請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85879
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃筱鈞(Hsiao-Chun Huang) | |
dc.contributor.author | Yun-Kai Chou | en |
dc.contributor.author | 周耘愷 | zh_TW |
dc.date.accessioned | 2023-03-19T23:27:26Z | - |
dc.date.copyright | 2022-10-21 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-23 | |
dc.identifier.citation | Bachmair, A., Finley, D., Varshavsky, A., 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179-186. Baumschlager, A., Aoki, S.K., Khammash, M., 2017. Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control. ACS Synth Biol 6, 2157-2167. Benedetti, L., Marvin, J.S., Falahati, H., Guillén-Samander, A., Looger, L.L., De Camilli, P., 2020. Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells. eLife 9. Blommel, P.G., Fox, B.G., 2007. A combined approach to improving large-scale production of tobacco etch virus protease. Protein expression and purification 55, 53-68. Bolon, D.N., Grant, R.A., Baker, T.A., Sauer, R.T., 2004. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Molecular cell 16, 343-350. Cabrita, L.D., Gilis, D., Robertson, A.L., Dehouck, Y., Rooman, M., Bottomley, S.P., 2007. Enhancing the stability and solubility of TEV protease using in silico design. Protein Sci 16, 2360-2367. Cha, J.H., Stewart, G.C., 1997. The divIVA minicell locus of Bacillus subtilis. Journal of bacteriology 179, 1671-1683. Chau, A.H., Walter, J.M., Gerardin, J., Tang, C., Lim, W.A., 2012. Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell 151, 320-332. Collins, K.D., Lacal, J., Ottemann, K.M., 2014. Internal sense of direction: sensing and signaling from cytoplasmic chemoreceptors. Microbiol Mol Biol Rev 78, 672-684. Driever, W., Nüsslein-Volhard, C., 1988. A gradient of bicoid protein in Drosophila embryos. Cell 54, 83-93. Edwards, D.H., Thomaides, H.B., Errington, J., 2000. Promiscuous targeting of Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast. The EMBO journal 19, 2719-2727. Elowitz, M.B., Leibler, S., 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335-338. Erbse, A., Schmidt, R., Bornemann, T., Schneider-Mergener, J., Mogk, A., Zahn, R., Dougan, D.A., Bukau, B., 2006. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439, 753-756. Flynn, J.M., Levchenko, I., Seidel, M., Wickner, S.H., Sauer, R.T., Baker, T.A., 2001. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proceedings of the National Academy of Sciences 98, 10584-10589. Frohnhöfer, H.G., Nüsslein-Volhard, C., 1986. Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324, 120-125. Gardner, T.S., Cantor, C.R., Collins, J.J., 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339-342. Goehring, N.W., 2014. PAR polarity: From complexity to design principles. Experimental Cell Research 328, 258-266. Gottesman, S., Roche, E., Zhou, Y., Sauer, R.T., 1998. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes & development 12, 1338-1347. Guntas, G., Hallett, R.A., Zimmerman, S.P., Williams, T., Yumerefendi, H., Bear, J.E., Kuhlman, B., 2015. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proceedings of the National Academy of Sciences of the United States of America 112, 112-117. Han, T., Chen, Q., Liu, H., 2017. Engineered Photoactivatable Genetic Switches Based on the Bacterium Phage T7 RNA Polymerase. ACS Synth Biol 6, 357-366. Herman, C., Thévenet, D., Bouloc, P., Walker, G.C., D'Ari, R., 1998. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes & development 12, 1348-1355. Hong, J.-C., Fan, H.-C., Yang, P.-J., Lin, D.-W., Wu, H.-C., Huang, H.-C., 2021. Localized Proteolysis for the Construction of Intracellular Asymmetry in Escherichia coli. ACS Synthetic Biology 10, 1830-1836. Hubatsch, L., Peglion, F., Reich, J.D., Rodrigues, N.T.L., Hirani, N., Illukkumbura, R., Goehring, N.W., 2019. A cell-size threshold limits cell polarity and asymmetric division potential. Nature Physics 15, 1078-1085. Kaberniuk, A.A., Baloban, M., Monakhov, M.V., Shcherbakova, D.M., Verkhusha, V.V., 2021. Single-component near-infrared optogenetic systems for gene transcription regulation. Nature Communications 12, 3859. Kapust, R.B., Tözsér, J., Copeland, T.D., Waugh, D.S., 2002. The P1' specificity of tobacco etch virus protease. Biochemical and biophysical research communications 294, 949-955. Kapust, R.B., Tözsér, J., Fox, J.D., Anderson, D.E., Cherry, S., Copeland, T.D., Waugh, D.S., 2001. Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Engineering, Design and Selection 14, 993-1000. Kawano, F., Suzuki, H., Furuya, A., Sato, M., 2015. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nature Communications 6, 6256. Keiler, K.C., Waller, P.R., Sauer, R.T., 1996. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990-993. Laloux, G., Jacobs-Wagner, C., 2014. How do bacteria localize proteins to the cell pole? Journal of cell science 127, 11-19. Lalwani, M.A., Ip, S.S., Carrasco-López, C., Day, C., Zhao, E.M., Kawabe, H., Avalos, J.L., 2021. Optogenetic control of the lac operon for bacterial chemical and protein production. Nature Chemical Biology 17, 71-79. Levchenko, I., Seidel, M., Sauer, R.T., Baker, T.A., 2000. A Specificity-Enhancing Factor for the ClpXP Degradation Machine. Science 289, 2354-2356. Lin, D.-W., Liu, Y., Lee, Y.-Q., Yang, P.-J., Ho, C.-T., Hong, J.-C., Hsiao, J.-C., Liao, D.-C., Liang, A.-J., Hung, T.-C., Chen, Y.-C., Tu, H.-L., Hsu, C.-P., Huang, H.-C., 2021. Construction of intracellular asymmetry and asymmetric division in Escherichia coli. Nature Communications 12, 888. Lucast, L.J., Batey, R.T., Doudna, J.A., 2001. Large-Scale Purification of a Stable Form of Recombinant Tobacco Etch Virus Protease. BioTechniques 30, 544-554. McGinness, K.E., Baker, T.A., Sauer, R.T., 2006. Engineering controllable protein degradation. Molecular cell 22, 701-707. Mogk, A., Schmidt, R., Bukau, B., 2007. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17, 165-172. Muchová, K.N., Kutejová, E., Scott, D.J., Brannigan, J.A., Lewis, R.J., Wilkinson, A.J., Barák, I., 2002. Oligomerization of the Bacillus subtilis division protein DivIVA. Microbiology (Reading, England) 148, 807-813. Nam, H., Hwang, B.J., Choi, D.Y., Shin, S., Choi, M., 2020. Tobacco etch virus (TEV) protease with multiple mutations to improve solubility and reduce self-cleavage exhibits enhanced enzymatic activity. FEBS open bio 10, 619-626. Ong, N.T., Olson, E.J., Tabor, J.J., 2018. Engineering an E. coli Near-Infrared Light Sensor. ACS Synthetic Biology 7, 240-248. Ong, N.T., Tabor, J.J., 2018. A Miniaturized Escherichia coli Green Light Sensor with High Dynamic Range. Chembiochem : a European journal of chemical biology 19, 1255-1258. Paintdakhi, A., Parry, B., Campos, M., Irnov, I., Elf, J., Surovtsev, I., Jacobs-Wagner, C., 2016. Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Molecular microbiology 99, 767-777. Pu, J., Zinkus-Boltz, J., Dickinson, B.C., 2017. Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol 13, 432-438. Pudasaini, A., El-Arab, K.K., Zoltowski, B.D., 2015. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Frontiers in molecular biosciences 2, 18. Ramamurthi, K.S., Losick, R., 2009. Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proceedings of the National Academy of Sciences 106, 13541-13545. Redchuk, T.A., Kaberniuk, A.A., Verkhusha, V.V., 2018. Near-infrared light–controlled systems for gene transcription regulation, protein targeting and spectral multiplexing. Nature Protocols 13, 1121-1136. Redchuk, T.A., Omelina, E.S., Chernov, K.G., Verkhusha, V.V., 2017. Near-infrared optogenetic pair for protein regulation and spectral multiplexing. Nature Chemical Biology 13, 633-639. Schaerli, Y., Gili, M., Isalan, M., 2014. A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Research 42, 12322-12328. Schmidl, S.R., Sheth, R.U., Wu, A., Tabor, J.J., 2014. Refactoring and Optimization of Light-Switchable Escherichia coli Two-Component Systems. ACS Synthetic Biology 3, 820-831. Segall-Shapiro, T.H., Meyer, A.J., Ellington, A.D., Sontag, E.D., Voigt, C.A., 2014. A 'resource allocator' for transcription based on a highly fragmented T7 RNA polymerase. Molecular systems biology 10, 742. Shilling, P.J., Mirzadeh, K., Cumming, A.J., Widesheim, M., Köck, Z., Daley, D.O., 2020. Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Communications Biology 3, 214. Spirov, A., Fahmy, K., Schneider, M., Frei, E., Noll, M., Baumgartner, S., 2009. Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient. Development (Cambridge, England) 136, 605-614. Tobias, J.W., Shrader, T.E., Rocap, G., Varshavsky, A., 1991. The N-end rule in bacteria. Science 254, 1374-1377. Tu, G.-F., Reid, G.E., Zhang, J.-G., Moritz, R.L., Simpson, R.J., 1995. C-terminal Extension of Truncated Recombinant Proteins in Escherichia coli with a 10Sa RNA Decapeptide*. Journal of Biological Chemistry 270, 9322-9326. van den Berg, S., Löfdahl, P.-Å., Härd, T., Berglund, H., 2006. Improved solubility of TEV protease by directed evolution. Journal of Biotechnology 121, 291-298. Varshavsky, A., 2019. N-degron and C-degron pathways of protein degradation. Proceedings of the National Academy of Sciences of the United States of America 116, 358-366. Wang, H.R., Zhang, Y., Ozdamar, B., Ogunjimi, A.A., Alexandrova, E., Thomsen, G.H., Wrana, J.L., 2003. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775. Wehr, M.C., Laage, R., Bolz, U., Fischer, T.M., Grünewald, S., Scheek, S., Bach, A., Nave, K.-A., Rossner, M.J., 2006. Monitoring regulated protein-protein interactions using split TEV. Nature Methods 3, 985-993. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85879 | - |
dc.description.abstract | 細胞的不對稱分裂與分化是發育生物學中一個長久的關注議題。細胞透過極化並進行不對稱分裂生成兩個具有不同發展宿命的子細胞,進而達成細胞種類的多樣化。此外,細胞也透過極化執行各種功能,比如移動與出芽生殖。 細胞極性的產生可受外部因子調控亦可由內部因素引發並透過不同的途徑產生下游物質的不對稱分佈,比如透過極性分布的RhoA GTPase調控細胞骨架進而控制細胞移動,又或者透過Bicoid mRNA透過極性分布產生Bicoid morphongen的濃度梯度決定果蠅胚胎各部位分化的位置等。 在先前的研究中,我們實驗室已經透過在大腸桿菌中異源表達新月柄桿菌聚合蛋白PopZ證實單極的正回饋可以作為一個最基本的功能單元成功在對稱的細胞內建立極性並進行不對稱分裂。 本研究則利用合成生物學試圖於大腸桿菌細胞內透過光遺傳學方法建立細胞極性並驗證交互抑制作用是否也是引發並維持細胞不對稱性所需之最簡化系統。 首先本研究透過外源表達粉紅麵包黴藍光聚合蛋白(Vivid)的靜電荷修飾版本 Magnet作為光誘導聚合因子,並將pMag/nMag雙體中的nMag與枯草桿菌DivIVA蛋白融合,利用DvIVA便是細胞膜負曲率之能力將其固著於細胞兩端。我們首先透過汞燈照射,證實細胞兩端之nMag可以在照光啟動後透過結合將原先分散於細胞中的pMag分布,將之聚集至細胞兩端。接著我們透過458nm氬氣雷射區域性照射,進一步證實Magnet可透過區域性光照在細菌尺度下達成不對稱活化。 之後,本研究透過將split T7 RNA合成酶以及split TEV蛋白酶的N端與C端片段分別與nMag與pMag結合,透過區域性合成與區域性降解兩種途徑試圖在大腸桿菌細胞內產生不對稱的蛋白分布。 | zh_TW |
dc.description.abstract | Asymmetric division and differentiation of cell is a long standing concern in development biology. Cell divides into two daughter cells that have distinct fate and functions through polarization and asymmetric cell division to increase the cellular diversity. Also, cells use polarization to control many cellular process as well, such as cell migration and budding reproduction. The polarization of cell could be activated through outer stimulation or internal regulation, and generates the asymmetry distribution of downstream substance. For example, the local degradation of RhoA GTPase can regulate the formation of actin fibers and further control cell migration, and the asymmetric distribution of Bicoid mRNA causes the concentration gradient of the Bicoid morphogen that decided the differentiation position of each body part of a fruit fly. In the previous research, our lab has proved that a single positive pole could be the minimal functional unit to establish cellular polarity through heteroexpression of Caulobacter crescentus self-assembly protein PopZ in E. coli, and made the symmetry E. coli cell become functional symmetric division. In this study, we introduced the engineered charged variant of Neurospora crassa Vivid (VVD) blue light sensor, magnet (Mag), into E. coli as a light triger, and fused the nMag in the nMag/pMag light mediated heterodimer with the pole targeting protein DivIVA from Bacillus subtilis to anchor it to the cell pole. We first irradiated the system by short arc lamp to prove the DivIVA fused nMag can recruit the diffused pMag to the cell pole after light activation. Then the system was tested using a 458nm argon laser to achieve local irradiation and prove the Magnet system can be asymmetric activation under bacterial scale. After the local recruitment was confirmed, we fused the Magnet system with both split T7 RNA polymerase and split TEV protease to construct a local protein synthesis and a local proteolysis system for generating asymmetric protein distribution in E. coli. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:27:26Z (GMT). No. of bitstreams: 1 U0001-2009202212032800.pdf: 4978857 bytes, checksum: e22ebf2b0e1e2c74d1acff19c2fc7c92 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | Contents 致謝 i 摘要 iii Abstrate iv Contents vi Figure List viii Table List ix Chapter I. Introduction 1 Chapter II. Literature Review 4 2.1 Synthetic Biology 4 2.2 The importance of asymmetric cell division 5 2.3 The importance of intracellular polarity 5 2.4 Positive feedback, mutual inhibition, and limited diffusion 6 2.5 Localized protein synthesis 8 2.6 Protein degradation and protein level regulation in cell 8 2.7 The N-end rule 11 2.8 Control of protein degradation using SsrA tags 13 2.9 DivIVA, a pole targeting protein 14 2.10 Split phage T7 RNA polymerase 15 2.11 Tobacco etch virus protease 16 2.12 The benefit of Optogenitic system 18 2.13 Vivid and Magnet, blue light mediated dimer 19 2.14 OptoT7, light mediated protein synthesis 20 Chapter III. Material and method 22 3.1 Bacteria Culture 22 3.1.1 Bacteria strain 22 3.1.2 Culture Media 22 3.1.3 Antibiotic Usage 23 3.2 Molecular Biology Methods 24 3.2.1 BioBrick Assembly 24 3.2.2 Restriction endonuclease digestion 26 3.2.3 T4 ligase ligation 26 3.2.4 Gibson Assembly 27 3.2.5 Polymerase Chain Reaction (PCR) 28 3.2.6 PCR clean up 29 3.2.7 Agarose Gel Electrophoresis 30 3.2.8 Agarose gel extraction 31 3.2.9 Plasmid DNA purification 32 3.3 Microscope Imaging 33 3.3.1 Epifluorscent microscope 33 3.3.2 Confocal Microscope 34 Chapter IV. Result 35 4.1 Asymmetric recruitment of Magnet pair in E. coli 35 4.1.1 Design of local-activated light-mediated protein regulation system 35 4.1.2 High expression level of OptoT7c would aggregate 37 4.1.3 Live Bacteria intracellular recruitment of OptoT7 system 38 4.1.4 Asymmetric recruitment in live bacteria 40 4.2 Local activated protein synthesis system: OptoT7 41 4.2.1 Light condition 41 4.2.2 Temperature 42 4.2.3 Background signal and new pTac 43 4.2.4 Leakage of T7 promoter 44 4.2.5 Intensity and pole to average (P/A) ratio 45 4.2.6 Background signal and SsrA degradation tags 46 4.2.7 Background signal and evolved T7 RNAP (eT7) 46 4.3 Light induced local proteolysis system: OptoTEVP 47 4.3.1 Reporter design 48 4.3.2 Light mediated proteolysis 49 4.3.3 Inclusion body, point mutation, and incubation temperature 50 4.3.4 OptoTEVP: DMt50 light induction test 51 Chapter V. Discussion and future work 53 5.1 Localized OptoT7 has low signal fold change 53 5.2 The N-degron is a potential solution for OptoTEVP background 55 5.3 OptoTEVP need higher efficiency 56 5.4 The diffusion of activated OptoT7c 57 5.5 A light activated toggle switch system 57 5.6 Bi-directional light mediated system (pQP-T2A) 57 Figures 60 Refference 80 Appendix 1: OptoTEVP induction test protocol 85 | |
dc.language.iso | en | |
dc.title | 在大腸桿菌中建立光調控局部蛋白質調控系統 | zh_TW |
dc.title | Construction of blue light mediated localized protein regulation circuit in Escherichia coli | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳亘承(Hsuan-Chen Wu),涂熊林(Hsiung-Lin Tu) | |
dc.subject.keyword | 細胞極性,蛋白質局部合成,蛋白質局部降解,降解決定子,光遺傳學, | zh_TW |
dc.subject.keyword | Cell polarity,local synthesis,local degradation,degron,Optogenetics, | en |
dc.relation.page | 86 | |
dc.identifier.doi | 10.6342/NTU202203632 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-25 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
dc.date.embargo-lift | 2024-09-30 | - |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2009202212032800.pdf | 4.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。