請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85854完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 翁啟惠(Chi-Huey Wong) | |
| dc.contributor.author | Jia-Yan Chen | en |
| dc.contributor.author | 陳佳妍 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:26:31Z | - |
| dc.date.copyright | 2022-09-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-09-26 | |
| dc.identifier.citation | 1. Han-Yi Huang1, Hsin-Yu Liao1†, Xiaorui Chen1†, Szu-Wen Wang1,3†, Cheng-Wei Cheng1,, et al., Vaccination with SARS-CoV-2 spike protein lacking glycan shields elicits enhanced protective responses in animal models. SCIENCE TRANSLATIONAL MEDICINE, 2022. 2. Allam, Z., The First 50 days of COVID-19: A Detailed Chronological Timeline and Extensive Review of Literature Documenting the Pandemic. Surveying the Covid-19 Pandemic and its Implications, 2020: p. 1-7. 3. Zhu, Z., et al., From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res, 2020. 21(1): p. 224. 4. World Health Organization. WHO coranavirus (COVID 19) Dashboard. 2022/09/08]; Available from: https://covid19.who.int 5. Wu, Z. and J.M. McGoogan, Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 2020. 323(13): p. 1239-1242. 6. Harrison, A.G., T. Lin, and P. Wang, Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol, 2020. 41(12): p. 1100-1115. 7. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 2020. 395(10223): p. 497-506. 8. Harrison, A.G., T. Lin, and P. Wang, Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends in Immunology, 2020. 41(12): p. 1100-1115. 9. Karia, R., et al., COVID-19 and its Modes of Transmission. SN comprehensive clinical medicine, 2020: p. 1-4. 10. Gorbalenya, A.E., et al., The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 2020. 5(4): p. 536-544. 11. Wang, Y., M. Grunewald, and S. Perlman, Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods Mol Biol, 2020. 2203: p. 1-29. 12. Chen, L., et al., RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect, 2020. 9(1): p. 313-319. 13. Mariano, G., et al., Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Front Mol Biosci, 2020. 7: p. 605236. 14. Gordon, D.E., et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020. 583(7816): p. 459-468. 15. Yadav, R., et al., Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 2021. 10(4). 16. Chang, C.K., et al., Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci, 2006. 13(1): p. 59-72. 17. Neuman, B.W., et al., A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol, 2011. 174(1): p. 11-22. 18. Nieto-Torres, J.L., et al., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog, 2014. 10(5): p. e1004077. 19. Huang, Y., et al., Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 2020. 41(9): p. 1141-1149. 20. Bosch, B.J., et al., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol, 2003. 77(16): p. 8801-11. 21. Paiardi, G., et al., The binding of heparin to spike glycoprotein inhibits SARS-CoV-2 infection by three mechanisms. J Biol Chem, 2022. 298(2): p. 101507. 22. Hamming, I., et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol, 2004. 203(2): p. 631-7. 23. Donoghue, M., et al., A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res, 2000. 87(5): p. E1-9. 24. Wrapp, D., et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020. 367(6483): p. 1260-1263. 25. Kalra, R.S. and R. Kandimalla, Engaging the spikes: heparan sulfate facilitates SARS-CoV-2 spike protein binding to ACE2 and potentiates viral infection. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 39. 26. Daly, J.L., et al., Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science, 2020. 370(6518): p. 861-865. 27. Cantuti-Castelvetri, L., et al., Neuropilin-1 facilitates SARS-CoV-2 cell entryand infectivity. Science, 2020. 370(6518): p. 856-860. 28. Hoffmann, M., et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020. 181(2): p. 271-280.e8. 29. Tang, T., et al., Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res, 2020. 178: p. 104792. 30. Xia, S., et al., Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & Molecular Immunology, 2020. 17(7): p. 765-767. 31. White, J.M. and G.R. Whittaker, Fusion of Enveloped Viruses in Endosomes. Traffic, 2016. 17(6): p. 593-614. 32. Ruiz-Canada, C., D.J. Kelleher, and R. Gilmore, Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell, 2009. 136(2): p. 272-283. 33. in Essentials of Glycobiology, A. Varki, et al., Editors. 2009, Cold Spring Harbor Laboratory Press Copyright © 2009, The Consortium of Glycobiology Editors, La Jolla, California.: Cold Spring Harbor (NY). 34. Mellquist, J.L., et al., The Amino Acid Following an Asn-X-Ser/Thr Sequon Is an Important Determinant of N-Linked Core Glycosylation Efficiency. Biochemistry, 1998. 37(19): p. 6833-6837. 35. Kornfeld, R. and S. Kornfeld, Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem, 1985. 54: p. 631-64. 36. Wormald, M.R. and R.A. Dwek, Glycoproteins: glycan presentation and protein-fold stability. Structure, 1999. 7(7): p. R155-R160. 37. Hebert, D.N., et al., The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol, 1997. 139(3): p. 613-23. 38. Marth, J.D. and P.K. Grewal, Mammalian glycosylation in immunity. Nature reviews. Immunology, 2008. 8(11): p. 874-887. 39. Watanabe, Y., et al., Site-specific glycan analysis of the SARS-CoV-2 spike. Science, 2020. 369(6501): p. 330-333. 40. Grant, O.C., et al., Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Scientific Reports, 2020. 10(1): p. 14991. 41. Zhao, X., H. Chen, and H. Wang, Glycans of SARS-CoV-2 Spike Protein in Virus Infection and Antibody Production. Frontiers in Molecular Biosciences, 2021. 8. 42. Casalino, L., et al., Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Central Science, 2020. 6(10): p. 1722-1734. 43. Li, Q., et al., The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell, 2020. 182(5): p. 1284-1294.e9. 44. Forni, G., A. Mantovani, and R. Covid-19 Commission of Accademia Nazionale dei Lincei, COVID-19 vaccines: where we stand and challenges ahead. cell death & differentiation, 2021. 28(2): p. 626-639. 45. Kuo, T.Y., et al., Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Sci Rep, 2020. 10(1): p. 20085. 46. Tian, J.H., et al., SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun, 2021. 12(1): p. 372. 47. Dong, Y., et al., A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 237. 48. Vartak, A. and S.J. Sucheck, Recent Advances in Subunit Vaccine Carriers. Vaccines (Basel), 2016. 4(2). 49. Kyriakidis, N.C., et al., SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines, 2021. 6(1): p. 28. 50. Hayashi, H., et al., Preclinical study of a DNA vaccine targeting SARS-CoV-2. Curr Res Transl Med, 2022. 70(4): p. 103348. 51. Vogel, A.B., et al., BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature, 2021. 592(7853): p. 283-289. 52. Corbett, K.S., et al., SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature, 2020. 586(7830): p. 567-571. 53. Pardi, N., et al., mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov, 2018. 17(4): p. 261-279. 54. Centers for disease control and prevention (CDC). SARS-CoV-2 Variant Classifications and Definitions. 2022/09/08]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html 55. Andrews, N., et al., Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med, 2022. 386(16): p. 1532-1546. 56. Lauring, A.S., et al., Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study. BMJ, 2022. 376: p. e069761. 57. Xia, H., et al., Neutralization of Omicron SARS-CoV-2 by 2 or 3 doses of BNT162b2 vaccine. bioRxiv, 2022. 58. Xia, H., et al., Neutralization and durability of 2 or 3 doses of the BNT162b2 vaccine against Omicron SARS-CoV-2. Cell Host Microbe, 2022. 30(4): p. 485-488 e3. 59. Chalkias, S., et al., A Bivalent Omicron-containing Booster Vaccine Against Covid-19. MedRxiv, 2022. 60. Liang, Y., et al., Design of a mutation-integrated trimeric RBD with broad protection against SARS-CoV-2. Cell Discov, 2022. 8(1): p. 17. 61. Kaabi, N.A., et al., Safety and immunogenicity of a hybrid-type vaccine booster in BBIBP-CorV recipients in a randomized phase 2 trial. Nat Commun, 2022. 13(1): p. 3654. 62. Lee, I.J., et al., A booster dose of Delta x Omicron hybrid mRNA vaccine produced broadly neutralizing antibody against Omicron and other SARS-CoV-2 variants. J Biomed Sci, 2022. 29(1): p. 49. 63. team, t.N. Genomic epidemiology of SARS-CoV-2 with subsampling focused globally since pandemic start. 2022/9/21]; Available from: https://nextstrain.org/ncov/gisaid/global/6m. 64. Tseng, Y.C., et al., Egg-based influenza split virus vaccine with monoglycosylation induces cross-strain protection against influenza virus infections. Proc Natl Acad Sci U S A, 2019. 116(10): p. 4200-4205. 65. Chen, J.R., et al., Vaccination of monoglycosylated hemagglutinin induces cross-strain protection against influenza virus infections. Proc Natl Acad Sci U S A, 2014. 111(7): p. 2476-81. 66. Wu, C.Y., et al., Glycosite-deleted mRNA of SARS-CoV-2 spike protein as a broad-spectrum vaccine. Proc Natl Acad Sci U S A, 2022. 119(9). 67. Gagne, M., et al., mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits comparable B cell expansion, neutralizing antibodies and protection against Omicron. 2022. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85854 | - |
| dc.description.abstract | 自從嚴重特殊傳染性肺炎 (COVID 19)大流行以來,已有數種疫苗在全球被使用。然而嚴重急性呼吸道症候群冠狀病毒2型 (SARS-CoV-2)快速地突變,並且可能逃脫現有疫苗帶來的保護力。因此對所有冠狀病毒都有保護作用的廣泛保護性疫苗需求日益增高。棘蛋白的醣基化在逃脫免疫反應中扮演重要的角色。根據先前的研究,單醣棘蛋白疫苗和醣位點缺失mRNA疫苗可以對高關注變異株(VOCs)產生更好的免疫反應。棘蛋白中有12個保守抗原表位:7個在受體結合區(RBD),五個在CD和HR2。然而在Omicron變異株中,三個在受體結合區的保守抗原表位發生突變。因此CD和HR2是更不易突變的區域。此外,CD和HR2的保守抗原表位被大量的聚醣覆蓋。所以我想研究CD和HR2的醣基化對mRNA疫苗免疫反應的影響,及使用哪種VOCs棘蛋白序列做為mRNA疫苗對不同變異株有最廣的保護。細胞實驗中發現去除CD和HR2的醣基化影響棘蛋白正確摺疊。另外也測試了mRNA的運送工具:in vivo-jetRNA®、 mRNA-LNP及實驗室合成的ZG 奈米載體。小鼠實驗發現施打兩劑的mRNA-ZG 奈米載體後,CD和HR2去醣基化的棘蛋白mRNA可以引起針對Delta及Omicron變異棘蛋白更強的抗體反應,並且也可以引起IFNγ及IL-4的T細胞反應。和全醣基化棘蛋白mRNA相比,CD和HR2去醣基化的棘蛋白mRNA疫苗和可以針對變種病毒有更好的保護力,具有開發廣效COVID-19疫苗的潛力。 | zh_TW |
| dc.description.abstract | Since the pandemic of Coronavirus disease 2019 (COVID-19), there are several vaccines have been used on the global scale. However, SARS-CoV-2 mutates quickly and the mutants that can escape protection from existing vaccines have emerged. So broadly protective vaccine is urgently needed. Glycosylation on the spike protein plays a role in immune response evasion. Monoglycosylated spike protein (SMG) and glycosite-deleted mRNA vaccine induced better immune responses and protection against SARS-CoV-2 variant of concerns (VOCs). Variants of SARS-CoV-2 impact the vaccine efficiencies, because of large number of mutations on the spike protein. According to a previous study, connection domain (CD) and heptad repeat 2 (HR2) domains are more conserved region in the spike protein and largely shielded by glycans [1]. So, I want to investigate the impacts of glycosylation on CD and HR2 domain and which variant of SARS-CoV-2 with CD and HR2 deglycosylation can provide broader protection against variant virus. The in vitro expression experiments showed that deglycosylation on the CD and HR2 domains impacted the spike protein folding. Several mRNA delivery tools were tested: in vivo-jetRNA®, mRNA-LNP (syringe injection and microfluidic device), and mRNA-ZG nanocarrier. After two doses of mRNA-ZG nanocarrier, WT dG (CD+HR2) mRNA vaccine induced stronger antibody response against Delta and Omicron spike protein compared to WT mRNA vaccine. IFNγ and IL-4 T cell responses were also induced. My results showed that CD and HR2 glycosites-deleted spike mRNA vaccine provides better protection against SARS-CoV-2 variants and has the potential to develop the broadly protective COVID-19 vaccine. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:26:31Z (GMT). No. of bitstreams: 1 U0001-2209202215550900.pdf: 9650629 bytes, checksum: 93db645c91b18d0bac876acd41cb4dd0 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Table of contents Acknowledgement……………………………………………………………….……………….... i Chinese abstract….……………………………………………………………….......................... ii English abstract…..……………………………………………………………………...……...... iii Table of contents….………………………………………………………………………..…….. iv Figures……………………………………………………………………….…...………………. vi List of abbreviations…………………………………………………………………..…………. vii 1. INTRODUCTION……………………………………………………………………..……… 1 Transmission routes for SARS-CoV-2 infection…...……………………………………………… 1 Structure of SARS-CoV-2………………………………………………………………………… 2 Structure of spike protein………………………………………………………………..………… 3 Viral entry mechanisms of SARS-CoV-2……………………………………………….………… 3 Feature and function of N-glycans on the spike protein……………………………….………… 4 Development of the SARS-CoV-2 vaccine………………………………………..…….………… 6 The goal of this study……..……………………………………………………………..…..…… 10 2. MATERIALS AND METHODS…………………………………………………..………… 11 2.1 Materials………………………………………………………………...…………………… 11 2.2 Construction of mRNA synthesis plasmid……………………………………………..…….. 12 2.3 Colony PCR……………………………………………………………………..……..…….. 12 2.4 Site-directed mutagenesis……………………………………………………….……..…….. 13 2.5 Production of mRNA……………………………………………………...…….……..…….. 13 2.6 RNA Agarose gel electrophoresis……………………………………………….……..…….. 14 2.7 Encapsulation of mRNA by in vivo-jetRNA®………………………………...………..…….. 14 2.8 Encapsulation of mRNA by lipid nanoparticle…………………………………..……..…….. 15 2.9 Formulation mRNA-ZG nanocarrier complex…………………………...…….……..…….. 15 2.10 Characterization of particle size of mRNA lipid nanoparticles……...………………..…….. 16 2.11 Quantification of encapsulated mRNA……………………………..………….……..…….. 16 2.12 Cell culture……………………………………………………………….…….……..…….. 16 2.13 Transfection of DNA or mRNA to HEK293T cell……………………….…….……..…….. 17 2.14 Cell lysis…...……………………………………………………………..…….……..…….. 17 2.15 Immunoblotting analysis………………….…………………………………………..…….. 18 2.16 LC-MS/MS analysis (protein identification) ………………………….……….……..…….. 18 2.17 Size-exclusion chromatography………………………………….…………….……..…….. 19 2.18 Mice immunization………………….………………………………………………..…….. 20 2.19 ELISA determination…………………………………………………………..……..…….. 20 2.20 enzyme-linked immune absorbent spot (ELISpot) …………………………..……..…...….. 21 3. RESULTS…………………………..…………….…………………………..….……..…….. 22 3.1 Design of mRNA vaccine candidate……………………………………………..……..…….. 22 3.2 In vitro expression of spike protein and identity confirmation………..…………..…….….. 23 3.3 Characterization of the spike protein size……………………………….……….……..…….. 24 3.4 Test of mRNA delivery tools…………………………………………………….……..…….. 25 3.5 Immunogenicity study………………………………………………………..….……..…….. 27 4. DISCUSSIONS……..……………………………………….…………..……….……..…….. 30 5. REFFERENCES………………….………………………………………………..…..…….. 32 Figures Fig. 1 The flowchart of the experiment design...……………………..….……………..…….. 38 Fig. 2 Schematic of spike mRNA vaccine candidate design……..….……………...…..…….. 39 Fig. 3 mRNA production and expression of spike protein in HEK293T cell. .…..………….. 40 Fig. 4 Spike protein analsis by LC-MS/MS. ……………………………………………..….. 41 Fig.5 Immunoblotting analysis of size fractions of the spike protein in cell lysates. .…..….. 42 Fig. 6 Encapsulation efficiency of mRNA delivery tools. .………………………………….. 43 Fig. 7 Particle size and polydispersity index (PDI) of mRNA delivery tools. …………..….. 44 Fig. 8 Transfection efficiencies of mRNA using different delivery tools. ………….…….….. 45 Fig. 9 Mice immunization with in vivo-jetRNA® and immunogenicity. ………………...….. 46 Fig. 10 Spike protein expression using in vivo-jetRNA® transfection. ………………..….….. 47 Fig. 11 IgG titer of mRNA-LNP, mRNA-ZG nanocarrier, and DNA vaccine……………….... 48 Fig. 12 T cell responses of mice immunized with mRNA-ZG-nanocarrier or DNA vaccine...... 50 | |
| dc.language.iso | en | |
| dc.subject | 嚴重特殊傳染性肺炎 | zh_TW |
| dc.subject | 免疫反應 | zh_TW |
| dc.subject | 棘蛋白 | zh_TW |
| dc.subject | 醣基化 | zh_TW |
| dc.subject | 嚴重急性呼吸道症候群冠狀病毒2型 | zh_TW |
| dc.subject | COVID-19 | en |
| dc.subject | immunogenicity | en |
| dc.subject | glycosylation | en |
| dc.subject | spike protein | en |
| dc.subject | SARS-CoV-2 | en |
| dc.title | 醣化對棘突蛋白mRNA疫苗設計之影響 | zh_TW |
| dc.title | Effects of glycosylation on spike mRNA vaccine design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 馬徹(Che Ma),林國儀(Kuo-I Lin) | |
| dc.subject.keyword | 嚴重特殊傳染性肺炎,嚴重急性呼吸道症候群冠狀病毒2型,棘蛋白,醣基化,免疫反應, | zh_TW |
| dc.subject.keyword | COVID-19,SARS-CoV-2,spike protein,glycosylation,immunogenicity, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU202203829 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-09-26 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-09-29 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2209202215550900.pdf | 9.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
