請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85918
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅凱尹(Kai-Yin Lo) | |
dc.contributor.author | Ching-Hsiang Hsu | en |
dc.contributor.author | 許景翔 | zh_TW |
dc.date.accessioned | 2023-03-19T23:28:55Z | - |
dc.date.copyright | 2022-09-23 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-22 | |
dc.identifier.citation | Abraham, A., A.J. Kattoor, T. Saldeen, and J.L. Mehta. 2019. Vitamin E and its anticancer effects. Crit Rev Food Sci. 59:2831-2838. Aggarwal, B.B., C. Sundaram, S. Prasad, and R. Kannappan. 2010. Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol. 80:1613-1631. Ahn, K.S., G. Sethi, K. Krishnan, and B.B. Aggarwal. 2007. gamma-tocotrienol inhibits nuclear factor-kappa B signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and Potentiation of apoptosis. J Biol Chem. 282:809-820. Akram, N.A., F. Shafiq, and M. Ashraf. 2017. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci. 8:613. Amsterdam, A., K.C. Sadler, K. Lai, S. Farrington, R.T. Bronson, J.A. Lees, and N. Hopkins. 2004. Many ribosomal protein genes are cancer genes in zebrafish. Plos Biol. 2:690-698. Asada, K. 1999. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Phys. 50:601-639. Aspesi, A., E. Pavesi, E. Robotti, R. Crescitelli, I. Boria, F. Avondo, H. Moniz, L. Da Costa, N. Mohandas, P. Roncaglia, U. Ramenghi, A. Ronchi, S. Gustincich, S. Merlin, E. Marengo, S.R. Ellis, A. Follenzi, C. Santoro, and I. Dianzani. 2014. Dissecting the transcriptional phenotype of ribosomal protein deficiency: implications for Diamond-Blackfan Anemia. Gene. 545:282-289. Azzi, A., and A. Stocker. 2000. Vitamin E: non-antioxidant roles. Prog Lipid Res. 39:231-255. Balaban, R.S., S. Nemoto, and T. Finkel. 2005. Mitochondria, oxidants, and aging. Cell. 120:483-495. Baradaran, A., H. Nasri, and M. Rafieian-Kopaei. 2014. Oxidative stress and hypertension: Possibility of hypertension therapy with antioxidants. J Res Med Sci. 19:358-367. Bassler, J., and E. Hurt. 2019. Eukaryotic ribosome assembly. Annu Rev Biochem. 88:281-306. Basu, U., K. Si, J.R. Warner, and U. Maitra. 2001. The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol Cell Biol. 21:1453-1462. Bender, T., G. Pena, and J.C. Martinou. 2015. Regulation of mitochondrial pyruvate uptake by alternative pyruvate carrier complexes. Embo J. 34:911-924. Benov, L., and I. Fridovich. 1999. Why superoxide imposes an aromatic amino acid auxotrophy on Escherichia coli - The transketolase connection. J Biol Chem. 274:4202-4206. Boisnard, S., G. Lagniel, C. Garmendia-Torres, M. Molin, E. Boy-Marcotte, M. Jacquet, M.B. Toledano, J. Labarre, and S. Chedin. 2009. H2O2 activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae. Eukaryot Cell. 8:1429-1438. Burdeos, G.C., K. Nakagawa, F. Kimura, and T. Miyazawa. 2012. Tocotrienol attenuates triglyceride accumulation in HepG2 cells and F344 rats. Lipids. 47:471-481. Cardona, F., P. Carrasco, J.E. Perez-Ortin, M. del Olmo, and A. Aranda. 2007. A novel approach for the improvement of stress resistance in wine yeasts. Int J Food Microbiol. 114:83-91. Chen, E., G. Proestou, D. Bourbeau, and E. Wang. 2000. Rapid up-regulation of peptide elongation factor EF-1α protein levels is an immediate early event during oxidative stress-induced apoptosis. Exp Cell Res. 259:140-148. Chuang, Y.Y., Y. Chen, Gadisetti, V.R. Chandramouli, J.A. Cook, D. Coffin, M.H. Tsai, W. DeGraff, H. Yan, S. Zhao, A. Russo, E.T. Liu, and J.B. Mitchell. 2002. Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Res. 62:6246-6254. Chung, W.H. 2017. Unraveling new functions of superoxide dismutase using yeast model system: Beyond its conventional role in superoxide radical scavenging. J Microbiol. 55:409-416. Cook, K.E., and E.K. O'Shea. 2012. Hog1 controls global reallocation of RNA Pol II upon osmotic shock in Saccharomyces cerevisiae. G3 (Bethesda). 