Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85874
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥仰zh_TW
dc.contributor.advisorMike Y. Chenen
dc.contributor.author林琮珉zh_TW
dc.contributor.authorTsung-Min Linen
dc.date.accessioned2023-03-19T23:27:15Z-
dc.date.available2024-07-01-
dc.date.copyright2023-07-11-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] M. Baarspul. A review of flight simulation techniques. Progress in Aerospace Sciences, 27(1):1–120, 1990.
[2] S. Beard, E. Buchmann, L. Ringo, T. Tanita, and B. Mader. Space shuttle landing and rollout training at the vertical motion simulator. In AIAA Modeling and Simulation Technologies Conference and Exhibit, page 6541, 2008.
[3] H. E. Burtt. Tactual illusions of movement. Journal of Experimental Psychology, 2(5):371, 1917.
[4] H.-Y. Chang, W.-J. Tseng, C.-E. Tsai, H.-Y. Chen, R. L. Peiris, and L. Chan. Facepush: Introducing normal force on face with head-mounted displays. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, page 927–935, New York, NY, USA, 2018. Association for Computing Machinery.
[5] S.-Y. Chu, Y.-T. Cheng, S.-C. Lin, Y.-W. Huang, Y. Chen, and M. Y. Chen. Motionring: Creating illusory tactile motion around the head using 360° vibrotactile headbands. In Proceedings of the 34st Annual ACM Symposium on User Interface Software and Technology, 2021.
[6] M. Colley, P. Jansen, E. Rukzio, and J. Gugenheimer. Swivr-car-seat: Exploring vehicle motion effects on interaction quality in virtual reality automated driving using a motorized swivel seat. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 5(4), dec 2022.
[7] F. Danieau, J. Fleureau, P. Guillotel, N. Mollet, A. Lécuyer, and M. Christie. Hapseat: Producing motion sensation with multiple force-feedback devices embedded in a seat. In Proceedings of the 18th ACM Symposium on Virtual Reality Software and Technology, VRST ’12, page 69–76, New York, NY, USA, 2012. Association for Computing Machinery.
[8] V. Diener, M. Beigl, M. Budde, and E. Pescara. Vibrationcap: Studying vibrotactile localization on the human head with an unobtrusive wearable tactile display. In Proceedings of the 2017 ACM International Symposium on Wearable Computers, ISWC ’17, page 82–89, New York, NY, USA, 2017. Association for Computing Machinery.
[9] H. Q. Dinh, N. Walker, L. F. Hodges, C. Song, and A. Kobayashi. Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. In Proceedings IEEE Virtual Reality (Cat. No. 99CB36316), pages 222–228. IEEE, 1999.
[10] L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual display and motion system delays on operator performance and uneasiness in a driving simulator. Human Factors, 30(2):201–217, 1988. PMID: 3384446.
[11] R. Fukuyama and W. Wakita. An interactive flight operation with 2-dof motion platform. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology, VRST ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[12] J. M. Goldberg and C. Fernandez. Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Oto-Laryngologica, 80(1-6):101–110, 1975.
[13] J. F. Golding. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin, 47(5):507 – 516, 1998.
[14] J. Gugenheimer, D. Wolf, E. R. Eiriksson, P. Maes, and E. Rukzio. Gyrovr: Simulating inertia in virtual reality using head worn flywheels. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, 2016.
[15] A. Gupta, T. Pietrzak, N. Roussel, and R. Balakrishnan. Direct Manipulation in Tactile Displays, page 3683–3693. Association for Computing Machinery, New York, NY, USA, 2016.
[16] S. Han, S. Mun, J. Seo, J. Lee, and S. Choi. 4d experiences enabled by automatic synthesis of motion and vibrotactile effects. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI EA ’18, page 1–4, New York, NY, USA, 2018. Association for Computing Machinery.
[17] P. A. Hancock, D. A. Vincenzi, J. A. Wise, and M. Mouloua. Human factors in simulation and training. CRC Press, 2008.
[18] M. Hoppe, D. Oskina, A. Schmidt, and T. Kosch. Odin’s helmet: A head-worn haptic feedback device to simulate g-forces on the human body in virtual reality. Proc. ACM Hum.-Comput. Interact., 5(EICS), May 2021.
[19] J. Hosoi, Y. Ban, K. Ito, and S. Warisawa. Vwind: Virtual wind sensation to the ear by cross-modal effects of audio-visual, thermal, and vibrotactile stimuli. In SIGGRAPH Asia 2021 Emerging Technologies, SA ’21 Emerging Technologies, New York, NY, USA, 2021. Association for Computing Machinery.
[20] A. Israr and I. Poupyrev. Control space of apparent haptic motion. In 2011 IEEE World Haptics Conference, pages 457–462, 2011.
[21] A. Israr and I. Poupyrev. Tactile brush: Drawing on skin with a tactile grid display. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, page 2019–2028, New York, NY, USA, 2011. Association for Computing Machinery.
[22] O. B. Kaul and M. Rohs. Haptichead: 3d guidance and target acquisition through a vibrotactile grid. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’16, page 2533–2539, New York, NY, USA, 2016. Association for Computing Machinery.
[23] O. B. Kaul and M. Rohs. Haptichead: A spherical vibrotactile grid around the head for 3d guidance in virtual and augmented reality. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, page 3729–3740, New York, NY, USA, 2017. Association for Computing Machinery.
[24] O. B. Kaul, M. Rohs, and M. Mogalle. Design and evaluation of on-the-head spatial tactile patterns. In 19th International Conference on Mobile and Ubiquitous Multimedia, MUM ’20, page 229–239, New York, NY, USA, 2020. Association for Computing Machinery.
[25] O. B. Kaul, M. Rohs, M. Mogalle, and B. Simon. Around-the-head tactile system for supporting micro navigation of people with visual impairments. ACM Trans. Comput.-Hum. Interact., 28(4), jul 2021.
[26] O. B. Kaul, M. Rohs, B. Simon, K. C. Demir, and K. Ferry. Vibrotactile funneling illusion and localization performance on the head. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, page 1–13, New York, NY, USA, 2020. Association for Computing Machinery.
[27] K. Kilteni, J.-M. Normand, M. V. Sanchez-Vives, and M. Slater. Extending body space in immersive virtual reality: a very long arm illusion. PloS one, 7(7):e40867, 2012.
[28] S. U. König, F. Schumann, J. Keyser, C. Goeke, C. Krause, S. Wache, A. Lytochkin, M. Ebert, V. Brunsch, B. Wahn, et al. Learning new sensorimotor contingencies: Effects of long-term use of sensory augmentation on the brain and conscious perception. PloS one, 11(12):e0166647, 2016.
[29] J. Lee, J. Park, and S. Choi. Absolute and differential thresholds of motion effects in cardinal directions. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology, VRST ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[30] B. Lim, S. Han, and S. Choi. Image-based texture styling for motion effect rendering. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology, VRST ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[31] S.-H. Liu, P.-C. Yen, Y.-H. Mao, Y.-H. Lin, E. Chandra, and M. Y. Chen. Headblaster: A wearable approach to simulating motion perception using head-mounted air propulsion jets. ACM Trans. Graph., 39(4), July 2020.
[32] K. Ly, P. Karg, J. Kreimeier, and T. Götzelmann. Development and evaluation of a low-cost wheelchair simulator for the haptic rendering of virtual road conditions. In Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA ’22, page 32–39, New York, NY, USA, 2022. Association for Computing Machinery.
[33] B. Matthias, B. Florian, R. Till, and B. Michael. Proximityhat: a head-worn system for subtle sensory augmentation with tactile stimulation. In Proceedings of the 2015 ACM International Symposium on Wearable Computers - ISWC ’15, pages 31 – 38. ACM Press, 2015.
[34] K. Myles, J. T. Kalb, J. Lowery, and B. P. Kattel. The effect of hair density on the coupling between the tactor and the skin of the human head. Applied Ergonomics, 48:177 – 185, 2015.
[35] F. Nakamura, A. Verhulst, K. Sakurada, M. Fukuoka, and M. Sugimoto. Virtual whiskers: Cheek haptic-based spatial directional guidance in a virtual space. In SIGGRAPH Asia 2021 XR, SA ’21 XR, New York, NY, USA, 2021. Association for Computing Machinery.
[36] A. Nasser, K. Zheng, and K. Zhu. Thermearhook: Investigating spatial thermal haptic feedback on the auricular skin area. In Proceedings of the 2021 International Conference on Multimodal Interaction, ICMI ’21, page 662–672, New York, NY, USA, 2021. Association for Computing Machinery.
[37] E. J. Nefarius, Kanuan. Virtual gamepad emulation framework, 2020.
[38] Y.-H. Peng, C. Yu, S.-H. Liu, C.-W. Wang, P. Taele, N.-H. Yu, and M. Y. Chen. WalkingVibe: Reducing Virtual Reality Sickness and Improving Realism While Walking in VR Using Unobtrusive Head-Mounted Vibrotactile Feedback, page 1–12. Association for Computing Machinery, New York, NY, USA, 2020.
[39] D. Pittera, D. Ablart, and M. Obrist. Creating an Illusion of Movement between the Hands Using Mid-Air Touch. IEEE Trans Haptics, 12(4):615–623, 2019.
[40] N. Ranasinghe, P. Jain, S. Karwita, D. Tolley, and E. Y.-L. Do. Ambiotherm: Enhancing sense of presence in virtual reality by simulating real-world environmental conditions. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, page 1731–1742, New York, NY, USA, 2017. Association for Computing Machinery.
[41] M. Rank, Z. Shi, H. J. Müller, and S. Hirche. Perception of Delay in Haptic Telepresence Systems. Presence: Teleoperators and Virtual Environments, 19(5):389–399, 10 2010.
[42] M. Rietzler, K. Plaumann, T. Kränzle, M. Erath, A. Stahl, and E. Rukzio. Vair: Simulating 3d airflows in virtual reality. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, page 5669–5677, New York, NY, USA, 2017. Association for Computing Machinery.
[43] J. M. Rolfe and K. J. Staples. Flight simulation. Number 1. Cambridge University Press, 1988.
[44] R. Rosenthal, H. Cooper, L. Hedges, et al. Parametric measures of effect size. The handbook of research synthesis, 621(2):231–244, 1994.
[45] J. Schelter and F. Masi. Theater with seat and wheelchair platform movement, Nov. 3 1998. US Patent 5,829,201.
[46] J. Seo, S. Mun, J. Lee, and S. Choi. Substituting motion effects with vibrotactile effects for 4d experiences. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–6, New York, NY, USA, 2018. Association for Computing Machinery.
[47] V. Shen, C. Shultz, and C. Harrison. Mouth haptics in vr using a headset ultrasound phased array. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[48] Solla. Variable-lra-frequencies-on-drv2605, 2021.
[49] M. Sra, X. Xu, A. Mottelson, and P. Maes. Vmotion: Designing a seamless walking experience in vr. In Proceedings of the 2018 Designing Interactive Systems Conference, DIS ’18, page 59–70, New York, NY, USA, 2018. Association for Computing Machinery.
[50] D. Stewart. A platform with six degrees of freedom. Proceedings of the institution of mechanical engineers, 180(1):371–386, 1965.
[51] Y. Tanaka, J. Nishida, and P. Lopes. Demonstrating electrical head actuation: Enabling interactive systems to directly manipulate head orientation. In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, CHI EA ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[52] Y. Tanaka, J. Nishida, and P. Lopes. Electrical head actuation: Enabling interactive systems to directly manipulate head orientation. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[53] T. Tanichi, F. Asada, K. Matsuda, D. Hynds, and K. Minamizawa. Kabuto: Inducing upper-body movements using a head mounted haptic display with flywheels. In SIGGRAPH Asia 2020 Emerging Technologies, SA ’20, New York, NY, USA, 2020. Association for Computing Machinery.
[54] C.-M. Tseng, P.-Y. Chen, S. C. Lin, Y.-W. Wang, Y.-H. Lin, M.-A. Kuo, N.-H. Yu, and M. Y. Chen. Headwind: Enhancing teleportation experience in vr by simulating air drag during rapid motion. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing Machinery.
[55] A. Väljamäe, P. Larsson, D. Västfjäll, and M. Kleiner. Travelling without moving: Auditory scene cues for translational self-motion. 2005.
[56] D.-B. Vo, J. Saari, and S. Brewster. Tactihelm: Tactile feedback in a cycling helmet for collision avoidance. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, CHI EA ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[57] C. Wang, D.-Y. Huang, S.-w. Hsu, C.-E. Hou, Y.-L. Chiu, R.-C. Chang, J.-Y. Lo, and B.-Y. Chen. Masque: Exploring lateral skin stretch feedback on the face with head-mounted displays. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pages 439–451, 2019.
[58] S. Weech, J. Moon, and N. F. Troje. Influence of bone-conducted vibration on simulator sickness in virtual reality. PLOS ONE, 13(3):1–21, 03 2018.
[59] A. Wilberz, D. Leschtschow, C. Trepkowksi, J. Maiero, E. Kruijff, and B. Riecke. Facehaptics: Robot arm based versatile facial haptics for immersive environments. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, 04 2020.
[60] B. G. Witmer, C. J. Jerome, and M. J. Singer. The Factor Structure of the Presence Questionnaire. Presence: Teleoperators and Virtual Environments, 14(3):298–312, 06 2005.
[61] G. Yun, H. Lee, S. Han, and S. Choi. Improving viewing experiences of first-person shooter gameplays with automatically-generated motion effects. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85874-
dc.description.abstract我們提出 DrivingVibe,探索如何利用環繞於頭部周遭的震動回饋設計去增進虛擬實境中的行車動態體驗。在整個設計流程之中,我們完成了三個裝置設計的迭代並進行了一系列共招募 66 名受測者的形成性與總結性研究,最後發展出兩套使用了 360 度震動觸覺頭帶的回饋規律設計:鏡像與 3D 慣性力式規律。鏡像設計延伸手持控制器的震動觸覺規律來均勻的驅動頭帶。 3D 慣性力式設計則提供對應慣性力的方向性震動規律,包括:離心力、水平方向的加速度與減速度、以及粗糙地形導致的垂直移動。我們進行了一個 24名受測者的使用者體驗評量研究,體驗內容包含被動的乘客模式與使用帶有震動回饋的手持控制器操作的主動駕駛模式。研究結果顯示兩套 DrivingVibe 的設計皆能顯著且效應大地增進體驗的真實感、沉浸感、與樂趣 (p值<.01),在整體偏好的方面, 88\% 的使用者偏好 DrivingVibe,並且在這些人之中有 67\% 的人偏好 3D 慣性力式設計。zh_TW
dc.description.abstractWe present DrivingVibe, which explores vibrotactile feedback designs around the head to enhance VR driving motion experiences. Throughout our design process, we completed three device design iterations and conducted a series of formative and summative user studies with a combined total of 66 participants. We arrived at two feedback pattern designs that use a 360\degree vibrotactile headband: 1) mirroring and 2) 3D inertia-based patterns. The mirroring design extends the vibrotactile patterns of the handheld controllers to actuate the headband uniformly. The 3D inertia-based design provides directional vibration patterns corresponding to inertial forces, including: i) centrifugal forces, ii) horizontal acceleration/deceleration, and iii) vertical motion due to rough terrain. We conducted a 24-person user experience evaluation in both passive passenger mode and active driving mode, with the active mode using handheld controllers with vibrotactile feedback. Study results showed that both DrivingVibe feedback designs significantly improved realism, immersion, and enjoyment (p<.01) with large effect sizes. In terms of overall preference, 88\% of users preferred DrivingVibe, and among these users, 67\% preferred the 3D inertia-based design.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:27:15Z (GMT). No. of bitstreams: 1
U0001-2109202220540900.pdf: 8725315 bytes, checksum: 1d7e3fdbf7322d1350dffa879b72be39 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsContents
誌謝 ii
摘要 iii
Abstract iv
1 Introduction 1
2 Related Work 4
2.1 Motion Simulation Techniques . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Haptic Feedback on the Human Head . . . . . . . . . . . . . . . . . . . 5
3 Device Design and Implementation 7
3.1 Device Design Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.1 Device: V1 (4 x ERM) . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Device: V2 (16 x LRA) . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Device: V3 (Wireless) . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 LRA Amplitude and Response Time . . . . . . . . . . . . . . . . . . . . 9
3.3 Motion Telemetry API . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 LRA Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Vibrotactile Pattern Design 12
4.1 Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Mirroring Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.1 Gamepad Haptic in Racing Games . . . . . . . . . . . . . . . . . 13
4.2.2 Headband Intensity Mapping . . . . . . . . . . . . . . . . . . . . 13
4.3 3D Inertia-based Approach . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 Motion Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 User Experience Evaluation 21
5.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.1 Tasks 1-3: Passenger Mode . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Task 4: Driver Mode . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Participants and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.1 Likert-scale Ratings: Overall . . . . . . . . . . . . . . . . . . . . 25
5.3.2 Likert-scale Ratings: By Task . . . . . . . . . . . . . . . . . . . 25
5.3.3 Preference across All Tasks . . . . . . . . . . . . . . . . . . . . 25
6 Discussion 26
6.1 Connection between Vibration Feedback and Past Experience . . . . . . . 26
6.2 Vibration Noise in VR Driving . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Improving Vibration Patterns . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Extending DrivingVibe to Other VR Experiences . . . . . . . . . . . . . 29
6.5 Extending DrivingVibe to Other Parts of the Body . . . . . . . . . . . . . 29
7 Conclusion 30
Bibliography 31
Appendix A 40
A.1 Details of the User Study Results . . . . . . . . . . . . . . . . . . . . . . 40
List of Figures
1.1 (a) The system of DrivingVibe can be integrated easily with VR headset and produces (b) inertia-based feedback patterns corresponding to the motion events, including turning, deceleration, cold start, and rough terrain shaking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3.1 (a) V1 prototype (b) V2 prototype; (c) V3 device used in user experience evaluation; (d) Force output vs. input voltage for the LRA . . . . . . . . 9
4.1 Different feedback designs gave the same driving behavior. (a) The profile of the magnitude of the inertia throughout the course. (b) The corresponding controller feedback intensity is built into the game. The right motor reacts to inertia, and the left motor reacts to the terrain. (c) The corresponding headband motor intensity in the mirroring approach. (d) The corresponding headband motor intensity in the approach. To show the directionality of this approach, we list the average intensity of the four quarters individually. The last part shows how 3D inertia-based pattern reacts to rough terrains. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Schematic diagram of the directional cue design. . . . . . . . . . . . . . 17
4.3 Schematic diagram of the directional cue design . . . . . . . . . . . . . . 19
5.1 Passenger mode: (a) perspective in VR and (b) user; Driver mode: (c) perspective in VR and (d) user with controller. . . . . . . . . . . . . . . . 23
5.2 (a) Average scores of immersion, realism, enjoyment, and comfort on a 7-point Likert scale. This figure shows the scores averaged from the four tasks. Error bars represent SEM. (b) Preference rankings among all the tasks. The two feedback designs are preferred by at least 88% of the participants among comfort, realism, enjoyment, and immersion. The 3D inertia-based condition is the most preferable. . . . . . . . . . . . . . . . 24
5.3 Average scores of immersion, realism, enjoyment, and comfort on a 7-point Likert scale in the four tasks. Error bars represent SEM. . . . . . . 24
1 Preference rankings of immersion, realism, enjoyment, and overall in each of the task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
-
dc.language.isoen-
dc.subject觸覺zh_TW
dc.subject頭部震動zh_TW
dc.subject動態模擬器zh_TW
dc.subject感覺運動耦合zh_TW
dc.subject虛擬實境zh_TW
dc.subject遊戲/遊玩zh_TW
dc.subjectHead Vibrationsen
dc.subjectHapticen
dc.subjectGames/Playen
dc.subjectMotion simulatorsen
dc.subjectSensorimotor Contingencyen
dc.subjectVirtual Realityen
dc.title藉由環繞於頭部周遭的慣性力式規律震動回饋增進虛擬實境動態體驗zh_TW
dc.titleDrivingVibe: Enhancing VR Motion Experience with Inertia-based Vibrotactile Feedback Patterns around the Headen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭龍磻;陳炳宇;蔡欣叡;余能豪zh_TW
dc.contributor.oralexamcommitteeLung-Pan Cheng;Bing-Yu Chen;Hsin-Ruey Tsai;Neng-Hao Yuen
dc.contributor.oralexamcommittee-orcid鄭龍磻(0000-0002-7712-8622),陳炳宇(0000-0003-0169-7682),蔡欣叡(0000-0003-4764-0139),余能豪(0000-0003-0717-8269)
dc.subject.keyword遊戲/遊玩,觸覺,虛擬實境,感覺運動耦合,動態模擬器,頭部震動,zh_TW
dc.subject.keywordGames/Play,Haptic,Virtual Reality,Sensorimotor Contingency,Motion simulators,Head Vibrations,en
dc.relation.page42-
dc.identifier.doi10.6342/NTU202203767-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-25-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2024-07-01-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-2109202220540900.pdf8.52 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved