請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85915完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游舒涵 | zh_TW |
| dc.contributor.advisor | Shu-Han Yu | en |
| dc.contributor.author | 彭冠儒 | zh_TW |
| dc.contributor.author | Guan-Ru Peng | en |
| dc.date.accessioned | 2023-03-19T23:28:48Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Sung H, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. doi:10.3322/caac.21660
2. Osmani L, et al. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin Cancer Biol. 2018;52(Pt 1):103-9. doi:10.1016/j.semcancer.2017.11.019 3. Thai AA, et al. Lung cancer. Lancet. 2021;398(10299):535-54. doi:10.1016/S0140-6736(21)00312-3 4. Siegel RL, et al. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7-30. doi:10.3322/caac.21387 5. Travis WD, et al. Introduction to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart. J Thorac Oncol. 2015;10(9):1240-2. doi:10.1097/JTO.0000000000000663 6. Travis WD, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol. 2015;10(9):1243-60. doi:10.1097/JTO.0000000000000630 7. Liu G, et al. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. Int J Mol Sci. 2017;18(2). doi:10.3390/ijms18020367 8. Kovaleva OV, et al. CHID1 Is a Novel Prognostic Marker of Non-Small Cell Lung Cancer. Int J Mol Sci. 2021;22(1). doi:10.3390/ijms22010450 9. Schumacher TN, and Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69-74. doi:10.1126/science.aaa4971 10. Alexander M, et al. Lung cancer prognostic index: a risk score to predict overall survival after the diagnosis of non-small-cell lung cancer. Br J Cancer. 2017;117(5):744-51. doi:10.1038/bjc.2017.232 11. Mahar AL, et al. Refining Prognosis in Lung Cancer: A Report on the Quality and Relevance of Clinical Prognostic Tools. J Thorac Oncol. 2015;10(11):1576-89. doi:10.1097/JTO.0000000000000652 12. Detterbeck FC, et al. The IASLC Lung Cancer Staging Project: Methodology and Validation Used in the Development of Proposals for Revision of the Stage Classification of NSCLC in the Forthcoming (Eighth) Edition of the TNM Classification of Lung Cancer. J Thorac Oncol. 2016;11(9):1433-46. doi:10.1016/j.jtho.2016.06.028 13. Prat A, et al. Immune-Related Gene Expression Profiling After PD-1 Blockade in Non-Small Cell Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma. Cancer Res. 2017;77(13):3540-50. doi:10.1158/0008-5472.CAN-16-3556 14. Li H, et al. Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem. 2007;101(4):805-15. doi:10.1002/jcb.21159 15. Solinas G, et al. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065-73. doi:10.1189/jlb.0609385 16. Altorki NK, et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer. 2019;19(1):9-31. doi:10.1038/s41568-018-0081-9 17. Kourtzelis I, and Rafail S. The dual role of complement in cancer and its implication in anti-tumor therapy. Ann Transl Med. 2016;4(14):265. doi:10.21037/atm.2016.06.26 18. Madore J, et al. PD-L1 expression in melanoma shows marked heterogeneity within and between patients: implications for anti-PD-1/PD-L1 clinical trials. Pigment Cell Melanoma Res. 2015;28(3):245-53. doi:10.1111/pcmr.12340 19. Kwon MJ, et al. Clinical implication of programmed cell death-1 ligand-1 expression in tonsillar squamous cell carcinoma in association with intratumoral heterogeneity, human papillomavirus, and epithelial-to-mesenchymal transition. Hum Pathol. 2018;80:28-39. doi:10.1016/j.humpath.2018.03.025 20. Shen YC, et al. Reliability of a single-region sample to evaluate tumor immune microenvironment in hepatocellular carcinoma. J Hepatol. 