2:1129-1136. Criddle, D.N., S. Gillies, H.K. Baumgartner-Wilson, M. Jaffar, E.C. Chinje, S. Passmore, M. Chvanov, S. Barrow, O.V. Gerasimenko, A.V. Tepikin, R. Sutton, and O.H. Petersen. 2006. Menadione-induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem. 281:40485-40492. Danilova, N., and H.T. Gazda. 2015. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech. 8:1013-1026. Danilova, N., K.M. Sakamoto, and S. Lin. 2011. Ribosomal protein L11 mutation in zebrafish leads to haematopoietic and metabolic defects. Br J Haematol. 152:217-228. De Keersmaecker, K., S.O. Sulima, and J.D. Dinman. 2015. Ribosomopathies and the paradox of cellular hypo- to hyperproliferation. Blood. 125:1377-1382. deHart, A.K., J.D. Schnell, D.A. Allen, J.Y. Tsai, and L. Hicke. 2003. Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol Biol Cell. 14:4676-4684. Delaunay, A., A.D. Isnard, and M.B. Toledano. 2000. H2O2 sensing through oxidation of the Yap1 transcription factor. Embo J. 19:5157-5166. Dizdaroglu, M., G. Rao, B. Halliwell, and E. Gajewski. 1991. Damage to the DNA bases in mammalian chromatin by hydrogen-peroxide in the presence of ferric and cupric ions. Arch Biochem Biophys. 285:317-324. Doskey, C.M., V. Buranasudja, B.A. Wagner, J.G. Wilkes, J. Du, J.J. Cullen, and G.R. Buettner. 2016. Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy. Redox Biology. 10:274-284. Draptchinskaia, N., P. Gustavsson, B. Andersson, M. Pettersson, T.N. Willig, I. Dianzani, S. Ball, G. Tchernia, J. Klar, H. Matsson, D. Tentler, N. Mohandas, B. Carlsson, and N. Dahl. 1999. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet. 21:169-175. Ebert, B.L. 2011. Molecular dissection of the 5q deletion in myelodysplastic syndrome. Semin Oncol. 38:621-626. Ebert, B.L., J. Pretz, J. Bosco, C.Y. Chang, P. Tamayo, N. Galili, A. Raza, D.E. Root, E. Attar, S.R. Ellis, and T.R. Golub. 2008. Identification of RPS14 as a 5q(-) syndrome gene by RNA interference screen. Nature. 451:335-U337. Eitsuka, T., K. Nakagawa, S. Kato, J. Ito, Y. Otoki, S. Takasu, N. Shimizu, T. Takahashi, and T. Miyazawa. 2018. Modulation of telomerase activity in cancer cells by dietary compounds: a review. International journal of molecular sciences, 19(2), 478. 19. Esguerra, J., J. Warringer, and A. Blomberg. 2008. Functional importance of individual rRNA 2'-O-ribose methylations revealed by high-resolution phenotyping. Rna. 14:649-656. Evans, H.M., O.H. Emerson, and G.A. Emerson. 1936. The isolation from wheat germ oil of an alcohol, a-tocopherol, having the properties of vitamin E. J Biol Chem. 113:319-332. Fehrmann, S., C. Paoletti, Y. Goulev, A. Ungureanu, H. Aguilaniu, and G. Charvin. 2013. Aging yeast cells undergo a sharp entry into senescence unrelated to the loss of mitochondrial membrane potential. Cell Reports. 5:1589-1599. Finch, A.J., C. Hilcenko, N. Basse, L.F. Drynan, B. Goyenechea, T.F. Menne, A.G. Fernandez, P. Simpson, C.S. D'Santos, M.J. Arends, J. Donadieu, C. Bellanne-Chantelot, M. Costanzo, C. Boone, A.N. McKenzie, S.M.V. Freund, and A.J. Warren. 2011. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Gene Dev. 25:917-929. Finkel, T., M. Serrano, and M.A. Blasco. 2007. The common biology of cancer and ageing. Nature. 448:767-774. Fita, I., and M.G. Rossmann. 1985. The active center of catalase. J Mol Biol. 185:21-37. Flint, D.H., E. Smykrandall, J.F. Tuminello, B. Draczynskalusiak, and O.R. Brown. 1993. The inactivation of dihydroxy-acid dehydratase in Escherichia-coli treated with hyperbaric-oxygen occurs because of the destruction of its Fe-S cluster, but the enzyme remains in the cell in a form that can be reactivated. J Biol Chem. 268:25547-25552. Ganapathi, K.A., and A. Shimamura. 2008. Ribosomal dysfunction and inherited marrow failure. Brit J Haematol. 