Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明(Chung-Ming Chen)
dc.contributor.authorYu-Chieh Chengen
dc.contributor.author鄭宇傑zh_TW
dc.date.accessioned2023-03-19T23:27:24Z-
dc.date.copyright2022-10-14
dc.date.issued2022
dc.date.submitted2022-09-23
dc.identifier.citation1. The top 10 causes of death. 2020; Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. 2. 民國110年死因統計,衛生福利部統計處. 2022; Available from: https://dep.mohw.gov.tw/DOS/lp-5069-113.html. 3. Fuster, V., et al., The pathogenesis of coronary artery disease and the acute coronary syndromes. New England journal of medicine, 1992. 326(4): p. 242-250. 4. Libby, P. and P. Theroux, Pathophysiology of coronary artery disease. Circulation, 2005. 111(25): p. 3481-3488. 5. Dahlen, G.H., et al., Association of levels of lipoprotein Lp (a), plasma lipids, and other lipoproteins with coronary artery disease documented by angiography. Circulation, 1986. 74(4): p. 758-765. 6. Noma, A., T. Yokosuka, and K. Kitamura, Plasma lipids and apolipoproteins as discriminators for presence and severity of angiographically defined coronary artery disease. Atherosclerosis, 1983. 49(1): p. 1-7. 7. Kunutsor, S.K., et al., Is high serum LDL/HDL cholesterol ratio an emerging risk factor for sudden cardiac death? Findings from the KIHD study. Journal of atherosclerosis and thrombosis, 2017. 24(6): p. 600-608. 8. Kris-Etherton, P., et al., The effect of diet on plasma lipids, lipoproteins, and coronary heart disease. Journal of the American Dietetic Association, 1988. 88(11): p. 1373-1400. 9. Serruys, P.W., et al., Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. New England journal of medicine, 2009. 360(10): p. 961-972. 10. Mark, D.B., et al., Continuing evolution of therapy for coronary artery disease. Initial results from the era of coronary angioplasty. Circulation, 1994. 89(5): p. 2015-2025. 11. Ambrose, J.A. and M. Singh, Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000prime reports, 2015. 7. 12. 李修銓, 醫學教育_2018 年歐洲介入性心臟學會對冠脈內造影 (Intracoronary Imaging)臨床應用指引的專家共識. 中華民國心臟學會, 2018. 13. Fujino, A., et al., A new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 2018. 13(18): p. e2182-e2189. 14. LeCun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998. 86(11): p. 2278-2324. 15. Long, J., E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. 16. Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical image computing and computer-assisted intervention. 2015. Springer. 17. Wang, Z., et al., Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images. Journal of Biomedical Optics, 2010. 15(6): p. 061711. 18. Ughi, G.J., et al., Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images. Biomedical optics express, 2013. 4(7): p. 1014-1030. 19. Celi, S. and S. Berti, In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading. Medical image analysis, 2014. 18(7): p. 1157-1168. 20. Athanasiou, L.S., et al., Methodology for fully automated segmentation and plaque characterization in intracoronary optical coherence tomography images. Journal of biomedical optics, 2014. 19(2): p. 026009. 21. Gharaibeh, Y., et al., Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring. J Med Imaging (Bellingham), 2019. 6(4): p. 045002. 22. Lee, J., et al., Segmentation of Coronary Calcified Plaque in Intravascular OCT Images Using a Two-Step Deep Learning Approach. IEEE Access, 2020. 8: p. 225581-225593. 23. Avital, Y., et al., Identification of coronary calcifications in optical coherence tomography imaging using deep learning. Sci Rep, 2021. 11(1): p. 11269. 24. Li, C., et al., Comprehensive Assessment of Coronary Calcification in Intravascular OCT Using a Spatial-Temporal Encoder-Decoder Network. IEEE Trans Med Imaging, 2022. 41(4): p. 857-868. 25. Ioffe, S. and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International conference on machine learning. 2015. PMLR. 26. Tompson, J., et al. Efficient object localization using convolutional networks. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. 27. Oktay, O., et al., Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018. 28. Chen, L.-C., et al., Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 2017. 40(4): p. 834-848. 29. Oord, A.v.d., et al., Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016. 30. Automatic Mixed Precision for Deep Learning. Available from: https://developer.nvidia.com/automatic-mixed-precision. 31. Chen, J., et al., Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306, 2021.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85878-
dc.description.abstract冠狀動脈疾病(CAD)為目前世界上的主要死亡原因之一,其成因多為動脈粥狀硬化於血管管壁內部堆積,導致血管管徑縮小,影響血流量,當血管狹窄逐漸嚴重,可能導致心肌缺氧甚至心肌梗塞。冠狀動脈介入治療(PCI)為目前普遍之治療方法,PCI時常會使用氣球擴張術搭配血管支架治療血管狹窄,將血管狹窄處撐開並維持其形狀,使管徑擴大讓足夠血流通過,但若血管上有嚴重的鈣化斑塊,因鈣化斑塊為硬性斑塊,會使支架不容易擴張到預期大小,因此於血管支架放置前得到鈣化斑塊的分布與嚴重程度為相當重要的資訊。目前常使用冠狀動脈內光學同調斷層掃描影像(OCT)對血管壁的組成成分進行分析。 由於在一段血管中便會產生上百張OCT影像,導致心臟科醫師在短時間完整判讀之困難,因此本研究提出了基於深度學習的自動化鈣化斑塊分割演算法,以輔助醫師迅速進行判斷。 本研究於建構相關方法時,依據OCT影像的特性進行設計,模型於分割鈣化斑塊時除了影像中的二維資訊之外,同時也會得到相鄰幾張影像提供的資訊,使得模型能夠較精確的分割整個鈣化斑塊。 本研究於鈣化斑塊分割的結果上,鈣化區段為單位之Dice係數於5-Fold交叉驗證中達到0.7688 ± 0.1332,於額外測試集達到0.8102 ± 0.1005;以影像為單位之Dice係數於5-Fold交叉驗證中達到0.7624 ± 0.1970,於額外測試集達到0.7851 ± 0.2031。同時以額外測試集的鈣化斑塊分割結果,計算了針對OCT影像的鈣化分數,鈣化分數的準確度(Accuracy)達到了92%,能夠良好預測鈣化對支架放置的影響。zh_TW
dc.description.abstractCoronary artery disease (CAD) is one of the main causes of death in the world. Most of its causes are the accumulation of atherosclerosis inside the vessel wall, resulting in the reduction of vessel diameter and affecting blood flow. When the blood vessel narrows gradually, it may lead to myocardial hypoxia or even myocardial infarction. Coronary interventional therapy (PCI) is a common treatment method at present. In PCI, percutaneous transluminal coronary angioplasty (PTCA) and vascular stent are often used to stretch the narrowed part of the blood vessel and maintain its shape, so that the diameter of the lumen can be enlarged to allow sufficient blood flow to pass through. If there are severe calcified plaques on the vascular stent, which will make it difficult for the stent to expand to the expected size. Because the calcified plaques are hard plaques. Therefore, it is very important to obtain the distribution and severity of calcified plaques before stent placement. At present, intracoronary optical coherence tomography (OCT) is often used to analyze the composition of the vessel wall. Since hundreds of OCT images are generated in a segment of blood vessels, it is difficult for cardiologists to fully interpret them in a short time. Therefore, this study proposes an automatic calcified plaque segmentation algorithm based on deep learning to assist physicians in making judgments. When constructing the relevant methods, this study was designed according to the characteristics of OCT images. When the model segmented calcified plaques, in addition to the two-dimensional information in the images, the information provided by several adjacent images was also obtained, so that the model could more accurate segmentation of the entire calcified plaque. In the results of calcified plaque segmentation in this study, the Dice coefficient of segment as a unit, it reached 0.7688 ± 0.1332 in 5-Fold cross-validation, and reached 0.8102 ± 0.1005 in the additional test set. The Dice coefficient of image as a unit, it reached 0.7624 ± 0.1970 in 5-Fold cross-validation, and reached 0.7851 ± 0.2031 in the additional test set. In this study, the calcified plaque segmentation results of the additional test set were used to calculate the calcium score for OCT images, and the accuracy of the calcium score reached 92%, which can well predict the effect on stent placement.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:27:24Z (GMT). No. of bitstreams: 1
U0001-1909202212162400.pdf: 4157928 bytes, checksum: 37878f2c4c55263da4b3d85e10aef3ae (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents摘要 I ABSTRACT II 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.1.1 冠狀動脈心臟疾病現況 1 1.1.2 冠狀動脈疾病治療方法 3 1.1.3 經皮冠狀動脈介入治療相關影像學方法之使用 4 1.1.4 血管內超音波及光學同調斷層掃描 4 1.2 研究動機及目的 6 1.2.1 鈣化斑塊對支架放置之影響 6 1.2.2 鈣化斑塊評估之困難 6 1.2.3 研究目的 6 1.3 論文架構 7 第二章 文獻探討 8 2.1 深度學習與影像分割 8 2.1.1 卷積神經網路(Convolutional Neural Network, CNN) 8 2.1.2 全卷積網路(Fully Convolutional Networks, FCN) 11 2.1.3 U-Net 12 2.2 光學同調斷層掃描影像鈣化斑塊分割 13 2.2.1 傳統影像分割演算法 13 2.2.2 深度學習相關方法 14 第三章 研究材料及方法 16 3.1 研究材料 16 3.2 影像前處理 17 3.2.1 影像VOI之提取 18 3.2.2 資料增強(Data Augmentation) 19 3.3 深度學習模型 20 3.3.1 激勵函數(Activation Function) 21 3.3.2 批次標準化(Batch Normalization, BN) 22 3.3.3 Dropout 23 3.3.4 Attention Gate 23 3.3.5 Atrous Spatial Pyramid Pooling 24 3.3.6 Dilated Causal Convolution 25 3.3.7 評估指標與損失函數(Loss Function) 26 3.3.8 訓練相關參數及方法 27 3.4 驗證方法與資料分配 28 3.5 重疊VOI之整合 31 3.6 血管腔分割 32 3.7 OCT鈣化分數計算 33 第四章 結果與討論 35 4.1 鈣化斑塊分割之結果評估與討論 35 4.1.1 以鈣化區段進行評估 35 4.1.2 以影像進行評估 36 4.1.3 額外測試集之評估 38 4.2 鈣化斑塊之屬性量測 41 4.3 鈣化斑塊之分數計算 44 4.3.1 鈣化分數計算之結果 44 4.3.2 鈣化分數計算誤差之案例討論 45 第五章 結論 51 5.1 結論 51 5.2 研究限制 51 5.3 未來展望 52 參考文獻 53 附錄 56
dc.language.isozh-TW
dc.subject卷積神經網路zh_TW
dc.subject光學同調斷層掃描zh_TW
dc.subject鈣化斑塊zh_TW
dc.subject深度學習zh_TW
dc.subject冠狀動脈疾病zh_TW
dc.subject影像分割zh_TW
dc.subjectImage Segmentationen
dc.subjectOptical Coherence Tomographyen
dc.subjectCoronary Artery Diseaseen
dc.subjectCalcified Plaqueen
dc.subjectDeep Learningen
dc.subjectConvolutional Neural Networksen
dc.title冠狀動脈光學同調斷層掃描影像深度學習斑塊診斷模型之建構zh_TW
dc.titleConstruction of Deep Learning Plaque Diagnosis Model for Coronary Optical Coherence Tomographyen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李佳燕(Chia-Yen Lee),盧澤民(Tse-Min Lu)
dc.subject.keyword光學同調斷層掃描,冠狀動脈疾病,鈣化斑塊,深度學習,卷積神經網路,影像分割,zh_TW
dc.subject.keywordOptical Coherence Tomography,Coronary Artery Disease,Calcified Plaque,Deep Learning,Convolutional Neural Networks,Image Segmentation,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202203559
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-09-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2025-09-22-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1909202212162400.pdf4.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved