請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85914完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張耀乾 | zh_TW |
| dc.contributor.advisor | Yao-Chien Chang | en |
| dc.contributor.author | 普若珊 | zh_TW |
| dc.contributor.author | Ruo-Shan Pu | en |
| dc.date.accessioned | 2023-03-19T23:28:46Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 么煥英. 2007. 應用Pour-through介質溶液測定法於以水草栽培之蝴蝶蘭. 國立臺灣大學園藝系碩士論文. 臺北.
王寅東. 2010. 高品質栽培介質:紐西蘭的再生資源. 臺灣花卉園藝 273:26-29. 伊藤真廣. 2008. 栽培介質對蝴蝶蘭生長及模擬貯運後生長之影響. 國立中興大學園藝系碩士論文. 臺中. 吳國典、陳文輝、陳榮濱、邱明森、鄭英佑. 1994. 蔗渣增施氮素及有機肥對蝴蝶蘭生育之影響. 臺灣糖業研究所研究彙報 146:1-8. 李哖. 1988. 蝴蝶蘭之生長與開花生理. 蘭花研討會專集. 台東農業改良場印. p. 21-32. 李哖. 2004. 蘭花栽培介質與肥培管理. 蘭花病蟲害防治及無病毒種苗驗證制度講習會專集. 行政院農業委員會動植物防疫檢疫局. p. 1-27. 林思佑、陳香君、鍾仁賜、張耀乾. 2013. 株齡影響蝴蝶蘭對介質鹽度的耐受度. 臺灣園藝 59:1-13. 邱健誠、謝廷芳、戴廷恩. 2017. 不同來源大白花蝴蝶蘭Phalaenopsis Sogo Yukidian種苗生育特性之比較. 臺灣農業研究 66:53-65. 金勳、市橋正一. 2002. 植え込み材料からのイオン放出と培養液からのイオン吸収並びにドリテノプシスの生育について. 園芸學會雜誌 71:434-440. 徐淑菁、鄭安秀、楊藹華、楊颺. 2014. 蝴蝶蘭栽培介質內雜草種子之防治技術. 臺南區農業改良場研究彙報 63:50-58. 張仲民. 1987. 普通土壤學. 茂昌圖書有限公司. 臺北. 臺灣. 張耿衡、吳容儀、鍾仁賜. 2011. 不同介質對火鶴花切花生產之影響. 台灣農業化學與食品科學 49:184-194. 張耿衡、蔡隆禾、吳容儀、戴廷恩、謝廷芳. 2007. 樹皮作為蝴蝶蘭栽培介質之評估. 台灣農業研究 56:237-252. 張耿衡、戴廷恩、黃勝忠、曹進義、蔡媦婷、王斐能、張愛華、侯鳳舞. 2006. 人造纖維應用於蝴蝶蘭栽培介質之研究. 臺灣園藝 52:71-80. 陳江良. 2006. 肥料濃度對蝴蝶蘭商業大苗生長與開花之影響. 國立嘉義大學園藝學系碩士論文. 嘉義. 彭穎君. 2008. 大白花蝴蝶蘭‘V3’對氮素之吸收、運移及利用. 國立臺灣大學生物資源暨農學院園藝學系碩士論文. 臺北. 游富鈴. 2004. 水苔、椰纖混合介質及添加緩效性肥料對蝴蝶蘭生育之影響. 國立臺灣大學生物資源暨農學院園藝學系碩士論文. 臺北. 雷欣怡. 2007. 蝴蝶蘭開花期礦物元素組成變化與肥料需求. 國立臺灣大學生物資源暨農學院園藝學系碩士論文. 臺北. 鄭安秀、楊宏仁、李敏郎. 2006. 蒸汽消毒及溫水處理在作物病害上之應用. 符合安全農業之病害防治新技術. 農業試驗所特刊第124號. p. 217-237. 顏婉怡. 2010. 種植蝴蝶蘭之水苔介質酸化現象之研究. 國立臺灣大學生物資源暨農學院園藝學系碩士論文. 臺北. Abad, M., F. Fornes, C. Carrión, V. Noguera, P. Noguera, Á. Maquieira, and R. Puchades. 2005. Physical properties of various coconut coir dusts compared to peat. HortScience 40:2138-2144. Abdullakasim, S., P. Kongpaisan, P. Thongjang, and P. Saradhuldhat. 2018. Physiological responses of potted Dendrobium orchid to salinity stress. Hortic. Environ. Biotechnol. 59:491-498. Altland, J.E., J.C. Locke, and C.R. Krause. 2014. Influence of pine bark particle size and pH on cation exchange capacity. HortTechnology 24:554-559. Argo, W. and P. Fisher. 2002. Understanding pH management for container-grown crops. Meister publishing, Willoughby. OH. Atanassova, I. and S. Doerr. 2010. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency. Europ. J. Soil Sci. 61:298-313. Awang, Y., A.S. Shaharom, R.B. Mohamad, and A. Selamat. 2009. Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. Am. J. Agric. Biol. Sci. 4:63-71. Baker, K.F. 2020. Selective killing of soil microorganisms by aerated steam, p. 234-239. In: T. A. Toussoun, R. V. Bega and P. E. Nelson (eds.). Root Diseases and Soil-Borne Pathogens. Berkeley USA, University of California Press. CA. Berglund, K. and L. Persson. 1996. Water repellence of cultivated organic soils. Acta Agric. Scandinavica B-Plant Soil Sci. 46:145-152. Bugbee, G. and C. Frink. 1986. Aeration of potting media and plant growth. Soil Sci. 141:438-441. Burton, G.W. 1969. Breaking dormancy in seeds of pearl millet, Pennisetum typhoides1. Crop Sci. 9:659-664. Campbell, C., J. Darbyshire, and J. Anderson. 1990. The composting of tree bark in small reactors-adiabatic and fixed-temperature experiments. Biol. Wastes 31:175-185. Cannavo, P., H. Hafdhi, and J.C. Michel. 2011. Impact of root growth on the physical properties of peat substrate under a constant water regimen. HortScience 46:1394-1399. Cannavo, P. and J.C. Michel. 2013. Peat particle size effects on spatial root distribution, and changes on hydraulic and aeration properties. Sci. Hortic. 151:11-21. Carminati, A. 2013. Rhizosphere wettability decreases with root age: A problem or a strategy to increase water uptake of young roots? Frontiers Plant Sci. 4:298. Caron, J., J. Price, and L. Rochefort. 