141:376-387. Gasch, A.P., P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, and P.O. Brown. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 11:4241-4257. Gerst, J.E. 2018. Pimp my ribosome: ribosomal protein paralogs specify translational control. Trends Genet. 34:832-845. Giorgio, M., M. Trinei, E. Migliaccio, and P.G. Pelicci. 2007. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol. 8:722-728. Gold, V.A., P. Chroscicki, P. Bragoszewski, and A. Chacinska. 2017. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography. EMBO Rep. 18:1786-1800. Grant, C.M. 2011. Regulation of translation by hydrogen peroxide. Antioxid Redox Signal. 15:191-203. Groft, C.M., R. Beckmann, A. Sali, and S.K. Burley. 2000. Crystal structures of ribosome anti-association factor IF6. Nat Struct Biol. 7:1156-1164. Gugliandolo, A., P. Bramanti, and E. Mazzon. 2017. Role of vitamin E in the treatment of Alzheimer's disease: evidence from animal models. Int J Mol Sci. 18. Harman, D. 1992. Free-Radical Theory of Aging. Mutat Res. 275:257-266. Hasegawa, K., S. Wakino, K. Yoshioka, S. Tatematsu, Y. Hara, H. Minakuchi, N. Washida, H. Tokuyama, K. Hayashi, and H. Itoh. 2008. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Bioph Res Co. 372:51-56. Hermanns, P., A.A. Bertuch, T.K. Bertin, B. Dawson, M.E. Schmitt, C. Shaw, B. Zabel, and B. Lee. 2005. Consequences of mutations in the non-coding RMRP RNA in cartilage-hair hypoplasia. Hum Mol Genet. 14:3723-3740. Hiltunen, J.K., A.M. Mursula, H. Rottensteiner, R.K. Wierenga, A.J. Kastaniotis, and A. Gurvitz. 2003. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 27:35-64. Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 66:300-372. Horemans, N., C.H. Foyer, and H. Asard. 2000. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci. 5:263-267. Jack, K., C. Bellodi, D.M. Landry, R.O. Niederer, A. Meskauskas, S. Musalgaonkar, N. Kopmar, O. Krasnykh, A.M. Dean, S.R. Thompson, D. Ruggero, and J.D. Dinman. 2011. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell. 44:660-666. Kampen, K.R., S.O. Sulima, B. Verbelen, T. Girardi, S. Vereecke, G. Rinaldi, J. Verbeeck, J. Op de Beeck, A. Uyttebroeck, J.P.P. Meijerink, A.V. Moorman, C.J. Harrison, P. Spincemaille, J. Cools, D. Cassiman, S.M. Fendt, P. Vermeersch, and K. De Keersmaecker. 2019. The ribosomal RPL10 R98S mutation drives IRES-dependent BCL-2 translation in T-ALL. Leukemia. 33:319-332. Kampen, K.R., S.O. Sulima, S. Vereecke, and K. De Keersmaecker. 2020. Hallmarks of ribosomopathies. Nucleic Acids Res. 48:1013-1028. Kapralova, K., Z. Saxova, B. Kralova, L. Lanikova, D. Pospisilova, V. Divoky, and M. Horvathova. 2017a. Inflammatory signature, oxidative stress, and DNA damage response in DBA pathogenesis. Blood. 130. Kapralova, K., Z. Saxova, B. Kralova, L. Lanikova, D. Pospisilova, V. Divoky, and M. Horvathova. 2017b. Inflammatory signature, oxidative stress, and DNA damage response in DBA pathogenesis. Blood. 130:2452. Kim, Y., H.D. Kim, and J. Kim. 2013. Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage surveillance. Biochim Biophys Acta. 1833:2943-2952. Kim, Y.J., Y.K. Shin, D.S. Sohn, and C.S. Lee. 2014. Menadione induces the formation of reactive oxygen species and depletion of GSH-mediated apoptosis and inhibits the FAK-mediated cell invasion. Naunyn Schmiedebergs Arch Pharmacol. 387:799-809. Knorr, A.G., C. Schmidt, P. Tesina, O. Berninghausen, T. Becker, B. Beatrix, and R. Beckmann. 2019. Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Nat Struct Mol Biol. 26:35-39. Kojer, K., M. Bien, H. Gangel, B. Morgan, T.P. Dick, and J. Riemer. 2012. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state. Embo J. 31:3169-3182. Komili, S., N.G. Farny, F.P. Roth, and P.A. Silver. 2007. Functional specificity among ribosomal proteins regulates gene expression. Cell. 131:557-571. Kondrashov, N., A. Pusic, C.R. Stumpf, K. Shimizu, A.C. Hsieh, J. Ishijima, T. Shiroishi, and M. Barna. 