2020;72(3):489-97. doi:10.1016/j.jhep.2019.09.032 21. Borghaei H, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015;373(17):1627-39. doi:10.1056/NEJMoa1507643 22. Carbone DP, et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N Engl J Med. 2017;376(25):2415-26. doi:10.1056/NEJMoa1613493 23. Hellmann MD, et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med. 2018;378(22):2093-104. doi:10.1056/NEJMoa1801946 24. McLaughlin J, et al. Quantitative Assessment of the Heterogeneity of PD-L1 Expression in Non-Small-Cell Lung Cancer. JAMA Oncol. 2016;2(1):46-54. doi:10.1001/jamaoncol.2015.3638 25. Casadevall D, et al. Heterogeneity of Tumor and Immune Cell PD-L1 Expression and Lymphocyte Counts in Surgical NSCLC Samples. Clin Lung Cancer. 2017;18(6):682-91 e5. doi:10.1016/j.cllc.2017.04.014 26. Munari E, et al. PD-L1 expression heterogeneity in non-small cell lung cancer: evaluation of small biopsies reliability. Oncotarget. 2017;8(52):90123-31. doi:10.18632/oncotarget.21485 27. Kalpakoff M, et al. Intrapatient Tumor Heterogeneity in IHC Interpretation Using PD-L1 IHC 22C3 pharmDx. Appl Immunohistochem Mol Morphol. 2021;29(9):667-73. doi:10.1097/PAI.0000000000000941 28. Munari E, et al. Correction: PD-L1 expression heterogeneity in non-small cell lung cancer: evaluation of small biopsies reliability. Oncotarget. 2018;9(97):37077. doi:10.18632/oncotarget.26475 29. Scorer P, et al. Consistency of tumor and immune cell programmed cell death ligand-1 expression within and between tumor blocks using the VENTANA SP263 assay. Diagn Pathol. 2018;13(1):47. doi:10.1186/s13000-018-0725-9 30. Fridman WH, et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298-306. doi:10.1038/nrc3245 31. Donnem T, et al. Stromal CD8+ T-cell Density-A Promising Supplement to TNM Staging in Non-Small Cell Lung Cancer. Clin Cancer Res. 2015;21(11):2635-43. doi:10.1158/1078-0432.CCR-14-1905 32. Geng Y, et al. Prognostic Role of Tumor-Infiltrating Lymphocytes in Lung Cancer: a Meta-Analysis. Cell Physiol Biochem. 2015;37(4):1560-71. doi:10.1159/000438523 33. Ruffini E, et al. Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. Ann Thorac Surg. 2009;87(2):365-71; discussion 71-2. doi:10.1016/j.athoracsur.2008.10.067 34. Wakabayashi O, et al. CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Sci. 2003;94(11):1003-9. doi:10.1111/j.1349-7006.2003.tb01392.x 35. Hiraoka K, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer. 2006;94(2):275-80. doi:10.1038/sj.bjc.6602934 36. Al-Shibli KI, et al. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res. 2008;14(16):5220-7. doi:10.1158/1078-0432.CCR-08-0133 37. Johnson SK, et al. Immune cell infiltrates and prognosis in primary carcinoma of the lung. Lung Cancer. 2000;27(1):27-35. doi:10.1016/s0169-5002(99)00095-1 38. Al-Shibli K, et al. The prognostic value of intraepithelial and stromal innate immune system cells in non-small cell lung carcinoma. Histopathology. 2009;55(3):301-12. doi:10.1111/j.1365-2559.2009.03379.x 39. Takanami I, et al. The prognostic value of natural killer cell infiltration in resected pulmonary adenocarcinoma. J Thorac Cardiovasc Surg. 2001;121(6):1058-63. doi:10.1067/mtc.2001.113026 40. Villegas FR, et al. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer. 2002;35(1):23-8. doi:10.1016/s0169-5002(01)00292-6 41. Gooden MJ, et al. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105(1):93-103. doi:10.1038/bjc.2011.189 42. Petersen RP, et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer. 2006;107(12):2866-72. doi:10.1002/cncr.22282 43. Ohtaki Y, et al. Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thorac Oncol. 2010;5(10):1507-15. doi:10.1097/JTO.0b013e3181eba692 44. Zhang B, et al. M2-polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma. Clinics (Sao Paulo). 2011;66(11):1879-86. doi:10.1590/s1807-59322011001100006 45. Hirayama S, et al. Prognostic impact of CD204-positive macrophages in lung squamous cell carcinoma: possible contribution of Cd204-positive macrophages to the tumor-promoting microenvironment. J Thorac Oncol. 2012;7(12):1790-7. doi:10.1097/JTO.0b013e3182745968 46. Maeda R, et al. Circulating CD14+CD204+ cells predict postoperative recurrence in non-small-cell lung cancer patients. J Thorac Oncol. 2014;9(2):179-88. doi:10.1097/JTO.0000000000000044 47. Li Z, et al. The intratumoral distribution influences the prognostic impact of CD68- and CD204-positive macrophages in non-small cell lung cancer. Lung Cancer. 2018;123:127-35. doi:10.1016/j.lungcan.2018.07.015 48. Sun Y, and Xu S. Tumor-Associated CD204-Positive Macrophage Is a Prognostic Marker in Clinical Stage I Lung Adenocarcinoma. Biomed Res Int. 2018;2018:8459193. doi:10.1155/2018/8459193 49. Rakaee M, et al. Prognostic Value of Macrophage Phenotypes in Resectable Non-Small Cell Lung Cancer Assessed by Multiplex Immunohistochemistry. Neoplasia. 2019;21(3):282-93. doi:10.1016/j.neo.2019.01.005 50. Lu CS, et al. Oct4 promotes M2 macrophage polarization through upregulation of macrophage colony-stimulating factor in lung cancer. J Hematol Oncol. 2020;13(1):62. doi:10.1186/s13045-020-00887-1 51. Stanta G, and Bonin S. Overview on Clinical Relevance of Intra-Tumor Heterogeneity. Front Med (Lausanne). 2018;5:85. doi:10.3389/fmed.2018.00085 52. Haragan A, et al. Heterogeneity of PD-L1 expression in non-small cell lung cancer: Implications for specimen sampling in predicting treatment response. Lung Cancer. 2019;134:79-84. doi:10.1016/j.lungcan.2019.06.005 53. Mazzaschi G, et al. Low PD-1 Expression in Cytotoxic CD8(+) Tumor-Infiltrating Lymphocytes Confers an Immune-Privileged Tissue Microenvironment in NSCLC with a Prognostic and Predictive Value. Clin Cancer Res. 2018;24(2):407-19. doi:10.1158/1078-0432.CCR-17-2156 54. Monette A, et al. Immune-enrichment of non-small cell lung cancer baseline biopsies for multiplex profiling define prognostic immune checkpoint combinations for patient stratification. J Immunother Cancer. 2019;7(1):86. doi:10.1186/s40425-019-0544-x 55. Carstens JL, et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun. 2017;8:15095. doi:10.1038/ncomms15095 56. Galon J, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960-4. doi:10.1126/science.1129139 57. Lim CJ, et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut. 2019;68(5):916-27. doi:10.1136/gutjnl-2018-316510 58. Millar E, et al. TILs Immunophenotype in Breast Cancer Predicts Local Failure and Overall Survival: Analysis in a Large Radiotherapy Trial with Long-Term Follow-Up. Cancers (Basel). 2020;12(9). doi:10.3390/cancers12092365 59. Schalper KA, et al. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J Natl Cancer Inst. 2015;107(3). doi:10.1093/jnci/dju435 60. Zugazagoitia J, et al. Biomarkers Associated with Beneficial PD-1 Checkpoint Blockade in Non-Small Cell Lung Cancer (NSCLC) Identified Using High-Plex Digital Spatial Profiling. Clin Cancer Res. 2020;26(16):4360-8. doi:10.1158/1078-0432.CCR-20-0175 61. Huang YK, et al. Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nat Commun. 2019;10(1):3928. doi:10.1038/s41467-019-11788-4 62. Lazarus J, et al. Spatial and phenotypic immune profiling of metastatic colon cancer. JCI Insight. 2018;3(22). doi:10.1172/jci.insight.121932 63. Smolkova B, et al. Increased Stromal Infiltrating Lymphocytes Are Associated with the Risk of Disease Progression in Mesenchymal Circulating Tumor Cell-Positive Primary Breast Cancer Patients. Int J Mol Sci. 2020;21(24). doi:10.3390/ijms21249460 64. Soo RA, et al. Prognostic significance of immune cells in non-small cell lung cancer: meta-analysis. Oncotarget. 2018;9(37):24801-20. doi:10.18632/oncotarget.24835 65. Salazar Y, et al. Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer. J Clin Invest. 2020;130(7):3560-75. doi:10.1172/JCI124037 66. Russick J, et al. Natural killer cells in the human lung tumor microenvironment display immune inhibitory functions. J Immunother Cancer. 2020;8(2). doi:10.1136/jitc-2020-001054 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85915 | - |
| dc.description.abstract | 肺癌是發病率第二高的癌症,也是 2022 年癌症相關死亡的最常見的癌症。而其中非小細胞肺癌患者佔了大約有 80% 到 85% 的比例。
非小細胞肺癌至今仍然難以治療,它的主要特點是晚期診斷的癌症、抗原性低,異質性高,使之難以找到適合的被動免疫治療的方法。儘管免疫療法的興起,但由於患者免疫組成的多樣性,使得治療僅受限於某些群體。因此,為提高治療效率,並尋找合適的治療策略,預後研究變得非常重要。 在過去的幾十年中,對腫瘤微環境的研究變得越來越重要,因為它在腫瘤的發展中起著至關重要的作用。大多相關研究主要在分析腫瘤微環境中的免疫細胞的組成或特定生物標誌的表現作為治療策略的制定依據,以提高免疫治療效果並幫助患者分類以進行精準免疫治療。然而,由於腫瘤微環境中每個細胞的複雜相互作用,使用單一生物標誌物對治療策略進行制定,其治療效果仍然有限。 在我們的研究目標中,我們試圖通過採用多重免疫組織化學分析非小細胞肺癌組織切片中腫瘤微環境內的多個生物標誌物來探索非小細胞肺癌的免疫異質性和患者的預後。為了達到這個目的,我們首先建立了兩個染色組:Lymphocytic Panel (CD4/CD56/CD8/granzyme B/FoxP3/PanCK) 和Immune Checkpoint Panel (PD-L1/CD8/PD-1/CD163/CD68/PanCK) 以及病理定量成像系統 SIMPiE (Spatial Image cytometry Multiplex IHC analysis by Phyton and inForm based Elements),以有效率地整合眾多成像數據和細胞在空間上之分布與距離。接著我們使用來自15名非小細胞肺癌患者的所有 (62個)腫瘤蠟塊的組織切片(124片)來分析同一患者不同腫瘤蠟塊之間的相似性。我們發現大約 53-66% 的非小細胞肺癌患者在不同的腫瘤塊中表現出相似的免疫組成,使用多個腫瘤蠟塊來準確表示單一病人的腫瘤微環境仍然是被需要的。最後,通過Kaplan-Meier、Cox-regression和細胞間距離分析的結果顯示,M1巨噬細胞、M2巨噬細胞、耗竭性CD8胞毒T 細胞、輔助性CD4 T 細胞、CD4 調節性 T 細胞和自然殺手細胞與病人存活期有著顯著相關。這項研究不僅可以探討免疫細胞在腫瘤微環境中對臨床前免疫腫瘤學研究的重要性,還可以應用於個體化醫療和臨床癌症治療。 | zh_TW |
| dc.description.abstract | Lung cancer is the cancer type with the second highest prevalence and the most common cause of cancer-associated death in 2022. About eighty to eighty-five percent of lung cancer patients are non-small cell lung cancer (NSCLC) patients.
NSCLC remains difficult to manage because it’s characterized as a late diagnosed cancer with low antigenicity and high heterogeneity which make it hard to produce a suitable treatment for passive immunity. Despite the rise of immunotherapy, the treatment efficiency showed limited due to the variety of the patient’s immune status. Therefore, to increase the treatment efficiency and find suitable strategies for treatment, prognosis research becomes very important. During the past few decades, the study of the tumor microenvironment (TME) has become more and more important since it plays a critical role in cancer progression. Studies have been focused on analyzing the immune components within TME as prediction biomarkers to increase immunotherapy efficacy and assist patient stratification for precision immune therapy. However, using a single biomarker to stratify therapy strategy shows limited efficacy in treatment since the complicated interaction of each cell in TME. In our specific aims, we tried to explore the immune heterogenicity and patient’s prognosis of non-small cell lung carcinoma (NSCLC) by employing the multiplex immunohistochemistry (multiplex-IHC) to analyze the multiple biomarkers within TME in tissue sections of NSCLC. For achieving this aim, we first built up two staining panels: Lymphocytic Panel (CD4/ CD56/ CD8/ granzyme B/ FoxP3/ PanCK) and Immune Checkpoint Panel (PD-L1/ CD8/ PD-1/ CD163/ CD68/ PanCK) and a quantitative pathology imaging system, SIMPiE (Spatial Image cytometry Multiplex IHC analysis by Phyton and inForm based Elements) to efficiently integrate the numerous imaging data and multiplex spatial cellular phenotyping. Then, 124 FFPE slides from 62 tumor blocks of 15 NSCLC patients were used to analyze the similarity across distinct tumor blocks of the same patient. We revealed that approximately 53-66% of NSCLC patients showed similar TIME across the different tumor blocks, and multiple blocks are required to accurately represent the TIME of an entire tumor. Finally, the prognosis analysis was performed by Kaplan–Meier method with the log-rank, Cox regression, and the cell-to-cell distance analysis, to illustrate the association between overall survival (OS) and immune cell distributions, including M1 macrophage, M2 macrophage, exhausted cytotoxic T cell, CD4 T cell, CD4 regulatory T cell, and NK cell linage. Not only can this work investigate the importance of immune cells in TME for pre-clinical immuno-oncology study, but also can apply to personalized medicine and clinical cancer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:28:48Z (GMT). No. of bitstreams: 1 U0001-1909202217314800.pdf: 14214951 bytes, checksum: 6ad60853dea06a1e71cf947314932d3c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | TABLE OF CONTENT
ACKNOWLEDGMENT i 摘要 iii ABSTRACT v TABLE OF CONTENT 1 LIST OF FIGURES 4 LIST OF TABLES 7 ABBREVIATION 8 I. INTRODUCTION 9 1.1 Lung Cancer and Its Current Treatment Strategies 9 1.2 The Current Treatment Dilemma of Non-small Cell Lung Cancer 11 1.3 Tumor Microenvironment 13 1.4 The Coping Strategies Nowadays 16 II. ESTABLISH AND APPLY TWO MULTIPLEX-IHC PANELS IN ALL THE TISSUE SECTIONS FROM EACH PATIENT TO EXPLORE THE IMMUNE LANDSCAPE OF NSCLC 18 2.1 Abstract 18 2.2 Introduction 20 2.3 Materials and Methods 24 2.4 Results 26 2.5 Conclusion 33 III. BUILD UP AN EFFICIENT IN-HOUSE IMAGE ANALYSIS SYSTEM, SIMPIE, TO ANALYZE THE SELECTED IMMUNE SUBSETS 34 3.1 Abstract 34 3.2 Introduction 36 3.3 Materials and Methods 38 3.4 Results 43 3.5 Conclusion 65 IV. ANALYZE THE SIMILARITY BETWEEN DISTINCT TUMOR BLOCKS FROM THE SAME PATIENT 66 4.1 Abstract 66 4.2 Introduction 68 4.3 Materials and Methods 70 4.4 Results 76 4.5 Conclusion 93 V. ANALYZE THE PROGNOSTIC IMPACT OF THE DISTINCT IMMUNE DENSITY AND/OR SPATIAL DISTRIBUTION 96 5.1 Abstract 96 5.2 Introduction 98 5.3 Materials and Methods 100 5.4 Results 105 5.5 Conclusion 125 VI. CONCLUSION AND PRESPECTIVES 127 VII. CURRICULUM VITAE 130 Reference 134 LIST OF FIGURES Figure 1. Incidence and mortality of the top 10 most common cancer. 10 Figure 2. The status of tumor growth while diagnosis of the NSCLC patient. 12 Figure 3. The heterogeneous microenvironment of lung cancer. 15 Figure 4. Workflow of Opal staining process establishment. 23 Figure 5. Single-color Opal staining of each interested cell marker. 27 Figure 6. Validation of antibody complex stripping by Opal 4-color staining. 28 Figure 7. Staining result of 7-color opal multiplex-IHC staining. 31 Figure 8. SIMPiE software imaging analysis process. 47 Figure 9. Staining results of Opal multiplex immunohistochemistry. 49 Figure 10. Cell population quantification of the Lymphocytic Panel and Immune Checkpoint Panel in NSCLC. 54 Figure 11. Image cytometry by SIMPiE. 56 Figure 12. Phenotype map of Lymphocytic Panel and Immune Checkpoint Panel generated by SIMPiE. 57 Figure 13. Immune cell-to-cell distance in NSCLC. 60 Figure 14. Study schema to explore similarity and diversity of the tumor immune microenvironment by automation Opal multiplex-IHC staining. 77 Figure 15. Heterogenous PD-L1 expressions in NSCLC. 81 Figure 16. Correlations between PD-L1 expression and the abundance of various immune cell types. 82 Figure 17. Comparison of PD-L1 expression level between different tumor types of NSCLC: adenocarcinoma (ADC) and squamous cell carcinoma (SCC). 83 Figure 18. Immune cell constitution in tumor epithelial area in NSCLC tumors. 85 Figure 19. Similarity analysis among different tumor sections of the same tumor by Lymphocytic Panel. 87 Figure 20. Comparison of different cell type within 62 NSCLC tumor blocks. 89 Figure 21. Similarity analysis among different tumor sections of the same tumor by Immune Checkpoint Panel. 91 Figure 22. Kaplan-Meier univariate analysis of overall survival (OS) according to the density of distinct immune cell subsets (low vs high). 109 Figure 23. Kaplan-Meier analysis of overall survival (OS) according to the density of distinct immune cell subsets within the differ compartments by Lymphocytic Panel. 110 Figure 24. Kaplan-Meier analysis of overall survival (OS) according to the density of distinct immune cell subsets within the differ compartments by Immune Checkpoint Panel. 112 Figure 25. The prognostic associations of subsets of immune cells in multivariate Cox regression analysis. 115 Figure 26. Spearman's rank correlation test. 116 Figure 27. Survival analysis according to the cell-to-cell distance. 120 Figure 28. Survival analysis according to the cell-to-cell distance by Lymphocytic Panel. 121 Figure 29. Survival analysis according to the cell-to-cell distance by Immune Checkpoint Panel. 123 LIST OF TABLES Table 1. Corresponding combination of the staining markers and cell types in two multiplex-IHC panels. 21 Table 2. Optimization of the staining sequence for Lymphocytic Panel and Immune Checkpoint Panel. 30 Table 3. Integrative image analysis across different tissue sections of the same patients. 53 Table 4. Comparison between SIMPiE and inForm Tissue Analysis System. 64 Table 5. Clinicopathological Parameters of the Research Cohort. 71 Table 6. Concordance of PD-L1 expression in within the same tumor. 80 Table 7. Characterization of the patient population (n=24). 101 Table 8. Magnitude of integrative image analysis across 24 patients. 107 | - |
| dc.language.iso | en | - |
| dc.subject | 病理學 | zh_TW |
| dc.subject | 細胞空間分布分析 | zh_TW |
| dc.subject | 癌症預後 | zh_TW |
| dc.subject | 組織間相似性 | zh_TW |
| dc.subject | 多光譜影像分析 | zh_TW |
| dc.subject | 組織多重螢光染色 | zh_TW |
| dc.subject | 腫瘤微環境 | zh_TW |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | tissue block similarity | en |
| dc.subject | cancer prognosis | en |
| dc.subject | spatial analysis | en |
| dc.subject | non-small cell lung cancer | en |
| dc.subject | pathology | en |
| dc.subject | tumor immune microenvironment | en |
| dc.subject | multiplex-immunohistochemistry | en |
| dc.subject | multispectral image analysis | en |
| dc.subject | immune landscape | en |
| dc.title | 多重免疫組織化學染色和多光譜定量成像對非小細胞肺癌腫瘤微環境中免疫組成的探索 | zh_TW |
| dc.title | Exploring the immune contexture within tumor microenvironment in NSCLC by multiplex IHC and multispectral quantitative imaging | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳仁欽;許仁駿;歐大諒;蘇剛毅 | zh_TW |
| dc.contributor.oralexamcommittee | Ren-Chin Wu;Ren-Jun Hsu;Da-Liang Ou;Kang-Yi Su | en |
| dc.subject.keyword | 非小細胞肺癌,病理學,腫瘤微環境,組織多重螢光染色,多光譜影像分析,組織間相似性,癌症預後,細胞空間分布分析, | zh_TW |
| dc.subject.keyword | non-small cell lung cancer,pathology,tumor immune microenvironment,multiplex-immunohistochemistry,multispectral image analysis,tissue block similarity,immune landscape,cancer prognosis,spatial analysis, | en |
| dc.relation.page | 141 | - |
| dc.identifier.doi | 10.6342/NTU202203595 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-23 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物科技研究所 | - |
| dc.date.embargo-lift | 2027-09-19 | - |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 此日期後於網路公開 2027-09-19 | 13.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