2015. Physical properties of organic soil: Adapting mineral soil concepts to horticultural growing media and histosol characterization. Vadose Zone J. 14:1-14. Cresswell, G. 2002. Coir dust a proven alternative to peat. Proc. Aust. Potting Mix Manufacturers Conf., Sydney. p. 1-15. Cui, Y., M. Jeon, E. Hahn, and K. Paek. 2001. Concentration of nutrient solution and growing media affect growth and flowering of Doritaenopsis ‘Tinny Tender’. Int. Symp. Growing Media Hydroponics 644. p. 77-83. Dede, O., G. Dede, S. Ozdemir, and M. Abad. 2011. Physicochemical characterization of hazelnut husk residues with different decomposition degrees for soilless growing media preparation. J. Plant Nutr. 34:1973-1984. Di Benedetto, A., R. Klasman, and C. Boschi. 2006. Argentinean peat: A poor substitute for Canadian Sphagnum peat for ornamental bedding plants. Europ. J. Hortic. Sci. 71:69-72. Doerr, S.H. 1998. On standardizing the ‘water drop penetration time’ and the ‘molarity of an ethanol droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surface Processes Landforms 23:663-668. Doerr, S.H., R. Shakesby, and R. Walsh. 2000. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 51:33-65. Doerr, S.H. and A.D. Thomas. 2000. The role of soil moisture in controlling water repellency: New evidence from forest soils in Portugal. J. Hydrology 231:134-147. Evans, M.R., J.S. Buck, and P. Sambo. 2011. The pH, electrical conductivity, and primary macronutrient concentration of sphagnum peat and ground parboiled fresh rice hull substrates over time in a greenhouse environment. HortTechnology 21:103-108. Evans, M.R., S. Konduru, and R.H. Stamps. 1996. Source variation in physical and chemical properties of coconut coir dust. HortScience 31:965-967. Fornes, F., R. Belda, M. Abad, P. Noguera, R. Puchades, A. Maquieira, and V. Noguera. 2003. The microstructure of coconut coir dusts for use as alternatives to peat in soilless growing media. Aust. J. Exp. Agric. 43:1171-1179. Forster, J.C., W. Zech, and E. Würdinger. 1993. Comparison of chemical and microbiological methods for the characterization of the maturity of composts from contrasting sources. Biol. Fert. Soil 16:93-99. Gordon, B. 1990. Culture of the Phalaenopsis. . Laid-Back Publications, Rialto, Calif. Hallett, P.D., D.C. Gordon, and A.G. Bengough. 2003. Plant influence on rhizosphere hydraulic properties: Direct measurements using a miniaturized infiltrometer. New Phytologist 157:597-603. Hammond, B.L. 1959. Effect of gibberellin, sodium hypochlorite, light, and planting depth on germination of guayule seed1. Agron. J. 51:621-623. Handreck, K. 1983. Particle size and the physical properties of growing media for containers. Commun. Soil. Sci. Plant Anal. 14:209-222. Harada, Y. and A. Inoko. 1975. Cation-exchange properties of soil organic matter: I. Effects of conditions for the measurement on cation-exchange capacity values of humic acid preparations. Soil Sci. Plant Nutr. 21:361-369. Harada, Y. and A. Inoko. 1980. Relationship between cation-exchange capacity and degree of maturity of city refuse composts. Soil Sci. Plant Nutr. 26:353-362. Hardy, G.S.J. and K. Sivasithamparam. 1989. Microbial, chemical and physical changes during composting of a eucalyptus (Eucalyptus calophylla and Eucalyptus diversicolor) bark mix. Biol. Fert. Soil 8:260-270. Harrelson, T., S.L. Warren, and T.E. Bilderback. 2004. How do you manage aged versus fresh pine bark. SNA Res. Conf. 49:63-65. Hassan, M., S.K. Woche, and J. Bachmann. 2014. How the root zone modifies soil wettability: Model experiments with alfalfa and wheat. J. Plant Nutr. Soil Sci. 177:449-458. Helling, C.S., G. Chesters, and R. Corey. 