2011. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell. 145:383-397. Kozarski, M., A. Klaus, D. Jakovljevic, N. Todorovic, J. Vunduk, P. Petrovic, M. Niksic, M.M. Vrvic, and L. van Griensven. 2015. Antioxidants of edible mushrooms. Molecules. 20:19489-19525. Krogan, N.J., G. Cagney, H.Y. Yu, G.Q. Zhong, X.H. Guo, A. Ignatchenko, J. Li, S.Y. Pu, N. Datta, A.P. Tikuisis, T. Punna, J.M. Peregrin-Alvarez, M. Shales, X. Zhang, M. Davey, M.D. Robinson, A. Paccanaro, J.E. Bray, A. Sheung, B. Beattie, D.P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M.M. Canete, J. Vlasblom, S. Wu, C. Orsi, S.R. Collins, S. Chandran, R. Haw, J.J. Rilstone, K. Gandi, N.J. Thompson, G. Musso, P. St Onge, S. Ghanny, M.H.Y. Lam, G. Butland, A.M. Altaf-Ui, S. Kanaya, A. Shilatifard, E. O'Shea, J.S. Weissman, C.J. Ingles, T.R. Hughes, J. Parkinson, M. Gerstein, S.J. Wodak, A. Emili, and J.F. Greenblatt. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 440:637-643. Lai, C.Y., E. Jaruga, C. Borghouts, and S.M. Jazwinski. 2002. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics. 162:73-87. Lambeth, J.D. 2004. Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol. 4:181-189. Lee, J., C. Godon, G. Lagniel, D. Spector, J. Garin, J. Labarre, and M.B. Toledano. 1999. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem. 274:16040-16046. Lesnik, C., Y. Cohen, A. Atir-Lande, M. Schuldiner, and Y. Arava. 2014. OM14 is a mitochondrial receptor for cytosolic ribosomes that supports co-translational import into mitochondria. Nature Communications. 5:5711. Lin, S.J., M. Kaeberlein, A.A. Andalis, L.A. Sturtz, P.A. Defossez, V.C. Culotta, G.R. Fink, and L. Guarente. 2002. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature. 418:344-348. Loew, O. 1900. A new enzyme of general occurrence in organismis. Science. 11:701-702. Loor, G., J. Kondapalli, J.M. Schriewer, N.S. Chandel, T.L. Vanden Hoek, and P.T. Schumacker. 2010. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radical Bio Med. 49:1925-1936. Ludwig, L.S., H.T. Gazda, J.C. Eng, S.W. Eichhorn, P. Thiru, R. Ghazvinian, T.I. George, J.R. Gotlib, A.H. Beggs, C.A. Sieff, H.F. Lodish, E.S. Lander, and V.G. Sankaran. 2014. Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med. 20:748-753. Luidalepp, H., S. Berger, O. Joss, T. Tenson, and N. Polacek. 2016. Ribosome shut-down by 16S rRNA fragmentation in stationary-phase Escherichia coli. Journal of Molecular Biology. 428:2237-2247. Martinez-Corral, R., E. Raimundez, Y. Lin, M.B. Elowitz, and J. Garcia-Ojalvo. 2018. Self-amplifying pulsatile protein dynamics without positive feedback. Cell Systems. 7:453-462.e451. Marullo, R., E. Werner, N. Degtyareva, B. Moore, G. Altavilla, S.S. Ramalingam, and P.W. Doetsch. 2013. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. Plos One. 8. McCord, J.M., B.B. Keele, Jr., and I. Fridovich. 1971. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci U S A. 68:1024-1027. Miyazawa, T., A. Shibata, P. Sookwong, Y. Kawakami, T. Eitsuka, A. Asai, S. Oikawa, and K. Nakagawa. 2009. Antiangiogenic and anticancer potential of unsaturated vitamin E (tocotrienol). J Nutr Biochem. 20:79-86. Moll, I., and H. Engelberg-Kulka. 2012. Selective translation during stress in Escherichia coli. Trends Biochem Sci. 37:493-498. Mroczek, S., and J. Kufel. 2008. Apoptotic signals induce specific degradation of ribosomal RNA in yeast. Nucleic Acids Res. 36:2874-2888. Nakano, M., A. Onodera, E. Saito, M. Tanabe, K. Yajima, J. Takahashi, and V.C. Nguyen. 2008. Effect of astaxanthin in combination with alpha-tocopherol or ascorbic acid against oxidative damage in diabetic ODS rats. J Nutr Sci Vitaminol (Tokyo). 54:329-334. Nakatani, M. 1961. Studies on histidine residues in hemeproteins related to their activities. V. Photooxidation of catalase in the presence of methylene blue. J Biochem. 49:98-102. Nenoi, M., S. Ichimura, K. Mita, O. Yukawa, and I.L. Cartwright. 2001. Regulation of the catalase gene promoter by Sp1, CCAAT-recognizing factors, and a WT1/Egr-related factor in hydrogen peroxide-resistant HP100 cells. Cancer Res. 61:5885-5894. Okazaki, S., T. Tachibana, A. Naganuma, N. Mano, and S. Kuge. 2007. Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal. Mol Cell. 27:675-688. Paulsen, R.D., D.V. Soni, R. Wollman, A.T. Hahn, M.C. Yee, A. Guan, J.A. Hesley, S.C. Miller, E.F. Cromwell, D.E. Solow-Cordero, T. Meyer, and K.A. Cimprich. 2009. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell. 35:228-239. Paz, A., D. Mester, E. Nevo, and A. Korol. 2007. Looking for organization patterns of highly expressed genes: purine-pyrimidine composition of precursor mRNAs. J Mol Evol. 64:248-260. Pelletier, J., G. Thomas, and S. Volarevic. 2018. Ribosome biogenesis in cancer: new players and therapeutic avenues (vol 18, pg 51, 2018). Nature Reviews Cancer. 18:134-134. Petrova, V.Y., D. Drescher, A.V. Kujumdzieva, and M.J. Schmitt. 2004. Dual targeting of yeast catalase A to peroxisomes and mitochondria. The Biochemical journal. 380:393-400. Prasad, S., S.C. Gupta, and A.K. Tyagi. 2017. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95-105. Quan, F., R.G. Korneluk, M.B. Tropak, and R.A. Gravel. 1986. Isolation and characterization of the human catalase gene. Nucleic Acids Res. 14:5321-5335. Ramanathan, N., E. Tan, L.J. Loh, B.S. Soh, and W.N. Yap. 2018. Tocotrienol is a cardioprotective agent against ageing-associated cardiovascular disease and its associated morbidities. Nutr Metab. 15. Ravera, S., C. Dufour, S. Cesaro, R. Bottega, M. Faleschini, P. Cuccarolo, F. Corsolini, C. Usai, M. Columbaro, M. Cipolli, A. Savoia, P. Degan, and E. Cappelli. 2016. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome. Sci Rep. 6:25441. Richter, H.E., and P.C. Loewen. 1981. Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem Biophys Res Commun. 100:1039-1046. Ridanpaa, M., H. van Eenennaam, K. Pelin, R. Chadwick, C. Johnson, B. Yuan, W. vanVenrooij, G. Pruijn, R. Salmela, S. Rockas, O. Makitie, I. Kaitila, and A. de la Chapelle. 2001. Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell. 104:195-203. Robberecht, W., and T. Philips. 2013. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci. 14:248-264. Rogler, L.E., B. Kosmyna, D. Moskowitz, R. Bebawee, J. Rahimzadeh, K. Kutchko, A. Laederach, L.D. Notarangelo, S. Giliani, E. Bouhassira, P. Frenette, J. Roy-Chowdhury, and C.E. Rogler. 2014. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Hum Mol Genet. 23:368-382. Ruiz-Roig, C., N. Noriega, A. Duch, F. Posas, and E. de Nadal. 2012. The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Mol Biol Cell. 23:4286-4296. Rujkijyanont, P., S.L. Adams, J. Beyene, and Y. Dror. 2009. Bone marrow cells from patients with Shwachman-Diamond syndrome abnormally express genes involved in ribosome biogenesis and RNA processing. Brit J Haematol. 145:806-815. Sajesh, B.V., M. Bailey, Z. Lichtensztejn, P. Hieter, and K.J. McManus. 2013. Synthetic lethal targeting of superoxide dismutase 1 selectively kills RAD54B-deficient colorectal cancer cells. Genetics. 195:757-767. Samejima, K., and W.C. Earnshaw. 2005. Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol. 6:677-688. Sankaran, V.G., R. Ghazvinian, R. Do, P. Thiru, J.A. Vergilio, A.H. Beggs, C.A. Sieff, S.H. Orkin, D.G. Nathan, E.S. Lander, and H.T. Gazda. 2012. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest. 122:2439-2443. Schönbein, C. 1863. Chemische Mittheilungen. Journal fuer praktische Chemie. 89:1-38. Scherer, M., H. Wei, R. Liese, and R. Fischer. 2002. Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA. Eukaryot Cell. 1:725-735. Schmitt, M.E., and D.A. Clayton. 1993. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol. 13:7935-7941. Schuller, C., J.L. Brewster, M.R. Alexander, M.C. Gustin, and H. Ruis. 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. Embo J. 13:4382-4389. Sekito, T., J. Thornton, and R.A. Butow. 2000. Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell. 11:2103-2115. Sen, C.K., S. Khanna, and S. Roy. 2007. Tocotrienols in health and disease: the other half of the natural vitamin E family. Mol Aspects Med. 28:692-728. Senger, B., D.L.J. Lafontaine, J.S. Graindorge, O. Gadal, A. Camasses, A. Sanni, J.M. Garnier, M. Breitenbach, E. Hurt, and F. Fasiolo. 2001. The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis. Mol Cell. 8:1363-1373. Shcherbik, N., and D.G. Pestov. 2019. The impact of oxidative stress on ribosomes: from injury to regulation. Cells-Basel. 8. Shedlovskiy, D., J.A. Zinskie, E. Gardner, D.G. Pestov, and N. Shcherbik. 2017a. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. J Biol Chem. 292:18469-18485. Shedlovskiy, D., J.A. Zinskie, E. Gardner, D.G. Pestov, and N. Shcherbik. 2017b. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. J Biol Chem. 292:18469-18485. Shi, Z., and M. Barna. 2015. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu Rev Cell Dev Biol. 31:31-54. Shibata, A., T. Kobayashi, A. Asai, T. Eitsuka, S. Oikawa, T. Miyazawa, and K. Nakagawa. 2017. High purity tocotrienols attenuate atherosclerotic lesion formation in apoE-KO mice. J Nutr Biochem. 48:44-50. Shimamura, A. 2006. Shwachman-diamond syndrome. Semin Hematol. 43:178-188. Smirnoff, N. 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol. 3:229-235. Spence, J., R.R. Gali, G. Dittmar, F. Sherman, M. Karin, and D. Finley. 2000. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell. 102:67-76. Srinivas, U.S., B.W.Q. Tan, B.A. Vellayappan, and A.D. Jeyasekharan. 2019. ROS and the DNA damage response in cancer. Redox Biology. 25. Sturtz, L.A., K. Diekert, L.T. Jensen, R. Lill, and V.C. Culotta. 2001. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem. 276:38084-38089. Sulima, S.O., I.J.F. Hofman, K. De Keersmaecker, and J.D. Dinman. 2017. How ribosomes translate cancer. Cancer Discov. 7:1069-1087. Sun, N., M. Li, G. Liu, M. Jing, F. He, Z. Cao, W. Zong, J. Tang, C. Gao, and R. Liu. 2021. Toxic mechanism of pyrene to catalase and protective effects of vitamin C: Studies at the molecular and cell levels. International Journal of Biological Macromolecules. 171:225-233. Sunnaker, M., E. Zamora-Sillero, R. Dechant, C. Ludwig, A.G. Busetto, A. Wagner, and J. Stelling. 2013. Automatic generation of predictive dynamic models reveals nuclear phosphorylation as the key Msn2 control mechanism. Sci Signal. 6:ra41. Thorpe, G.W., C.S. Fong, N. Alic, V.J. Higgins, and I.W. Dawes. 2004. Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. Proc Natl Acad Sci U S A. 101:6564-6569. Tkach, J.M., A. Yimit, A.Y. Lee, M. Riffle, M. Costanzo, D. Jaschob, J.A. Hendry, J. Ou, J. Moffat, C. Boone, T.N. Davis, C. Nislow, and G.W. Brown. 2012. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol. 14:966-976. Tsang, C.K., Y. Liu, J. Thomas, Y. Zhang, and X.F.S. Zheng. 2014. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nature Communications. 5:3446. Tsuduki, T., K. Kuriyama, K. Nakagawa, and T. Miyazawa. 2013. Tocotrienol (unsaturated vitamin E) suppresses degranulation of mast cells and reduces allergic dermatitis in mice. J Oleo Sci. 62:825-834. Turrens, J.F. 2003. Mitochondrial formation of reactive oxygen species. J Physiol-London. 552:335-344. Ulirsch, J.C., J.M. Verboon, S. Kazerounian, M.H. Guo, D. Yuan, L.S. Ludwig, R.E. Handsaker, N.J. Abdulhay, C. Fiorini, G. Genovese, E.T. Lim, A. Cheng, B.B. Cummings, K.R. Chao, A.H. Beggs, C.A. Genetti, C.A. Sieff, P.E. Newburger, E. Niewiadomska, M. Matysiak, A. Vlachos, J.M. Lipton, E. Atsidaftos, B. Glader, A. Narla, P.E. Gleizes, M.F. O'Donohue, N. Montel-Lehry, D.J. Amor, S.A. McCarroll, A.H. O'Donnell-Luria, N. Gupta, S.B. Gabriel, D.G. MacArthur, E.S. Lander, M. Lek, L. Da Costa, D.G. Nathan, A.A. Korostelev, R. Do, V.G. Sankaran, and H.T. Gazda. 2018. The genetic landscape of Diamond-Blackfan anemia. Am J Hum Genet. 103:930-947. Valdes-Ramos, R., A.L. Guadarrama-Lopez, B.E. Martinez-Carrillo, and A.D. Benitez-Arciniega. 2015. Vitamins and type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets. 15:54-63. Vasylkovska, R., N. Petriv, and H. Semchyshyn. 2015. Carbon sources for yeast growth as a precondition of hydrogen peroxide induced hormetic phenotype. Int J Microbiol. 2015:697813. von der Haar, T. 2008. A quantitative estimation of the global translational activity in logarithmically growing yeast cells. BMC Syst Biol. 2:87. Waniek, S., R. di Giuseppe, S. Plachta-Danielzik, I. Ratjen, G. Jacobs, M. Koch, J. Borggrefe, M. Both, H.P. Muller, J. Kassubek, U. Nothlings, T. Esatbeyoglu, S. Schlesinger, G. Rimbach, and W. Lieb. 2017. Association of vitamin E levels with metabolic syndrome, and MRI-derived body fat volumes and liver fat content. Nutrients. 9:100-105. Warburg, O., and S. Minami. 1923. Tests on surviving carcinoma cultures. Biochem Z. 142:317-333. Winterbourn, C.C. 2008. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 4:278-286. Wong, W.Y., L.C. Ward, C.W. Fong, W.N. Yap, and L. Brown. 2017. Anti-inflammatory gamma- and delta-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. Eur J Nutr. 56:133-150. Woolford, J.L., and S.J. Baserga. 2013. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics. 195:643-681. Wu, C.-Y., S. Roje, F.J. Sandoval, A.J. Bird, D.R. Winge, and D.J. Eide. 2009. Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency. J Biol Chem. 284:27544-27556. Yin, H., L. Xu, and N.A. Porter. 2011. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 111:5944-5972. Zamocky, M., P.G. Furtmuller, and C. Obinger. 2008. Evolution of catalases from bacteria to humans. Antioxid Redox Signal. 10:1527-1548. Zamocky, M., P.G. Furtmuller, and C. Obinger. 2010. Evolution of structure and function of Class I peroxidases. Arch Biochem Biophys. 500:45-57. Zeidan, Q., Z. Wang, A. De Maio, and G.W. Hart. 2010. O-GlcNAc cycling enzymes associate with the translational machinery and modify core ribosomal proteins. Mol Biol Cell. 21:1922-1936. Zorova, L.D., V.A. Popkov, E.Y. Plotnikov, D.N. Silachev, I.B. Pevzner, S.S. Jankauskas, V.A. Babenko, S.D. Zorov, A.V. Balakireva, M. Juhaszova, S.J. Sollott, and D.B. Zorov. 2018. Mitochondrial membrane potential. Anal Biochem. 552:50-59. Zyrina, A.N., E.A. Smirnova, O.V. Markova, F.F. Severin, and D.A. Knorre. 2017. Mitochondrial superoxide dismutase and Yap1p act as a signaling module contributing to ethanol tolerance of the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 83. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85918 | - |
dc.description.abstract | 細胞中核醣體蛋白的基因突變或是rDNA的複製數出現問題會導致核醣體組裝出現缺陷進而造成核醣體疾病。先前研究顯示,在核醣體基因突變時,會增加膜的壓力反應 (membrane stress response) ,並導致ROS的增加。從結果中發現核醣體蛋白基因缺失的菌株在menadione 或是過氧化氫中的生長相較於野生株都更為敏感。利用Amplex red試劑測試菌株中過氧化氫的濃度發現部分的對數期核醣體突變株中過氧化氫濃度有增加。接著觀察抗氧化酵素的表現,諸如過氧化氫酶及超氧岐化酶的活性,發現突變株在靜止期 (stationary-phase) 的過氧化氫酶活性會大量增加,但對數期 (log-phase) 中的過氧化氫酶活性則沒有影響;然而,對數期的核醣體突變株則多數具有較高的超氧岐化酶活性。以qPCR測試過氧化氫酶活性的提高是否因為在轉錄層面有增加,發現過氧化氫酶的基因 (Cytosolic catalase T, CTT1) 在多數對數期的核醣體突變株會大量表現,且轉錄因子Msn2、Msn4和Hog1能夠參與過氧化氫酶轉錄的調控。前人研究指出過氧化氫會透過fenton reaction在25S rRNA上進行裁切,使其能夠轉譯抗氧化相關基因以適應氧化壓力,結果顯示在核醣體基因缺失的菌株中,25S rRNA亦有被裁切的現象。以蔗糖梯度的方式分離轉譯和非轉譯中的mRNA,發現抗氧化酵素在突變株以及野生株在靜止期中的CTT1和Peroxisomal catalase A (CTA1) 轉譯效率都有明顯的提高,但兩者間的轉譯效率則沒有明顯差異,說明轉譯效率的提高並非核醣體突變造成的現象。另外也發現核醣體突變株的過氧化氫酶活性在抗壞血酸以及生育酚的處理中有不同反應。透過以上的數據,推測核醣體蛋白基因的缺失,會導致體內過氧化氫的增加,以轉錄的方式提高抗氧化酵素的活性。 | zh_TW |
dc.description.abstract | Ribosomopathy is caused by defects in the assembly of ribosomes, which may be caused by mutations of biogenesis-related genes or incorrect copy numbers of rDNA. Previous studies have shown that when ribosomal protein (RP) genes are mutated, the membrane stress response and ROS generation increase. Our results showed that RP gene mutant strains were more sensitive to menadione or hydrogen peroxide than wild type. Our results also showed that the concentrations of hydrogen peroxide measured with Amplex red reagent in the RP mutants were increased in the log phase. We speculated that higher H2O2 might induce the activity of antioxidant enzymes, i.e., catalase and superoxide dismutase (SOD), which can consume ROS. The stationary-phase RP mutants had higher activity but remained unchanged in the log-phase cells. In contrast, most log-phase RP mutants expressed a higher SOD activity. Consistently, the transcription levels of cytosolic catalase genes (CTT1) were higher at the log phase in the RP mutants. We found the transcription factors related to stress response, Msn2, Msn4, and Hog1, were involved in the regulation. Previous studies have shown that H2O2 can cleave 25S rRNA by Fenton reaction to make ribosomes more capable of translating oxidative stress-related genes. Our results showed that 25S rRNA was also cleaved in RP mutants. Using a sucrose gradient to separate the translated and non-translated mRNAs, it was also found that the translation efficiency of CTT1 and CTA1 were significantly improved both in wild type and RP mutants in the stationary phase but no differences were observed in between. In addition, the treatment of antioxidants, i.e., ascorbic acid and tocopherol, caused different responses to the catalase activities in RP mutants. Our results showed that the RP mutants would increase H2O2 in vivo, which in turn elevated the expression of antioxidant enzymes mainly via transcription. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:28:55Z (GMT). No. of bitstreams: 1 U0001-1909202214303700.pdf: 5035846 bytes, checksum: dee9453ed05123e2556f36c03546c23c (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 viii 第壹章、 文獻回顧 1 一、核醣體 (ribosome) 1 二、核醣體疾病 (Ribosomopathies) 1 三、 核醣體疾病的表徵 3 四、 活性氧物質 (Reactive oxygen species, ROS) 5 i. ROS產生方式 : 5 ii. ROS攻擊的標的 6 iii. 抗氧化系統介紹 7 五、 核醣體蛋白同源類似物(paralog) 12 第貳章、 研究動機 14 第參章、 材料方法 15 (一)菌株、質體 (Strains and plasmid) 15 (二) 生長測試 (Spot assay) 15 (三) 過氧化氫酶活性染色分析 (Catalase zymography) 15 (四) 超氧歧化酶活性染色分析 (Superoxide dismutase zymography) 16 (五) qPCR基因表達分析: 16 (六) 北方墨點法 (Northern blot) 18 (七) 過氧化氫濃度測試 19 (八) 轉譯mRNAs的比例分析 (Analysis of the ratio of translating mRNAs) 19 (九) 氫氧化鈉破菌 (Post-alkaline extraction from yeast) 21 (十) 西方墨點法 (Western blot) 21 (十一) 流式細胞儀 (Flow cytometry) 22 第肆章、 結果 24 一、核醣體突變株對於氧化壓力敏感 24 二、核醣體突變株體內的過氧化氫較野生株高 26 三、核醣體突變株產生較高的抗氧化酵素活性 28 四、核醣體突變株的粒線體膜電位異常 30 五、添加不同抗氧化劑後對過氧化氫酶的活性有不同的影響 32 六、對數期時,部分核醣體突變株在抗氧化酵素的轉錄較野生株高 33 七、在特定轉錄因子缺失時過氧化氫酶無法正常表現 34 八、轉譯相關因子的調控會改變過氧化氫酶活性 35 九、H2O2可促進25S核醣體RNA的位點特異性切割且在靜止期更為明顯 36 十、抗氧化酵素的轉譯在靜止期中效率較高 37 第伍章、 討論 38 第陸章、 結論 44 | |
dc.language.iso | zh-TW | |
dc.title | 啤酒酵母中核醣體蛋白基因缺失對抗氧化壓力的影響 | zh_TW |
dc.title | Impact of the mutations of ribosomal protein genes on the oxidative stress in Saccharomyces cerevisiae | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 洪傳揚(Chwan-Yang Hong),張麗冠(Li-Kwan Chang),鄭梅君(Mei-Chun Cheng) | |
dc.subject.keyword | 核醣體,核醣體疾病,活性氧物質,過氧化氫酶,超氧歧化酶, | zh_TW |
dc.subject.keyword | ribosome,ribosomopathy,reactive oxygen species,catalase,superoxide dismutase, | en |
dc.relation.page | 78 | |
dc.identifier.doi | 10.6342/NTU202203568 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-23 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-23 | - |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1909202214303700.pdf | 4.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。