請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85904
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王大銘 | zh_TW |
dc.contributor.advisor | Da-Ming Wang | en |
dc.contributor.author | 曾文顗 | zh_TW |
dc.contributor.author | Wen-I Tseng | en |
dc.date.accessioned | 2023-03-19T23:28:23Z | - |
dc.date.available | 2023-12-29 | - |
dc.date.copyright | 2022-09-29 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Ullmann’s Encyclopedia of Industrial Chemistry, Vol. 18, WileyVCH, Weinheim, (2000), 319-330.
2. Haynes A, Maitlis PM, Morris GE, Sunley GJ, Adams H, Badger PW, Bowers GM, Cook DB, Elliott PIP, Ghaffar T, Green H, Griffin TR, Payne M, Pearson JM, Taylor MJ, Vick ers PW, Watt RJ. Promotion of iridium-catalyzed methanol carbonylation: mechanistic studies of the cativa process. J Am Chem Soc (2004); 126:2847–2861. 3. K. e. Kalyanasundaram, Dye-sensitized solar cells, EPFL Press, Lausanne; M. Grtzel, Acc. Chem. Res. (2009), 42, 1788. 4. Küpper, F. C., Feiters, M. C., Olofsson, B., Kaiho, T., Yanagida, S., Zimmermann, M. B., Carpenter, L. J., Luther, G. W., Lu, Z., Jonsson, M., & Kloo, L. Commemorating two centuries of iodine research: An interdisciplinary overview of current research. Angewandte Chemie International Edition, (2001), 11598-11620. 5. Kim, H. I., Wijenayake, J. J., Mohapatra, D., & Rout, P. C. A process to recover high purity iodine in wastewater from liquid crystal display (LCD) manufacturing industry. Hydrometallurgy, (2018), 91-96. 6. Li, J., Zhang, H., Xue, T., Xiao, Q., Qi, T., Chen, J., & Huang, Z. How to recover iodine more efficiently? extraction of triiodide. Separation and Purification Technology, (2021), 119364. 7. Varvoglis, A. Commentary: Organic hypervalent iodine chemistry spanning three centuries—a historical overview. Tetrahedron, (2010), 5739-5744. 8. Gangloff, R. P., Graham, D. E., & Funkenbusch, A. W. The influence of environment purity on gaseous iodine embrittlement of zircaloy-2 and high purity zirconium. CORROSION, 35(7), (1979), 316-326. 9. Kanto Natural Gas Development Co., Ltd. 10. Encyclopedia of Separation Science, Encyclopedia of Separation Science Water Treatment | Anion Exchangers: Ion Exchange W. H. Höll, (2000), 4477-4484. 11. Becker et al., A process to recover high purity iodine in wastewater ,Kanto Natural Gas Development Co., Ltd, (2010). 12. Kang, S.-Y., Lee, J.-U., Moon, S.-H., & Kim, K.-W. Competitive adsorption characteristics of CO2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere, 56(2), (2004), 141-147. 13. Agrawal, A., & Sahu, K. K. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. Journal of Hazardous Materials, 171(1-3), (2009), 61-75. 14. 放流水標準. <水汙染防治法>, (2019) 15. Huang, Y., Zhang, Z., Cao, Y., Han, G., Peng, W., Zhu, X., Zhang, T.-an, & Dou, Z. Overview of cobalt resources and comprehensive analysis of cobalt recovery from zinc plant purification residue- a review. Hydrometallurgy, 193, (2020), 105327. 16. Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. Removal of heavy metals from industrial wastewaters: A Review. ChemBioEng Reviews, 4(1), (2017), 37-59. 17. Boyd-Boland, A. A., & Eckert, J. M. Determination of nonionic surfactants by spectrophotometry after extraction with potassium triiodide. Analytica Chimica Acta, 271(2), (1993), 311-314. 18. Extractive Metallurgy of Copper. (2011). https://doi.org/10.1016/c2010-0-64841-3 19. Ritcey, G. M. Crud in solvent extraction processing — a review of causes and treatment. Hydrometallurgy, (1980), 97-107. 20. Recovery of precious metals by solvent extraction. Ebrary. Retrieved August 6, (2022), https://ebrary.net/201775/engineering/recovery_precious_metals_solvent_extraction 21. Weetall and Hertl, Method of recovering iodine, (1985). https://patents.google.com/ patent/US5356611A/en 22. 東海林繁,信藤平治,久神部智, Process for the recovery of iodine, (2005). https://patents.google.com/patent/CN101171202A/en 23. Negi, A. S., & Anand, S. C. (1985). A textbook of physical chemistry. Wiley Eastern Limited. 24. Nandiyanto, A. B., Hofifah, S. N., Inayah, H. T., Putri, S. R., Apriliani, S. S., Anggraeni, S., Usdiyana, D., Usdiyana, D., & Rahmat, A. Adsorption isotherm of carbon microparticles prepared from pumpkin (cucurbita maxima) seeds for Dye Removal. Iraqi Journal of Science, (2021), 1404-1414. 25. Pyrzyńska, K., & Bystrzejewski, M. Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2010), 102-109. 26. de Araujo, C. M., Ghislandi, M. G., Rios, A. G., da Costa, G. R., do Nascimento, B. F., Ferreira, A. F., da Motta Sobrinho, M. A., & Rodrigues, A. E. Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: Bench experiments and modeling for the selective removal of organics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 639, 128357, (2022). 27. Zhang, X., Maddock, J., Nenoff, T. M., Denecke, M. A., Yang, S., & Schröder, M. Adsorption of iodine in metal–organic framework materials. Chemical Society Reviews, 51(8), (2022), 3243-3262. 28. Iodine adsorption in metal organic frameworks in the presence of humidity. https://doi.org/10.1021/acsami.8b02651.s002 29. Farmer, J. Method and Apparatus for Capacitive Deionization, Electrochemical Purification and Regeneration of Electrodes. U.S. Patent No. 5,425,858, 20 June (1995). 30. C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: a review, Water Res. 128, (2017), 314-330. 31. Jimoh O, Jerina H Z, Abdul H, Fawzi B, Bharath G and Emad A Sep. Purif. Technol. , (2018), 207-291. 32. Blair, J.W. and G.W. Murphy, Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area, in Saline Water Conversion, American Chemical Society, (1960), 206. 33. Arnold, B.B. and G.W. Murphy. Studies on electrochemistry of carbon and chemically modified carbon surfaces. Journal of Physical Chemistry, 65, (1961), 135. 34. Murphy, G.W. and D.D. Caudle. Mathematical theory of electrochemical demineralization in flowing systems. Electrochimica Acta, 12, (1967), 1655. 35. Murphy, G.W., J.L. Cooper, and J.A. Hunter, Activated carbon used as Electrodes in Electrochemical Demineralization of Saline Water. (1969), U.S. Dept. of the Interior: Washington. 36. Evans, S., M.A. Accomazzo, and J.E. Accomazzo. Electrochemically Controlled Ion Exchange. Journal of the Electrochemical Society, 116, (1969), 307. 37. Johnson, A.M., A.W. Venolia, R.G. Wilbourne, J. Newman, C.M. Wong, W.S. Gilliam, S. Johnson, and R.H. Horowitz, The Electrosorb process for desalting water. (1970), U.S. Dept. of the Interior: Washington. 38. Johnson, A.M. and J. Newman. Desalting by Means of Porous Carbon Electrodes. Journal of The Electrochemical Society, 118, (1971), 510. 39. Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W., & Poco, J. F. (1995). The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water. 40. Farmer, J.C., D.V. Fix, G.V. Mack, R.W. Pekala, and J.F. Poco, The Use of Capacitive Deionization with Carbon Aerogel Electrodes to Remove Inorganic Contaminants from Water, in Low Level Waste Conference. (1995): Orlando. 41. Porada, S., Zhao, R., van der Wal, A., Presser, V., & Biesheuvel, P. M. Review on the Science and Technology of Water Desalination by capacitive deionization. Progress in Materials Science, 58(8), (2013), 1388-1442. 42. Mubita, T. M., Porada, S., Biesheuvel, P. M., van der Wal, A., & Dykstra, J. E.. Capacitive deionization with wire-shaped electrodes. Electrochimica Acta, 270, (2018), 165-173. 43. Helmholtz, H.. Ueber einige gesetze der Vertheilung Elektrischer Ströme in Körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen Der Physik Und Chemie, 165(6), (1853), 211-233. 44. L. G. Gouy, Compt. Rend., 149, (1910), 654-657. 45. D. L. Chapman, London, Edinburgh Dublin Philos. Mag. J. Sci., 25, (1913), 475-481. 46. O. Stern, Z. Elektrochem. Angew. Phys. Chem., 30, (1924), 508-516. 47. P. M. Biesheuvel and M. Z. Bazant, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 81, (2010), 031502. 48. Biesheuvel, P. M., Zhao, R., Porada, S., & van der Wal, A. Theory of membrane capacitive deionization including the effect of the electrode pore space. Journal of Colloid and Interface Science, 360(1), (2010), 239-248. 49. Thickness of electrical double layer. (2014). The IUPAC Compendium of Chemical Terminology. 50. Burt, R., Birkett, G., & Zhao, X. S. (A review of molecular modelling of electric double layer capacitors. Physical Chemistry Chemical Physics, 16(14), (2014), 6519. 51. Zhao, X., Wei, H., Zhao, H., Wang, Y., & Tang, N. Electrode materials for capacitive deionization: A Review. Journal of Electroanalytical Chemistry, 873, (2020), 114416. 52. Y. Oren, Capacitive delonization (CDI) for desalination and water treatment - past, present and future (a review), Desalination 228 (1–3), (2008), 10-29. 53. Maddah, H. A., & Shihon, M. A. Activated carbon cloth for desalination of brackish water using capacitive deionization. Desalination and Water Treatment, (2018). 54. B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Sources 66 (1–2), (1997), 1-14. 55. C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, S. Dai, Mesoporous carbon for capacitive deionization of saline water, Environ. Sci. Technol. 45 (23), (2011), 10243-10249. 56. Research progress of capacitive deionization technology to cite this article: Chun-An Du et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 705 012015. 57. Lee, J.-B., Park, K.-K., Eum, H.-M., & Lee, C.-W. Desalination of a thermal power plant wastewater by Membrane Capacitive Deionization. Desalination, 196(1-3), (2006), 125-134. 58. Jae BL, Kwang KP, Hee ME and Chi WL Desalination. (2006), 125. 59. Zhao R, Satpradit O, Rijnaarts HHM, Biesheuvel PM, and Wal A .Water Res. 47 , (2013), 1941. 60. Gao, X.; Omosebi, A.; Landon, J.; Liu, K. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption−desorption behavior. Energy Environ. Sci. 8, (2015), 897-909. 61. Kim, M.; del Cerro, M.; Hand, S.; Cusick, R. D. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders. Water Res. 148, (2019), 388-397. 62. Zhang, D.; Wang, J.; He, C.; Wang, Y.; Guan, T.; Zhao, J.; Qiao, J.; Li, K. Rational Surface Tailoring Oxygen Functional Groups on Carbon Spheres for Capacitive Mechanistic Study. ACS Appl. Mater. Interfaces 11, (2019), 13214-13224. 63. Li, M.; Park, H. G. Pseudocapacitive Coating for Effective Capacitive Deionization. ACS Appl. Mater. Interfaces 10, (2018), 2442-2450. 64. Tu, Y.-H., Liu, C.-F., Wang, J.-A., & Hu, C.-C. Construction of an inverted-capacitive deionization system utilizing pseudocapacitive materials. Electrochemistry Communications, 104, (2019), 106486. 65. Landon, J., Gao, X., Omosebi, A., & Liu, K. Progress and outlook for capacitive deionization technology. Current Opinion in Chemical Engineering, 25, (2019), 1-8. 66. M. Pasta, C. D. Wessells, Y. Cui and F. La Mantia, Nano Lett., 12, (2012), 839-843. 67. 張瑋廷(2020)。<以流電極電容去離子技術回收金屬離子>。國立臺灣大學化學工程學研究所碩士論文,未出版,台北市。 68. Voltage-based stabilization of microporous carbon electrodes for inverted capacitive deionization. 69. Lee, J.-H., Bae, W.-S., & Choi, J.-H. Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination, 258(1-3), (2010), 159-163. 70. Li, H., Gao, Y., Pan, L., Zhang, Y., Chen, Y., & Sun, Z. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water Research, 42(20), (2018), 4923-4928. 71. Choi, J. H. Comparison of constant voltage (CV) and constant current (CC) operation in the membrane capacitive deionization process. Desalin. Water Treat. 56 (4), (2015), 921-928. 72. Kang, J.; Kim, T.; Jo, K.; Yoon, J. Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization. Desalination, 352, (2014), 52-57. 73. Han, L. C.; Karthikeyan, K. G.; Gregory, K. B. Energy Consumption and Recovery in Capacitive Deionization Using Nanoporous Activated Carbon Electrodes. J. Electrochem. Soc. 162(12), (2015), 282-288. 74. Membrane capacitive deionization with constant current VS constant voltage charging: Which is better?. 75. Dissertation for the degree of Doctor of Philosophy Performance evaluation, optimization, and process integration of capacitive deionization system for desalination and energy production. 76. Salari, K., Zarafshan, P., Khashehchi, M., Chegini, G., Etezadi, H., Karami, H., Szulżyk-Cieplak, J., & Łagód, G. Knowledge and technology used in capacitive deionization of water. Membranes, 12(5), (2022), 459. 77. Gupta, S. S., Islam, M. R., & Pradeep, T. Capacitive deionization (CDI): An alternative cost-efficient desalination technique. Advances in Water Purification Techniques, (2019), 165-202. 78. Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J., & Presser, V. Water desalination via capacitive deionization: What is it and what can we expect from it? Energy & Environmental Science, 8(8), (2015), 2296-2319. 79. Avraham, E., Noked, M., Bouhadana, Y., Soffer, A., & Aurbach, D. Limitations of charge efficiency in capacitive deionization. Journal of The Electrochemical Society, 156(10), (2009). 80. Zhao R, Biesheuvel PM, Miedema H, Bruning H, van der Wal A, Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. J. Phys. Chem. Lett. 1(1): (2010), 205-210. 81. Al-Karaghouli, A., & Kazmerski, L. L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews, 24, (2013), 343-356. 82. Qin, M., Deshmukh, A., Epsztein, R., Patel, S. K., Owoseni, O. M., Walker, W. S., & Elimelech, M. Comparison of energy consumption in desalination by capacitive deionization and reverse osmosis. Desalination, 455, (2019), 100-114. 83. Porada, S., Zhang, L., & Dykstra, J. E. Energy consumption in membrane capacitive deionization and comparison with reverse osmosis. Desalination, 488, (2020), 114383. 84. Kim, T., & Yoon, J. CDI Ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. RSC Advances, 5(2), (2015)1, 456-1461. 85. Kastening, B., & Spinzig, S. Electrochemical polarization of activated carbon and graphite powder suspensions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 214(1-2), (1986), 295-302. 86. Presser, V., Dennison, C. R., Campos, J., Knehr, K. W., Kumbur, E. C., & Gogotsi, Y. The electrochemical flow capacitor: A new concept for rapid energy storage and recovery. Advanced Energy Materials, 2(7), (2012), 895-902. 87. Jeon, S.-il, Park, H.-ran, Yeo, J.-gu, Yang, S. C., Cho, C. H., Han, M. H., & Kim, D. K. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science, 6(5), (2013), 1471. 88. Yang, F., He, Y., Rosentsvit, L., Suss, M. E., Zhang, X., Gao, T., & Liang, P. Flow-electrode capacitive deionization: A review and new perspectives. Water Research, 200, (2021), 117222. 89. Doornbusch, G. J.; Dykstra, J. E.; Biesheuvel, P. M.; Suss, M. E. Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization. J. Mater. Chem. A, 4, (2016), 3642-3647. 90. Tian, M.; Sun, Y.; Zhang, C.; Wang, J.; Qiao, W.; Ling, L.; Long, D. Enabling high-rate electrochemical flow capacitors based on mesoporous carbon microspheres suspension electrodes. J. Power Sources, 364, (2017), 182-190. 91. Sasi, S.; Murali, A.; Nair, S. V.; Nair, A. S.; Subramanian, K. R. V. The effect of graphene on the performance of an electrochemical flow capacitor. J. Mater. Chem. A, 3, (2015), 2717-2725. 92. Cho, Y.; Yoo, C. Y.; Lee, S. W.; Yoon, H.; Lee, K. S.; Yang, S.; Kim, D. K. Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes. Water Res. 151, (2019), 252-259. 93. Hatzell, K. B.; Hatzell, M. C.; Cook, K. M.; Boota, M.; Housel, G. M.; McBride, A.; Kumbur, E. C.; Gogotsi, Y. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization. Environ. Sci. Technol. 49, (2015), 3040-7. 94. Cai, Y.; Zhao, X.; Wang, Y.; Ma, D.; Xu, S. Enhanced desalination performance utilizing sulfonated carbon nanotube in the flow-electrode capacitive deionization process. Sep. Purif. Technol. 237, (2020), 116381. 95. Li, D.; Ning, X.-A.; Yang, C.; Chen, X.; Wang, Y. Rich heteroatom doping magnetic carbon electrode for flow-capacitive deionization with enhanced salt removal ability. Desalination 482, (2020), 114374. 96. Xu, X.; Wang, M.; Liu, Y.; Lu, T.; Pan, L. Ultrahigh desalinization performance of asymmetric flow-electrode capacitive deionization device with an improved operation voltage of 1.8 V. ACS Sustain. ACS Sustainable Chem. Eng. 5, (2017), 189-195. 97. Liang, P.; Sun, X.; Bian, Y.; Zhang, H.; Yang, X.; Jiang, Y.; Liu, P.; Huang, X. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode. Desalination, 420, (2017), 63-69. 98. Dennison, C. R.; Beidaghi, M.; Hatzell, K. B.; Campos, J. W.; Gogotsi, Y.; Kumbur, E. C. Effects of flow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical flow capacitors. J. Power Sources, 247, (2014), 489-496. 99. Porada, S.; Weingarth, D.; Hamelers, H. V. M.; Bryjak, M.; Presser, V.; Biesheuvel, P. M. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. J. Mater. Chem. A, 2, (2014), 9313. 100. Moreno, D.; Hatzell, M. C. Influence of feed-electrode concentration differences in flow-electrode systems for capacitive deionization. Ind. Eng. Chem. Res., 57, (2018), 8802-8809. 101. Liang, P.; Sun, X.; Bian, Y.; Zhang, H.; Yang, X.; Jiang, Y.; Liu, P.; Huang, X. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode. Desalination, 420, (2017), 63-69. 102. Hwang, G.; Gomez-Flores, A.; Bradford, S. A.; Choi, S.; Jo, E.; Kim, S. B.; Tong, M.; Kim, H. Analysis of stability behavior of carbon black nanoparticles in ecotoxicological media: Hydrophobic and steric effects. Colloids Surf., A, 554, (2018), 306-316. 103. Hatzell, K. B.; Beidaghi, M.; Campos, J. W.; Dennison, C. R.; Kumbur, E. C.; Gogotsi, Y. A high performance pseudocapacitive suspension electrode for the electrochemical flow capacitor. Electrochim. Acta, 111, (2013), 888-897. 104. Myung, S.-T.; Hitoshi, Y.; Sun, Y.-K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J. Mater. Chem. 21, (2011), 9891. 105. Gendel, Y.; Rommerskirchen, A. K. E.; David, O.; Wessling, M. Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochem. Commun. 46, (2014), 152-156. 106. Ma, J.; He, C.; He, D.; Zhang, C.; Waite, T. D. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI. Water Res. 144, (2018), 296-303. 107. Vermaas, D. A.; Saakes, M.; Nijmeijer, K. Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis. J. Membr. Sci. 453, (2014), 312-319. 108. Kwon, K.; Park, B.-H.; Kim, D. H.; Kim, D. Comparison of spacer-less and spacer-filled reverse electrodialysis. J. Renewable Sustainable Energy, 9, (2017), 044502. 109. Guo, Z.; Gao, L.; Xu, Z.; Teo, S.; Zhang, C.; Kamata, Y.; Hayase, S.; Ma, T. High electrical conductivity 2d mxene serves as additive of perovskite for efficient solar cells. Small, 14, (2018), 1802738. 110. Veerman, J.; Saakes, M.; Metz, S. J.; Harmsen, G. J. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. J. Membr. Sci. 327, (2009), 136-144. 111. Tang, K.; Zhou, K. Water desalination by flow-electrode capacitive deionization in overlimiting current regimes. Environ. Sci. Technol. 54, (2020), 5853-5863. 112. Yang, S.; Jeon, S.-i.; Kim, H.; Choi, J.; Yeo, J.-g.; Park, H.-r.; Kim, D. K. Stack design and operation for scaling up the capacity of flow-electrode capacitive deionization technology. ACS Sustainable Chem. Eng. 4, (2016), 4174-4180. 113. Rommerskirchen, A.; Linnartz, C. J.; Egidi, F.; Kendir, S.; Wessling, M. Flow-electrode capacitive deionization enables continuous and energy-efficient brine concentration. Desalination, 490, (2020), 114453. 114. Cho, Y.; Lee, K. S.; Yang, S.; Choi, J.; Park, H.-r.; Kim, D. K. A novel three-dimensional desalination system utilizing honeycombshaped lattice structures for flow-electrode capacitive deionization. Energy Environ. Sci. 10, (2017), 1746-1750. 115. Choo, K. Y.; Lee, K. S.; Han, M. H.; Kim, D. K. Study on the electrochemical characteristics of porous ceramic spacers in a capacitive deionization cell using slurry electrodes. J. Electroanal. Chem. 835, (2019), 262-272. 116. Kim, T.; Gorski, C. A.; Logan, B. E. Low energy desalination using battery electrode deionization. Environ. Sci. Technol. Lett. 4, (2017), 444-449. 117. Kim, T.; Gorski, C. A.; Logan, B. E. Ammonium removal from domestic wastewater using selective battery electrodes. Environ. Sci. Technol. Lett. 5, (2018), 578-583. 118. Ma, J.; Liang, P.; Sun, X.; Zhang, H.; Bian, Y.; Yang, F.; Bai, J.; Gong, Q.; Huang, X. Energy recovery from the flow-electrode capacitive deionization. J. Power Sources, 421, (2019), 50-55. 119. Yang, S.; Kim, H.; Jeon, S.-i.; Choi, J.; Yeo, J.-g.; Park, H.-r.; Jin, J.; Kim, D. K. Analysis of the desalting performance of flowelectrode capacitive deionization under short-circuited closed cycle operation. Desalination, 424, (2017), 110-121. 120. Ma, J.; Zhang, C.; Yang, F.; Zhang, X.; Suss, M. E.; Huang, X.; Liang, P. Carbon black flow electrode enhanced electrochemical desalination using single-cycle operation. Environ. Sci. Technol. 54, (2020), 1177-1185. 121. Rommerskirchen, A.; Gendel, Y.; Wessling, M. Single module flow-electrode capacitive deionization for continuous water desalination. Electrochem. Commun., 60, (2015), 34-37. 122. Flow electrode capacitive deionization (FCDI): Recent developments, environmental applications, and future perspectives. 123. Chung, H. J.; Kim, J.; Kim, D. I.; Gwak, G.; Hong, S. Feasibility study of reverse osmosis−flow capacitive deionization (RO-FCDI) for energy-efficient desalination using seawater as the flow-electrode aqueous electrolyte. Desalination, 479, (2020), 114326. 124. Jeon, S.-i.; Yeo, J.-g.; Yang, S.; Choi, J.; Kim, D. K. Ion storage and energy recovery of a flow-electrode capacitive deionization process. J. Mater. Chem. A, 2, (2014), 6378. 125. Son, M.; Aronson, B. L.; Yang, W.; Gorski, C. A.; Logan, B. E. Recovery of ammonium and phosphate using battery deionization in a background electrolyte. Environ. Sci. Wat. Res. Technol, 6, (2020), 1688. 126. Fang, K.; Gong, H.; He, W.; Peng, F.; He, C.; Wang, K. Recovering ammonia from municipal wastewater by flow-electrode capacitive deionization. Chem. Eng. J. 348, (2018), 301-309. 127. Zhang, J.; Tang, L.; Tang, W.; Zhong, Y.; Luo, K.; Duan, M.; Xing, W.; Liang, J. Removal and recovery of phosphorus from lowstrength wastewaters by flow-electrode capacitive deionization. Sep. Purif. Technol. 237, (2020), 116322. 128. Bian, Y.; Chen, X.; Lu, L.; Liang, P.; Ren, Z. J. Concurrent nitrogen and phosphorus recovery using flow-electrode capacitive deionization. ACS Sustainable Chem. Eng., 7, (2019), 7844-7850. 129. Zhang, C.; Ma, J.; He, D.; Waite, T. D. Capacitive membrane stripping for ammonia recovery (CapAmm) from dilute wastewaters. Environ. Sci. Technol. Lett. 5, (2018), 43-49. 130. Ma, J.; Zhang, Y.; Collins, R. N.; Tsarev, S.; Aoyagi, N.; Kinsela, A. S.; Jones, A. M.; Waite, T. D. Flow-electrode CDI removes the uncharged Ca-UO2-CO3 ternary complex from brackish potable groundwater: complex dissociation, transport, and sorption. Environ. Sci. Technol. 53, (2019), 2739-2747. 131. Ha, Y.; Jung, H. B.; Lim, H.; Jo, P. S.; Yoon, H.; Yoo, C.-Y.; Pham, T. K.; Ahn, W.; Cho, Y. Continuous lithium extraction from aqueous solution using flow-electrode capacitive deionization. Energies, 12, (2019), 2913. 132. Zhang, C.; Wang, M.; Xiao, W.; Ma, J.; Sun, J.; Mo, H.; Waite, T. D. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI). Water Res. 189, (2021), 116653. 133. Lin, L.; Hu, J.; Liu, J.; He, X.; Li, B.; Li, X.-y. Selective Ammonium Removal from Synthetic Wastewater by Flow-Electrode Capacitive Deionization Using a Novel K2Ti2O5-activated carbon mixture electrode. Environ. Sci. Technol. 54, (2020) 12723-12731. 134. Zhang, C.; Ma, J.; Waite, T. D. Ammonia-rich solution production from wastewaters using chemical-free flow-electrode capacitive deionization. ACS Sustainable Chem. Eng. 7, (2019), 6480-6485. 135. Xu, L.; Yu, C.; Tian, S.; Mao, Y.; Zong, Y.; Zhang, X.; Zhang, B.; Zhang, C.; Wu, D. Selective recovery of phosphorus from synthetic urine using flow-electrode capacitive deionization (FCDI)- based technology. ACS ES&T Water, 1, (2021), 175. 136. He, C.; Ma, J.; Zhang, C.; Song, J.; Waite, T. D. Shortcircuited closed-cycle operation of flow-electrode CDI for brackish water softening. Environ. Sci. Technol. 52, (2018), 9350-9360. 137. Luo, T.; Abdu, S.; Wessling, M. Selectivity of ion exchange membranes: A review. J. Membr. Sci. 2018, 555, 429-454. (77) McNair, R.; Szekely, G.; Dryfe, R. A. W. ACS ES&T Water. 138. Chen, R.; Sheehan, T.; Ng, J. L.; Brucks, M.; Su, X. Capacitive deionization and electrosorption for heavy metal removal. Environ. Sci. Wat. Res. Technol. 6, (2020), 258-282. 139. Zhang, X.; Yang, F.; Ma, J.; Liang, P. Effective removal and selective capture of copper from salty solution in flow electrode capacitive deionization. Environ. Sci. Wat. Res. Technol. 6, (2020), 341-350. 140. Tan, C.; He, C.; Fletcher, J.; Waite, T. D. Energy recovery in pilot scale membrane CDI treatment of brackish waters. Water Res. 168, (2020), 115146. 141. Dlugolecki, P.; Nymeijer, K.; Metz, S.; Wessling, M. Current status of ion exchange membranes for power generation from salinity gradients. J. Membr. Sci. 319, (2008), 214-222. 142. Jeon, S.-i.; Yeo, J.-g.; Yang, S.; Choi, J.; Kim, D. K. Ion storage and energy recovery of a flow-electrode capacitive deionization process. J. Mater. Chem. A, 2, (2014), 6378. 143. Ma, J.; Liang, P.; Sun, X.; Zhang, H.; Bian, Y.; Yang, F.; Bai, J.; Gong, Q.; Huang, X. Energy recovery from the flow-electrode capacitive deionization. J. Power Sources, 421, (2019), 50-55. 144. Comprehensive polymer science and supplements: ionic conductivity, ed. Owen, J., (1996), Elsevier. 145. Pourbaix, M. (1974). Atlas of Electrochemical Equilibria in aqueous solutions. National Association of corrosion engineers. 146. Gellings, P. J. (1976). Introduction to corrosion prevention and control for engineers. 147. N.P. Berezina, N.A. Kononenko, O.A. Dyomina, N.P. Gnusin, Characterization of ion-exchange membrane materials: properties vs structure, Adv. Colloid nterface Sci. 139, (2008), 3-28. 148. N. Berezina, N. Gnusin, O. Dyomina, S. Timofeyev, Water electrotransport in membrane systems. Experiment and model description, J. Membr. Sci. 86, (1994), 207-229. 149. E. Volodina, N. Pismenskaya, V. Nikonenko, C. Larchet, G. Pourcelly, Ion transfer across ion-exchange membranes with homogeneous and heterogeneous surfaces, J. Colloid Interface Sci. 285, (2005), 247-258. 150. V.I. Zabolotsky, V.V. Nikonenko, Effect of structural membrane inhomogeneity on transport properties, J. Membr. Sci. 79, (1993), 181-198. 151. Galama, A. H., Vermaas, D. A., Veerman, J., Saakes, M., Rijnaarts, H. H. M., Post, J. W., & Nijmeijer, K. Membrane resistance: The effect of salinity gradients over a cation exchange membrane. Journal of Membrane Science, 467, (2014), 279-291. 152. Wessling, M. (2019). Unraveling charge transport in carbon flow-electrodes: Performance prediction for Desalination Applications. 153. 黃翰卿(2019)。<以流電極電容去離子技術回收無機酸>。國立臺灣大學化學工程學研究所碩士論文,未出版,台北市。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85904 | - |
dc.description.abstract | 隨著經濟發展,碘已成為化學合成工業、製藥產業與面板製程等方面不可或缺的元素,然而近年來碘的生產與銷售逐漸被單一國家所壟斷,且受限於環保法規,含碘廢水須妥善處理,故深具回收價值。考量碘回收時的能耗問題,本論文提出以流電極電容去離子技術回收低濃度含碘廢水,並加以濃縮。
首先以批次式進料結合接續再生系統測試各操作參數下性能表現,綜合評估移除速率、再生速率、電流效率、能耗及陰離子交換膜沉積情形等結果,選擇回收操作條件為:以0.4 V與-0.4 V作為離子移除與回收的操作電壓,且不調整酸鹼值,此條件雖然速率最慢,但電流效率較高、且能耗較低。操作過程中雖然無法避免I-氧化生成I2,但I2可與I-結合成I3-,仍能順利從活性碳上脫附並透過離子交換膜順利將碘回收。 本研究第二部分則是以上述操作條件進行碘化鉀移除同時進行流電極再生,以批次式進料進行測試,觀察到進料中的碘、鉀離子幾乎可被完全移除,也可順利從流電極中被回收濃縮。另外亦觀察到在低濃度進料時,離子移除速率會與濃度一次方成正比,而當進料濃度提高時,移除速率則會趨近於一定值,離子移除速率與進料濃度間的關係可以 \frac{\mathrm{1}}{\mathrm{r}}\mathrm{\ =\ A\ +\ }\frac{\mathrm{B} }{\mathrm{C}} 描述,從實驗數據可以迴歸出A、B的數值,發現B為一常數,而A會因為碘沉積在上而變大,使速率降低。 本研究第三部分,則是在同時進行離子移除和流電極再生的操作下,對連續進料進行KI回收。結果顯示: 1.00 mM與2.50 mM的碘化鉀水溶液以18 ml/min之流速連續流入系統,20小時後可得到碘濃度70.90 mM (9010 ppm)與152.00 mM (19290 ppm) 100 ml的濃縮液,濃縮倍率分別為58.5、60.8倍。我們也以第二部分所推出的離子移除速率式來計算連續操作時的離子移除和回收速率,計算結果與實驗數據相當吻合,顯示所用的速率-濃度關係式可以做為系統放大的設計依據。 | zh_TW |
dc.description.abstract | Iodine has been the indispensable element in chemical synthesis, pharmaceutical, and panel manufacturing process due to economic development. However, the produce and sales of iodine have been monopolized by single country. Besides, proper treatment of iodine-containing wastewater is needed to be done because of the environmental regulations. Therefore, it is worthwhile to recovery iodine. In this thesis, we propose recovering and concentrating the low concentration iodine-containing wastewater by flow-electrode capacitive deionization under the consideration of energy consumption.
We first test the performance of a batch-mode deionization with successive regeneration system in various operating parameters. After a comprehensive evaluation of removal rate, regenerated rate, charge efficiency, energy consumption and the iodine deposition in anion exchange membrane, we choose the operating parameters: 0.4 V of charge voltage and -0.4 V of discharge voltage without pH controlling which lead to the lowest rate but highest charge efficiency, lowest energy consumption. Although it is unavoidable to generate I2 from the oxidation of I- during operation, both could combine with each other to form I3- and be recoveried through ion exchange membrane after desorption from activated carbon. The second part of the study is about the performance of a batch-mode deionization with simultaneous regeneration system by the operation parameters mentioned above. We found that almost all iodide and potassium ions in feed solution could be removed and successfully recoveried and concentrated from flow electrodes. Also, a proportional relationship between concentration and removal rate was observed under low feed solution concentration while the removal rate approaches to constant at high concentration. The relationship between ion removal rate and feed concentration could be described as \frac{\mathrm{1}}{\mathrm{r}}\mathrm{\ =\ A\ +\ }\frac{\mathrm{B} }{\mathrm{C}} . The values of A and B are obtained from the regression analysis of experimental data. We found that B is a constant, whereas A would increase due to iodine deposition which reduces the rate. In the third part of this study, the continuous-mode deionization combined with the simultaneous regeneration system was carried out to recovery potassium iodide. It shows that the 100 ml concentrated solution at concentration of 70.90 mM I (9010 ppm I) and 152.00 mM I (19290 ppm I) could be obtained by treating 1.00 mM and 2.50 mM potassium iodide aqueous solution at the flow rate of 18 ml/min for 20 hours. The concentrated ratios are 58.5 and 60.8 times respectively. We also calculated the ion removal and recovery rate by the rate equation derived in second part. The results quite fit the experimental data which shows the rate-concentration equation could be the basis of scale-up designing of the system. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:28:23Z (GMT). No. of bitstreams: 1 U0001-2109202220100100.pdf: 5449858 bytes, checksum: d312558bb4aa1bfd79a3e67251ba057c (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 III 摘要 V Abstract VIIII 目錄 IX 圖目錄 XIIIII 表目錄 XVIIII 第一章 緒論 1 第二章 文獻回顧 3 2-1. 碘元素之分離與純化 3 2-1-1. 氯化法 3 2-1-2. 離子交換法 4 2-1-3. 溶劑萃取法 5 2-1-4. 氧化沉澱法 6 2-1-5. 吸附法 6 2-2. 電容去離子技術 8 2-2-1. 構造原理 8 2-2-2. 電容去離子技術發展歷史 9 2-2-3. 吸附理論 11 2-2-4. 電極材料 13 2-2-5. 模組種類 14 A. 傳統式電容去離子技術 16 B. 薄膜電容去離子技術 16 C. 反向電容去離子技術 17 D. 電解去離子技術 18 E. 流電極電容去離子技術 18 2-2-6. 電容去離子技術操作方法 19 A. 待處理溶液進料方式 19 B. 去離子階段充電方式 20 C. 再生充電方式 20 2-2-7. 電容去離子技術效能測定與評估 21 A. 平均吸附速率 21 B. 最大吸附量 22 C. 電流效率 22 D. 能耗 22 2-3. 流電極電容去離子技術 23 2-3-1. 流電極之製備 24 A. 吸附材料 24 B. 電解液 25 C. 導電添加劑 25 2-3-2. 模組設計與操作 26 2-3-3. 應用與發展 31 2-4. 碘在水中之型態 33 2-4-1. 普爾貝圖原理 33 2-4-2. 水解反應 34 2-4-3. 碘氧化還原反應 35 第三章 實驗材料與方法 39 3-1. 儀器設備 39 3-2. 實驗藥品 41 3-3. 實驗方法 42 3-3-1. 流電極製備 42 A. 活性碳前處理 42 B. 流電極製備 42 3-3-2. 流電極電容去離子操作 42 A. 批次式流電極電容去離子結合接續流電極再生系統 43 B. 批次式流電極電容去離子結合同時流電極再生系統 43 C. 連續式流電極電容去離子結合同時流電極再生系統 44 3-3-3. 元素定量 46 A. 感應耦合電漿光學發射光譜儀 46 B. 離子層析儀 47 3-3-4. 效能分析 48 A. 平均移除速率 48 B. 平均回收速率 49 C. 電流效率 49 D. 能耗 50 第四章 結果與討論 51 4-1. 以批次式流電極電容去離子技術結合接續再生進行實驗條件的選擇 51 4-1-1. 離子移除電壓對效能之影響 53 4-1-2. 正極流電極酸鹼值對效能之影響 60 4-1-3. 再生電壓對效能之影響 64 4-2. 離子移除與流電極再生同時操作之效能測試與分析 68 4-2-1. 批次式進料之效能測試 68 4-2-2. 離子移除速率之決定步驟及其與進料濃度之關係 73 4-2-3. 連續式進料效能測試與評估 81 第五章 結論與未來展望 91 5-1. 結論 91 5-2. 未來展望 92 參考文獻 93 | - |
dc.language.iso | zh_TW | - |
dc.title | 以流電極電容去離子技術濃縮碘化鉀 | zh_TW |
dc.title | Concentration of Potassium Iodide by Flow-electrode Capacitive Deionization | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉培毅;范振軒;林芳慶;洪維松 | zh_TW |
dc.contributor.oralexamcommittee | Pei-Yi Liu;Chen-Shiuan fan;Fang-Ching Lin;Wei-Sung Hung | en |
dc.subject.keyword | 流電極電容去離子技術,流電極,碘回收,離子濃縮,離子交換膜, | zh_TW |
dc.subject.keyword | Flow-electrode capacitive deionization,Flow electrode,Iodine recovery,Ion concentration,Ion exchange membrane, | en |
dc.relation.page | 112 | - |
dc.identifier.doi | 10.6342/NTU202203763 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-09-24 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
dc.date.embargo-lift | 2025-10-01 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf 此日期後於網路公開 2025-10-01 | 5.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。