1964. Contribution of organic matter and clay to soil cation‐exchange capacity as affected by the pH of the saturating solution. Soil Sci. Soc. Am. J. 28:517-520. Hewelke, E., J. Szatyłowicz, T. Gnatowski, and R. Oleszczuk. 2016. Effects of soil water repellency on moisture patterns in a degraded sapric histosol. Land Degradation Dev. 27:955-964. Hewitt, E. and D. Nicholas. 1963. Cations and anions: Inhibitions and interactions in metabolism and in enzyme activity, p. 311-436. In: R. M. Hochster and J. H. Quastel (eds.). Metabolic inhibitors. Academic Press, New York. Hoitink, H.A. 1980. Composted bark, a lightweight growth medium. Plant Dis. 64:142-147. Hsiao, A.I. and W.A. Quick. 1984. Actions of sodium hypochlorite and hydrogen peroxide on seed dormancy and germination of wild oats, Avena fatua L. Weed Res. 24:411-419. Hwang, S.J. and B.R. Jeong. 2007. Growth of Phalaenopsis plants in five different potting media. J. Jpn. Soc. Hortic. Sci. 76:319-326. Kämäräinen, A., A. Simojoki, L. Linden, K. Jokinen, and N. Silvan. 2018. Physical growing media characteristics of Sphagnum biomass dominated by Sphagnum fuscum (Schimp.) Klinggr. Mires Peat 21:1-16. Kaderabek, L.E., B.E. Jackson, and W.C. Fonteno. 2017. Changes in the physical, chemical, and hydrologic properties of pine bark over twelve months of aging. Acta Hortic. 1174:313-318. Kerloch, E. and J.C. Michel. 2015. Pore tortuosity and wettability as main characteristics of the evolution of hydraulic properties of organic growing media during cultivation. Vadose Zone J. 14:1-7. Khanna, P., R. Raison, and R. Falkiner. 1986. Exchange characteristics of some acid organic rich forest soils. Soil Res. 24:67-80. Kim, H.J., J. Kim, L.Y. Do, K.S. Kim, and Y.J. Kim. 2016. Growth and flowering of Doritaenopsis Queen Beer ‘Mantefon’as affected by different potting substrates. Hortic. J. 85:360-365. Kok, C. and B. Van de Laar. 1991. Influence of pH and buffering capacity on the decomposition of Nymphaea alba L. detritus in laboratory experiments: A possible explanation for the inhibition of decomposition at low alkalinity. Verh. Internat Verein. Limnol. 24:2689-2692. Kremer, C.L. and A.N. Drinnan. 2004. Secondary walls in hyaline cells of Sphagnum. Aust. J. Bot. 52:243-256. Kroetsch, D.J., X. Geng, S.X. Chang, and D.D. Saurette. 2011. Organic soils of Canada: Part 1. Wetland organic soils. Can. J. Soil Sci. 91:807-822. Kubota, S., T. Kato, and K. Yoneda. 1993. The effects of the concentration of fertilizer application and the physico-chemical properties of Sphagnum moss and clay pots on the growth of Phalaenopsis. J. Jpn. Soc. Hortic. Sci. 62:601-609. Kufel, L., I. Kufel, and J. Krolikowska. 2004. The effect of lake water characteristics on decomposition of aquatic macrophytes. Polish J. Ecol. 3:261-273. Kumar, S. 2017. Sphagnum moss as a growing media constituent: Some effects of harvesting, processing and storage. Mires Peat 20:1-11. Lachacz, A., M. Nitkiewicz, and B. Kalisz. 2009. Water repellency of post-boggy soils with a various content of organic matter. Biologia 64:634-638. Lee, H.J. 2018. Vegetative growth and root morphology in Cymbidium under different substrate water content using a sensor-based irrigation system, 서울대학교 대학원. LeMasters, G.S., L.J. Bartelli, and M.R. Smith. 1983. Characterization of organic soils as energy sources, p. 122-137. In: P. M. Jarrett (ed.). Testing of Peats and Organic Soils. ASTM International. Matschonat, G. and R. Vogt. 1997. Effects of changes in pH, ionic strength, and sulphate concentration on the CEC of temperate acid forest soils. Europ. J. Soil Sci. 48:163-171. McKinley, V.L. and J.R. Vestal. 1982. Effects of acid on plant litter decomposition in an arctic lake. Appl. Environ. Microbiology 43:1188-1195. Michel, J.C. and E. Kerloch. 2017. Evolution of hydraulic properties and wettability of organic growing media during cultivation according to irrigation strategies. Sci. Hortic. 217:28-35. Michel, J.C., L.M. Riviere, and M.N. Bellon‐Fontaine. 2001. Measurement of the wettability of organic materials in relation to water content by the capillary rise method. Europ. J. Soil Sci. 52:459-467. Moore, P.A., M.C. Lukenbach, N. Kettridge, R.M. Petrone, K.J. Devito, and J.M. Waddington. 2017. Peatland water repellency: Importance of soil water content, moss species, and burn severity. J. Hydrology 554:656-665. Moradi, A.B., A. Carminati, A. Lamparter, S.K. Woche, J. Bachmann, D. Vetterlein, H.J. Vogel, and S.E. Oswald. 2012. Is the rhizosphere temporarily water repellent? Vadose Zone J. 11:<https://doi.org/10.2136/vzj2011.0120>. Orzechowski, M., S. Smólczynski, P. Sowinski, and B. Rybinska. 2013. Water repellency of soils with various content of organic matter in north-eastern Poland. Soil Sci. Annu. 64:30-33. Peng, X., R. Horn, and A. Smucker. 2007. Pore shrinkage dependency of inorganic and organic soils on wetting and drying cycles. Soil Sci. Soc. Am. J. 71:1095-1104. Päivänen, J. 1973. Hydraulic conductivity and water retention in peat soils. Suomen metsätieteellinen seura. Prasad, M. 1996. Physical, chemical and biological properties of coir dust. Int. Symp. Growing Media Plant Nutr. Hortic. 450 p. 21-30. Puustjarvi, V. 1977. Peat and its use in horticulture. p. 160. Turveteollisuusliittory. Liikekirjapaino Oy., Finland, Helsinki. Raviv, M., Y. Chen, and Y. Inbar. 1986. Peat and peat substitutes as growth media for container-grown plants, p. 257-287. In: Y. Chen and Y. Avnimelech (eds.). The role of organic matter in modern agriculture. Springer, Netherlands. Rezanezhad, F., W. Quinton, J. Price, T. Elliot, D. Elrick, and K. Shook. 2010. Influence of pore size and geometry on peat unsaturated hydraulic conductivity computed from 3D computed tomography image analysis. Hydrological processes 24:2983-2994. Rhie, Y.H., S. Kang, and J. Kim. 2017. Substrate water content influences the flowering of Doritaenopsis Queen Beer ‘Mantefon’. HortScience 52:1823-1828. Sambo, P., F. Sannazzaro, and M.R. Evans. 2008. Physical properties of ground fresh rice hulls and sphagnum peat used for greenhouse root substrates. HortTechnology 18:384-388. Schmilewski, G. 2008. The role of peat in assuring the quality of growing media. Mires Peat 3:1-8. Sonneveld, C. 1979. Changes in chemical properties of soil caused by steam sterilization, p. 39-50. In: D. Mulder (ed.). Soil disinfestation. 6th ed. Elsevier Scientific Publ. Co. Szajdak, L.W., J. Szatyłowicz, and R. Kõlli. 2011. Peat and peatlands, physical properties, p. 551-555. In: J. Gliński, J. Horabik and J. Lipiec (eds.). Encyclopedia of agrophysics. Springer, Berlin, Germany. Tóth, L.G. and J. Zlinszky. 1989. The importance of self-oxidation in decomposition and its dependence on the pH of the environment. Water Air Soil Pollution 46:213-219. Turunen, M., J. Hyväluoma, J. Heikkinen, R. Keskinen, J. Kaseva, J. Koestel, and K. Rasa. 2019. Quantifying physical properties of three Sphagnum‐based growing media as affected by drying–wetting cycles. Vadose Zone J. 18:190033. Valat, B., C. Jouany, and L.M. Riviere. 1991. Characterization of the wetting properties of air-dried peats and composts. Soil Sci. 152:100-107. Verhagen, J. 2007. Stability of growing media from a physical, chemical and biological perspective. Int. Symp. Growing Media 819. p. 135-142. von Post, L. 1922. Sveriges geologiska undersöknings torvinventering och några av dess hittills vunna resultat. Svenska Mosskulturföreningens tidskrift 36:1-27 (in Swedish). Wallach, R. 2019. Physical characteristics of soilless media, p. 33-112. Soilless Culture. Elsevier. Wang, A.S., J.S. Angle, R.L. Chaney, T.A. Delorme, and M. McIntosh. 2006. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol. Biotechnol. 38:1451-1461. Wang, Y.T. 1998. Impact of salinity and media on growth and flowering of a hybrid Phalaenopsis orchid. HortScience 33:247-250. Wang, Y.T. and Y.C.A. Chang. 2017. Effects of nitrogen and the various forms of nitrogen on Phalaenopsis orchid-A review. HortTechnology 27:144-149. Wang, Y.T. and L.L. Gregg. 1994. Medium and fertilizer affect the performance of Phalaenopsis orchids during two flowering cycles. HortScience 29:269-271. Wang, Y.T. and E.A. Konow. 2002. Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid moth orchid. J. Am. Soc. Hortic. Sci. 127:442-447. Wu, Y., N. Zhang, G. Slater, J.M. Waddington, and C.F. de Lannoy. 2020. Hydrophobicity of peat soils: Characterization of organic compound changes associated with heat-induced water repellency. Sci. Total Environ. 714:136444. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85914 | - |
| dc.description.abstract | 蝴蝶蘭 (Phalaenopsis spp.) 為臺灣重要之盆花與切花作物,主要以具有良好通氣性與保水性的水苔 (sphagnum moss) 為栽培介質。然而,水苔有在使用後容易分解、腐敗及酸化的疑慮,以及水苔的物化性質改變,對植株生長可能造成之影響。另外目前無法確定使用前進行消毒是否會加速水苔的劣化。本研究欲探討介質乾濕循環、種植蝴蝶蘭及肥料對水苔物化性質的影響,蝴蝶蘭在全新與種植過植株的水苔中生長之差異,以及水苔消毒方式對水苔及植株的影響。
本研究在十個月間以蒸餾水澆灌水苔作為對照組,以種植蝴蝶蘭及澆灌肥料作為處理組,探討植株以及肥料對水苔物化性質之影響。無種植蝴蝶蘭並澆灌蒸餾水的水苔,總孔隙度因被壓實而下降,使充氣孔隙度及容器容水量分別下降2.2%及8.8%;澆灌液肥則導致pH下降,不影響物理性質;種植蝴蝶蘭十個月後,水苔的葉狀體變形脫落較嚴重,但葉狀體細胞維持完整。將植株移出水苔後調查水苔的物理性質,與開始時無明顯差異,表示水苔於種植十個月後僅輕微分解;但根部留存在水苔中調查物理性質,根部生長導致盆器內總孔隙度與容器容水量分別下降21.1%-26.6%及19.7%-27.4%,澆灌肥料使根部生長量提升,總孔隙度與容器容水量下降的幅度較大,而充氣孔隙度並無改變。 另一試驗中使用全新以及栽種過蝴蝶蘭四個月的水苔種植蝴蝶蘭,觀察新舊水苔對植株生長的影響,並調查乾濕循環中介質氣液相比例的變化。隨根部生長,介質固相比例增加,使總孔隙度下降,導致氣相和液相比例下降。舊水苔的物理性質與新水苔無差異,但蝴蝶蘭在新水苔中具較好的生長勢。雖然新水苔與舊水苔的CEC值相似,但新水苔介質溶液的EC值較高,顯示新水苔具較好的保肥能力,使蝴蝶蘭有較佳的生長勢。取換盆至2.5寸盆內0、10、18個月的蝴蝶蘭植株,以水滴滲透時間測定判斷水苔之疏水性,疏水性隨著栽培時間逐漸降低,但盆器內容水量因根部生長逐漸下降,最終使總體吸水量下降。 探討消毒方式對水苔物化性質的影響,分別以次氯酸水、80℃熱水和滅菌釜消毒水苔。結果顯示各消毒處理並未影響水苔的物理性質,且栽培蝴蝶蘭十個月間各處理的水苔僅輕微分解,其中蝴蝶蘭於次氯酸水處理與熱水消毒處理中生長勢較好,而熱水消毒能更有效地抑制雜草種子的萌發。 綜合以上,水苔於栽培蝴蝶蘭後葉狀體外形略有改變,但不影響其本身物理性質,而新的水苔保肥能力較佳,使植株具較好的生長勢。隨著蝴蝶蘭根部生長,壓縮盆器內的空間,孔隙度、通氣性與保水力大幅度下降,不容易保留澆灌之液體,雖水苔本身物理性質未改變,但仍需定期加大盆器尺寸避免蝴蝶蘭根部生長造成的介質通氣性及保水力下降問題。熱水消毒並不會破壞水苔結構或加速水苔分解,且可有效去除水苔內的雜草種子活性,相對其餘消毒方式植株生長勢較佳,故較適合應用於蝴蝶蘭產業。 | zh_TW |
| dc.description.abstract | Phalaenopsis spp. is an important potted plant and cut flower crop in Taiwan. The main substrate for Phalaenopsis cultivation is sphagnum moss due to its good aeration and water retention capacity. However, there are concerns about the decomposition and acidification of sphagnum moss. These changes in physicochemical properties might affect plant growth. Furthermore, the effects of various disinfection methods on the physicochemical properties of sphagnum moss are unclear. This study aimed to investigate the effects of medium dry-wet cycles, Phalaenopsis planting, and fertilizer on the physicochemical properties of sphagnum moss, the growth of Phalaenopsis grew with new or used sphagnum moss, and the effects of disinfection methods of sphagnum moss on Phalaenopsis.
In this study, we irrigated sphagnum moss with distilled water for ten months as a control, Phalaenopsis planting and fertilizing as treatments to investigate the effects of plant and fertilizer on the physicochemical properties of sphagnum moss. Sphagnum moss without planting Phalaenopsis and irrigated with distilled water was compacted by water which caused a decrease in total porosity, air-filled porosity by 2.2%, and container capacity by 8.8%. Fertilization decreased the pH value of sphagnum moss, but it did not change the physical properties. Ten months after planting Phalaenopsis, the thallus of sphagnum moss dropped and distorted, but the cell structure of sphagnum did not change. We investigated the physical properties after removing the plant from sphagnum moss. The physical properties were with no difference from the start of the experiment, indicating that sphagnum moss only decomposed slightly after cultivation. However, we investigated the properties of sphagnum moss with roots remained, the total porosity and container capacity decreased by 21.1%-26.6% and 19.7%-27.4%, respectively, but the air-filled porosity did not change. The root growth of Phalaenopsis increased by fertilization, and it caused the magnitude of the decrease in total porosity and container capacity. In another experiment, new and old sphagnum moss, which had been used to plant Phalaenopsis for four months before the experiment, were used to observe the effects of old sphagnum moss on plant growth. We also investigated the changes in the percentage of air and liquid phases of the medium in several dry-wet cycles. As the roots grew, the percentage of solid phase increases, resulting in a decrease in total porosity, liquid, and air space. The physical properties of the old sphagnum moss were not different from those of the new sphagnum moss. Still, the Phalaenopsis had better growth in the new sphagnum moss. Although the CEC values of the new and old sphagnum moss were similar, the pore-water EC value of the new sphagnum moss was higher. Hence, the new sphagnum moss had better nutrient holding capacity, which may be the reason for the better growth of Phalaenopsis. We used Phalaenopsis plants which have been transferred to 7.5-cm pots for 0, 10, or 18 months to evaluate the hydrophobicity of sphagnum moss by water drop penetration time test (WDPT). The hydrophobicity of sphagnum moss gradually decreased with the cultivation time. Still, the water holding capacity decreased owning to the root growth, resulting in a decrease in the total amount of water absorbed by the sphagnum moss. To realize the effect of disinfection methods on the physicochemical properties of sphagnum moss, Hypochlorous acid, 80℃ hot water, and autoclave were used to disinfect the sphagnum water moss. Sphagnum moss in each treatment was only slightly decomposed in ten months. Phalaenopsis grew better in the sphagnum moss disinfected with hypochlorous acid and hot water, and hot water disinfection could effectively prevent the weed germination. In conclusion, the appearance of sphagnum moss changed slightly after cultivating Phalaenopsis, but the physical properties of sphagnum moss did not change. However, the new sphagnum moss had better nutrient holding capacity, which resulted in better growth in Phalaenopsis. As the roots of Phalaenopsis grew and compressed the space in the container, the porosity, aeration, and water holding capacity of sphagnum moss were significantly reduced, and it is thus harder to retain water in a container. In essence, the physical properties of the sphagnum moss itself did not change, but it is still necessary to regularly transfer the plants to a larger pot size to avoid the problem of the decrease in aeration and water retention. Hot water disinfection did not damage the cell structure of sphagnum moss nor accelerate the decomposition of sphagnum moss. Thurthemore, it can effectively inhibit seed gerimination of weed in the sphagnum moss. Compared with other disinfection methods, the plant growth vigour was betterin hot-water treated sphagnum moss, indicating hot water disinfection is more suitable for Phalaenopsis cultivation. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:28:46Z (GMT). No. of bitstreams: 1 U0001-1909202223482800.pdf: 7466597 bytes, checksum: 16270e249e7836417acc5b09da41ab93 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄
致謝 i 摘要 ii Abstract iv 目錄 vii 表目錄 ix 圖目錄 xi 壹、前言 1 貳、前人研究 2 一、水苔的來源種類 2 二、有機介質的物理化學性質 3 三、影響有機介質物理性質的因素 4 (一) 有機介質的來源 4 (二) 介質分解程度 5 (三) 介質顆粒大小 7 四、適合栽培蝴蝶蘭的介質特性 8 (一) 介質物理性質 8 (二) 介質化學性質 9 五、種植蝴蝶蘭之水苔酸化現象 11 六、水苔介質的消毒作業 12 七、影響介質疏水性之因子 13 八、研究動機 15 參、材料與方法 16 一、試驗材料 16 二、試驗場地 17 三、試驗設計 18 四、調查項目 22 五、統計分析 27 肆、結果 28 試驗一、種植蝴蝶蘭與施肥對水苔介質理化性質的影響 28 試驗二、新及舊水苔在乾濕循環中通氣性與保水性之變化 31 試驗三、蝴蝶蘭根部生長與水苔長期使用對根域之影響 37 試驗四、水苔消毒方式對水苔物化性質及蝴蝶蘭生長之影響 40 伍、討論 45 試驗一、種植蝴蝶蘭與施肥對水苔介質理化性質的影響 45 試驗二、新及舊水苔在乾濕循環中通氣性與保水性之變化 48 試驗三、蝴蝶蘭根部生長與水苔長期使用對根域之影響 53 試驗四、水苔消毒方式對水苔物化性質及蝴蝶蘭生長之影響 56 陸、綜合討論與結論 60 柒、參考文獻 62 陸、表 73 柒、圖 94 捌、附錄 152 表目錄 表 1. 蝴蝶蘭種植和肥料施用對水苔介質充氣孔隙度之影響 73 表 2. 蝴蝶蘭種植和肥料施用對水苔介質容器容水量之影響 74 表 3. 蝴蝶蘭種植和肥料施用對水苔介質總孔隙度之影響 75 表 4. 蝴蝶蘭種植和肥料施用對水苔介質總體密度之影響 76 表 5. 蝴蝶蘭種植和肥料施用對盆器內充氣孔隙度之影響 77 表 6. 蝴蝶蘭種植和肥料施用對盆器內容器容水量之影響 78 表 7. 蝴蝶蘭種植和肥料施用對盆器內總孔隙度之影響 79 表 8. 蝴蝶蘭種植和肥料施用對盆器內總體密度之影響 80 表 9. 蝴蝶蘭種植和肥料施用對水苔介質pH值之影響 81 表 10. 蝴蝶蘭種植和肥料施用對水苔介質EC值之影響 82 表 11. 蝴蝶蘭種植和肥料施用對水苔介質陽離子交換容量之影響 83 表 12. 肥料施用與否對蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’生長之影響 84 表 13. 新及舊水苔介質之物理化學性質 85 表 14. 蝴蝶蘭於新舊水苔內栽培4個月後之生長狀況 86 表 15. 三個生長階段2.5寸蝴蝶蘭盆苗之植株生長狀況 87 表 16. 三個生長階段2.5寸蝴蝶蘭盆苗之總體密度、充氣孔隙度、容器容水量以及總孔隙度 88 表 17. 三個生長階段2.5寸盆苗定量澆水前後介質體積含水量、淋洗液體積及介質重量含水量 89 表 18. 三個生長階段2.5寸盆苗吸水前後重量含水量以及重量含水量變化量 90 表 19. 消毒方式對種植四個月後水苔介質表面藻類濃綠度、苔蘚生長比例及平均雜草數量之影響 91 表 20. 消毒方式對種植十個月後水苔介質表面藻類濃綠度及苔蘚生長比例之影響 92 表 21. 水苔介質之消毒方式對蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’生長十個月之影響 93 圖目錄 圖 1. 根部分級調查標準。健康的根 (A);產生褐斑 (D);壞疽下凹 (C);根部剩下根被 (D);根皺縮 (E) 94 圖 2. 水苔切片取樣部位 (A) 以及處理0天之外觀形態 (B) 95 圖 3. 蝴蝶蘭種植與肥料施用對水苔介質充氣孔隙度的影響。種植且澆肥(Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 96 圖 4. 蝴蝶蘭種植與肥料施用對水苔介質容器容水量的影響。種植且澆肥(Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 97 圖 5. 蝴蝶蘭種植與肥料施用對水苔介質總孔隙度的影響。種植且澆肥(Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 98 圖 6. 蝴蝶蘭種植與肥料施用對盆器內總體密度的影響。種植且澆肥 (Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 99 圖 7. 蝴蝶蘭種植與肥料施用對盆器內充氣孔隙度的影響。種植且澆肥(Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 100 圖 8. 蝴蝶蘭種植與肥料施用對盆器內容器容水量的影響。種植且澆肥(Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 101 圖 9. 蝴蝶蘭種植與肥料施用對盆器內總孔隙度的影響。種植且澆肥 (Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 102 圖 10. 蝴蝶蘭種植與肥料施用對盆器內總體密度的影響。種植且澆肥 (Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 103 圖 11. 蝴蝶蘭種植與肥料施用對水苔介質pH值的影響。種植且澆肥 (Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 104 圖 12. 蝴蝶蘭種植與肥料施用對水苔介質EC值的影響。種植且澆肥 (Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 105 圖 13. 蝴蝶蘭種植與肥料施用對水苔介質陽離子交換容量的影響。種植且澆肥 (Phal.+/Fer.+);種植無澆肥 (Phal.+/Fer.‒);無種植澆肥 (Phal.‒/Fer.+);無種植無澆肥 (Phal.‒/Fer.‒) 106 圖 14. 蝴蝶蘭種植與肥料施用十個月對水苔介質表面之影響種植且施肥處理 (A);種植但無施肥處理 (B);無種植但施肥處理 (C);無種植且無施肥處理 (D) 107 圖 15. 水苔介質表面活水苔生長狀況 108 圖 16. 水苔介質蝴蝶蘭種植與肥料施用四個月對水苔介質外觀型態的影響。種植且施肥處理 (A);種植但無施肥處理 (B);無種植但施肥處理 (C);無種植且無施肥處理 (D) 109 圖 17. 水苔介質蝴蝶蘭種植與肥料施用十個月對水苔介質外觀形態的影響。種植且施肥處理 (A);種植但無施肥處理 (B);無種植但施肥處理 (C);無種植且無施肥處理 (D) 110 圖 18. 蝴蝶蘭種植與肥料施用四個月對水苔介質形態之影響。種植且施肥處理 (A);種植但無施肥處理 (B);無種植但施肥處理 (C);無種植且無施肥處理 (D);樣本經透明法處理 111 圖 19. 蝴蝶蘭種植與肥料施用十個月對水苔介質形態之影響。種植且施肥處理 (A);種植但無施肥處理 (B);無種植但施肥處理 (C);無種植且無施肥處理 (D);樣本經透明法處理 112 圖 20. 蝴蝶蘭種植與肥料施用四個月對水苔介質細胞結構之影響。種植且施肥處理 (A);種植但無施肥處理 (B);無種植但施肥處理 (C);無種植且無施肥處理 (D) ;樣本經透明法處理 113 圖 21. 蝴蝶蘭種植與肥料施用十個月對水苔介質細胞結構之影響。種植且施肥處理 (A);種植但無施肥處理 (B);無種植但施肥處理 (C);無種植且無施肥處理 (D);樣本經透明法處理 114 圖 22. 水苔介質種植蝴蝶蘭四個月後之石蠟切片。種植且施肥處理 (A)(B);種植但無施肥處理 (C)(D);無種植但施肥處理 (E)(F);無種植且無施肥處理 (G)(H) 115 圖 23. 新及舊水苔使用前後之外觀形態。於試驗前已種植蝴蝶蘭四個月的舊水苔 (A);新水苔 (B);舊水苔種植蝴蝶蘭四個月後 (C);新水苔種植蝴蝶蘭四個月後 (D);未種植蝴蝶蘭之舊水苔乾濕循環六個月後 (E);未種植蝴蝶蘭之新水苔乾濕循環六個月後 (F) 116 圖 24. 以新舊水苔種植蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’四個月後之生長狀況。蝴蝶蘭於舊水苔中生長四個月 (A);蝴蝶蘭於新水苔中生長四個月 (B) 117 圖 25. 乾濕循環處理對種植蝴蝶蘭之新和舊水苔介質體積含水量之影響 118 圖 26. 乾濕循環處理對種植蝴蝶蘭之新和舊水苔介質氣相比例之影響 119 圖 27. 舊水苔種植蝴蝶蘭處理在不同乾濕循環中介質體積含水量之變化 120 圖 28. 新水苔種植蝴蝶蘭處理在不同乾濕循環中介質體積含水量之變化 121 圖 29. 舊水苔種植蝴蝶蘭處理在不同乾濕循環中介質氣相比例之變化 122 圖 30. 新水苔種植蝴蝶蘭處理在不同乾濕循環中介質氣相比例之變化 123 圖 31. 乾濕循環處理對新和舊水苔介質體積含水量之影響 124 圖 32. 乾濕循環處理對新和舊水苔介質氣相比例之影響 125 圖 33. 舊水苔在不同乾濕循環中介質體積含水量之變化 126 圖 34. 新水苔在不同乾濕循環中介質體積含水量之變化 127 圖 35. 舊水苔在不同乾濕循環中介質氣相比例之變化 128 圖 36. 新水苔在不同乾濕循環中介質氣相比例之變化 129 圖 37. 乾濕循環處理對種植蝴蝶蘭之新和舊水苔介質液相EC值之影響 130 圖 38. 乾濕循環處理對新和舊水苔介質液相EC值之影響 131 圖 39. 生長階段一 (A)、階段二 (B) 與階段三 (C) 的2.5寸蝴蝶蘭盆苗之生長情形 132 圖 40. 吸水時間與水苔重量含水量之關係 133 圖 41. 介質疏水性與不同狀態水苔重量含水量之關係 134 圖 42. 消毒方式對水苔介質總體密度之影響。無消毒對照組 (control);次氯酸水消毒處理 (HClO);熱水消毒處理 (hot water);滅菌消毒處理 (autoclaving) 135 圖 43. 消毒方式對水苔介質充氣孔隙度之影響。無消毒對照組 (control);次氯酸水消毒處理 (HClO);熱水消毒處理 (hot water);滅菌消毒處理 (autoclaving) 136 圖 44. 消毒方式對水苔介質容器容水量之影響。無消毒對照組 (control);次氯酸水消毒處理 (HClO);熱水消毒處理 (hot water);滅菌消毒處理 (autoclaving) 137 圖 45. 消毒方式對水苔介質總孔隙度之影響。無消毒對照組 (control);次氯酸水消毒處理 (HClO);熱水消毒處理 (hot water);滅菌消毒處理 (autoclaving) 138 圖 46. 消毒方式對水苔介質pH值之影響。無消毒對照組 (control);次氯酸水消毒處理 (HClO);熱水消毒處理 (hot water);滅菌消毒處理 (autoclaving) 139 圖 47. 消毒方式對水苔介質EC值之影響。無消毒對照組 (control);次氯酸水消毒處理 (HClO);熱水消毒處理 (hot water);滅菌消毒處理 (autoclaving) 140 圖 48.種植蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’十個月後不同消毒處理水苔表面藻類及苔蘚生長情形。無消毒對照處理 (A);次氯酸水消毒處理 (B);熱水消毒處理 (C);滅菌消毒處理 (D) 141 圖 49. 消毒方式對水苔外觀之影響。外觀之比較 (A);未消毒對照處理 (B);次氯酸水處理 (C);熱水處理 (D);滅菌處理 (E) 142 圖 50. 消毒方式對水苔介質形態之影響。無消毒對照處理 (A);次氯酸水消毒處理 (B);熱水消毒處理 (C);滅菌消毒處理 (D);樣本經透明法處理 143 圖 51. 消毒方式對水苔介質細胞結構之影響。無消毒對照處理 (A);次氯酸水消毒處理 (B);熱水消毒處理 (C);滅菌消毒處理 (D);樣本經透明法處理 144 圖 52. 種植蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’四個月後對不同消毒方式水苔外觀之影響。外觀之比較 (A);未消毒對照處理 (B);次氯酸水處理 (C);熱水處理 (D);滅菌處理 (E) 145 圖 53. 不同消毒方式對種植蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’四個月後水苔介質形態之影響。無消毒對照處理 (A);次氯酸水消毒處理 (B);熱水消毒處理 (C);滅菌消毒處理 (D);樣本經透明法處理 146 圖 54. 不同消毒方式對種植蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’四個月後水苔介質細胞結構之影響。無消毒對照處理 (A);次氯酸水消毒處理 (B);熱水消毒處理 (C);滅菌消毒處理 (D);樣本經透明法處理 147 圖 55. 不同消毒方式對種植蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’十個月後水苔外觀之影響。外觀之比較 (A);未消毒對照處理(B);次氯酸水處理(C);熱水處理(D);滅菌處理 (E) 148 圖 56. 不同消毒方式對種植蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’十個月後水苔介質形態之影響。無消毒對照處理 (A);次氯酸水消毒處理 (B);熱水消毒處理 (C);滅菌消毒處理 (D);樣本經透明法處理 149 圖 57. 不同消毒方式對種植蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’十個月後水苔介質細胞結構之影響。無消毒對照處理 (A);次氯酸水消毒處理 (B);熱水消毒處理 (C);滅菌消毒處理 (D);樣本經透明法處理 150 圖 58. 不同消毒方式水苔對蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’生長10個月之影響。無消毒對照處理 (A);次氯酸水消毒處理 (B);熱水消毒處理 (C);滅菌消毒處理 (D) 151 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 保水力 | zh_TW |
| dc.subject | 通氣性 | zh_TW |
| dc.subject | 分解 | zh_TW |
| dc.subject | 有機介質 | zh_TW |
| dc.subject | 消毒方式 | zh_TW |
| dc.subject | disinfection mothods | en |
| dc.subject | Organic substrate | en |
| dc.subject | decomposition | en |
| dc.subject | water retention | en |
| dc.subject | aeration | en |
| dc.title | 水苔介質栽培蝴蝶蘭後物化性質之變化 | zh_TW |
| dc.title | The Changes of Physicochemical Properties in Sphagnum Moss after Phalaenopsis Cultivation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鍾仁賜;李達源;許正一 | zh_TW |
| dc.contributor.oralexamcommittee | Ren-Shin Chung;Dar-Yuan Lee;Zeng-Yei Hseu | en |
| dc.subject.keyword | 有機介質,分解,保水力,通氣性,消毒方式, | zh_TW |
| dc.subject.keyword | Organic substrate,decomposition,water retention,aeration,disinfection mothods, | en |
| dc.relation.page | 152 | - |
| dc.identifier.doi | 10.6342/NTU202203611 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-23 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2027-09-20 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 此日期後於網路公開 2027-09-20 | 7.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
