蛋白質質譜分析鑑定 .………………………………………………..…….135
4. mRNA 表現量確認.………………………………………………………….136
(十) 轉殖基因嵌入位置鄰近基因的表現量分析.……………………………………….138
(十一) 花芽分化相關基因的表現量分析.………………………………………….138
5-3 結果.…………………………………………………………………..………………….138
(一) RNA 與cDNA微陣列品質確認.……………...…………………………………….138
(二) cDNA微陣列分析結果.…………………………………………………………….144
(三) 以RT-qPCR 確認cDNA 微陣列結果.…………………………………………….144
(四) 蛋白質二維電泳分析結果.………………………………………………………….151
(五) 轉基因嵌入鄰近基因表現.………………………………………………….…….160
(六) 花芽分化基因的表現量分析.……………………………………………………….165
5-4 討論.……………………………………………………………………………………….170
5-5 結論………………………………………………………………………………………178
總結………………………………………………………………………..………………………179
參考文獻…………………………………………………………………………………………181
附錄…………………………………………………………………………………..……………198
附錄一 基因改造食品之安全性評估方法修正草案.……………………………………….198
附錄二 「混合型基因改造食品」安全性評估原則.……….………………………………….223
附錄三 「國產基因轉殖抗胡瓜嵌紋病毒番茄安全評估模式之建立」群體型研究計畫結果摘要.…………………………………………………………...………………….225
附錄四 抗胡瓜嵌紋病毒番茄轉基因DNA 序列……………………………………...……229
附錄五 抗胡瓜嵌紋轉基因嵌入位置DNA 序列…………………………………………232
dc.language.isozh-TW
dc.title基因改造抗胡瓜嵌紋病毒番茄安全性與非預期效應評估之研究zh_TW
dc.titleStudy on the Safety Assessment and Unintended Effects of Genetically Modified Cucumber Mosaic Virus Resistant Tomatoen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree博士
dc.contributor.oralexamcommittee蘇遠志,徐源泰,廖啟成,方繼,陳名汝,朱文深
dc.subject.keyword基因改造,安全性評估,非預期效應,zh_TW
dc.subject.keywordGenetically modified,safety assessment,unintended effects,en
dc.relation.page232
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf9.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved