請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85843完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Chia-Hsiang Yen | en |
| dc.contributor.author | 顏嘉祥 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:26:09Z | - |
| dc.date.copyright | 2022-04-26 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-12-08 | |
| dc.identifier.citation | Adorno-Cruz, V., & Liu, H. (2019). Regulation and functions of integrin alpha2 in cell adhesion and disease. Genes Dis, 6(1), 16-24. Amin, M. B., Greene, F. L., Edge, S. B., et al. (2017). The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more 'personalized' approach to cancer staging. CA Cancer J Clin, 67(2), 93-99. Appert-Collin, A., Hubert, P., Cremel, G., et al. (2015). Role of ErbB Receptors in Cancer Cell Migration and Invasion. Front Pharmacol, 6, 283. Bates, R. C., Lincz, L. F., & Burns, G. F. (1995). Involvement of Integrins in Cell-Survival. Cancer and Metastasis Reviews, 14(3), 191-203. Beier, D., Hau, P., Proescholdt, M., et al. (2007). CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res, 67(9), 4010-4015. Beri, P., Matte, B. F., Fattet, L., et al. (2018). Biomaterials to model and measure epithelial cancers. Nat Rev Mater, 3(11), 418-430. Beri, P., Popravko, A., Yeoman, B., et al. (2020). Cell Adhesiveness Serves as a Biophysical Marker for Metastatic Potential. Cancer Research, 80(4), 901-911. Bierie, B., Pierce, S. E., Kroeger, C., et al. (2017). Integrin-beta4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci U S A, 114(12), E2337-E2346. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730-737. Bourguignon, L. Y., Wong, G., Earle, C., et al. (2012). Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. Journal of Biological Chemistry, 287(39), 32800-32824. Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6), 394-424. Byun, S., Son, S., Amodei, D., et al. (2013). Characterizing deformability and surface friction of cancer cells. Proc Natl Acad Sci U S A, 110(19), 7580-7585. Cermeno, E. A., O'Melia, M. J., Han, W. M., et al. (2020). Hydrodynamic shear-based purification of cancer cells with enhanced tumorigenic potential. Integrative Biology, 12(1), 1-11. Chan, W., Kozma, R., Yasui, Y., et al. (2002). Vimentin intermediate filament reorganization by Cdc42: involvement of PAK and p70 S6 kinase. Eur J Cell Biol, 81(12), 692-701. Chang, P. H., Sekine, K., Chao, H. M., et al. (2017). Chitosan promotes cancer progression and stem cell properties in association with Wnt signaling in colon and hepatocellular carcinoma cells. Sci Rep, 8, 45751. Chau, C. H., Rixe, O., McLeod, H., et al. (2008). Validation of Analytic Methods for Biomarkers Used in Drug Development. Clinical Cancer Research, 14(19), 5967-5976. Chen, Y. H., Chang, S. H., Wang, T. J., et al. (2013). Cell fractionation on pH-responsive chitosan surface. Biomaterials, 34(4), 854-863. Chen, Y. H., Chung, Y. C., Wang, I. J., et al. (2012). Control of cell attachment on pH-responsive chitosan surface by precise adjustment of medium pH. Biomaterials, 33(5), 1336-1342. Cheng, N. C., Chen, S. Y., Li, J. R., et al. (2013). Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl Med, 2(8), 584-594. Cheng, N. C., Wang, S., & Young, T. H. (2012). The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials, 33(6), 1748-1758. Cheng, W., Wang, H., Yuan, J., et al. (2018). The Prognostic Value of Nanog Overexpression in Lung Cancer: A Meta-Analysis. Biomed Res Int, 2018, 3429261. Cheung, R. C., Ng, T. B., Wong, J. H., et al. (2015). Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar Drugs, 13(8), 5156-5186. Chiou, S. H., Wang, M. L., Chou, Y. T., et al. (2010). Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res, 70(24), 10433-10444. Christ, K. V., & Turner, K. T. (2010). Methods to Measure the Strength of Cell Adhesion to Substrates. Journal of Adhesion Science and Technology, 24(13-14), 2027-2058. Clark, G. M. (2008). Prognostic factors versus predictive factors: Examples from a clinical trial of erlotinib. Mol Oncol, 1(4), 406-412. Clarke, M. F., Dick, J. E., Dirks, P. B., et al. (2006). Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res, 66(19), 9339-9344. Crouzier, T., Boudou, T., & Picart, C. (2010). Polysaccharide-based polyelectrolyte multilayers. Current Opinion in Colloid & Interface Science, 15(6), 417-426. Crowley, L. C., Scott, A. P., Marfell, B. J., et al. (2016). Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb Protoc, 2016(7). Cyll, K., Ersvaer, E., Vlatkovic, L., et al. (2017). Tumour heterogeneity poses a significant challenge to cancer biomarker research. Br J Cancer, 117(3), 367-375. Dang, C. V., Reddy, E. P., Shokat, K. M., et al. (2017). Drugging the 'undruggable' cancer targets. Nature Reviews Cancer, 17(8), 502-508. David, O., Jett, J., LeBeau, H., et al. (2004). Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res, 10(20), 6865-6871. Day, C. P., Merlino, G., & Van Dyke, T. (2015). Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges. Cell, 163(1), 39-53. De Luca, M., Aiuti, A., Cossu, G., et al. (2019). Advances in stem cell research and therapeutic development. Nature Cell Biology, 21(7), 801-811. Del Re, M., Arrigoni, E., Restante, G., et al. (2018). Concise Review: Resistance to Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer: The Role of Cancer Stem Cells. Stem Cells. Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 10(1), 9-22. Diamandis, E. P. (2010). Cancer Biomarkers: Can We Turn Recent Failures into Success? Journal of the National Cancer Institute, 102(19), 1462-1467. Dillekas, H., Rogers, M. S., & Straume, O. (2019). Are 90% of deaths from cancer caused by metastases? Cancer Med, 8(12), 5574-5576. Dudani, J. S., Gossett, D. R., Tse, H. T., et al. (2013). Pinched-flow hydrodynamic stretching of single-cells. Lab Chip, 13(18), 3728-3734. Edge, S. B., & Compton, C. C. (2010). The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of Surgical Oncology, 17(6), 1471-1474. Eduati, F., Utharala, R., Madhavan, D., et al. (2018). A microfluidics platform for combinatorial drug screening on cancer biopsies. Nature Communications, 9. Elgadir, M. A., Uddin, M. S., Ferdosh, S., et al. (2015). Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Journal of Food and Drug Analysis, 23(4), 619-629. Fares, J., Fares, M. Y., Khachfe, H. H., et al. (2020). Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther, 5(1), 28. Feldmann, G., Dhara, S., Fendrich, V., et al. (2007). Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res, 67(5), 2187-2196. Fuhrmann, A., Banisadr, A., Beri, P., et al. (2017). Metastatic State of Cancer Cells May Be Indicated by Adhesion Strength. Biophysical Journal, 112(4), 736-745. Gallant, N. D., Michael, K. E., & Garcia, A. J. (2005). Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Molecular Biology of the Cell, 16(9), 4329-4340. Garcia, A. J., Ducheyne, P., & Boettiger, D. (1997). Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials, 18(16), 1091-1098. Gleason, D. F., & Mellinger, G. T. (1974). Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. Journal of Urology, 111(1), 58-64. Goossens, N., Nakagawa, S., Sun, X., et al. (2015). Cancer biomarker discovery and validation. Transl Cancer Res, 4(3), 256-269. Gossett, D. R., Tse, H. T., Lee, S. A., et al. (2012). Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A, 109(20), 7630-7635. Grandori, C., & Kemp, C. J. (2018). Personalized Cancer Models for Target Discovery and Precision Medicine. Trends in Cancer, 4(9), 634-642. Guan, X. (2015). Cancer metastases: challenges and opportunities. Acta Pharm Sin B, 5(5), 402-418. Guo, W. J., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews Molecular Cell Biology, 5(10), 816-826. Gupta, P. B., Fillmore, C. M., Jiang, G., et al. (2011). Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146(4), 633-644. Haeger, A., Alexander, S., Vullings, M., et al. (2020). Collective cancer invasion forms an integrin-dependent radioresistant niche. J Exp Med, 217(1). Halabi, S., & Owzar, K. (2010). The importance of identifying and validating prognostic factors in oncology. Seminars in Oncology, 37(2), e9-18. Hamidi, H., & Ivaska, J. (2018). Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer, 18(9), 533-548. Henry, N. L., & Hayes, D. F. (2012). Cancer biomarkers. Mol Oncol, 6(2), 140-146. Herbst, R. S., Heymach, J. V., & Lippman, S. M. (2008). Lung cancer. N Engl J Med, 359(13), 1367-1380. Ho, M. M., Ng, A. V., Lam, S., et al. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research, 67(10), 4827-4833. Holbro, T., Civenni, G., & Hynes, N. E. (2003). The ErbB receptors and their role in cancer progression. Experimental Cell Research, 284(1), 99-110. Holsken, A., Gebhardt, M., Buchfelder, M., et al. (2011). EGFR signaling regulates tumor cell migration in craniopharyngiomas. Clin Cancer Res, 17(13), 4367-4377. Hou, H. W., Li, Q. S., Lee, G. Y. H., et al. (2009). Deformability study of breast cancer cells using microfluidics. Biomedical Microdevices, 11(3), 557-564. Hsu, S. H., Huang, G. S., Lin, S. Y., et al. (2012). Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes. Tissue Eng Part A, 18(1-2), 67-79. Huang, G. S., Dai, L. G., Yen, B. L., et al. (2011). Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials, 32(29), 6929-6945. Huang, H. L., Hsing, H. W., Lai, T. C., et al. (2010). Trypsin-induced proteome alteration during cell subculture in mammalian cells. J Biomed Sci, 17, 36. Humphrey, R. W., Brockway-Lunardi, L. M., Bonk, D. T., et al. (2011). Opportunities and Challenges in the Development of Experimental Drug Combinations for Cancer. Jnci-Journal of the National Cancer Institute, 103(16), 1222-1226. Huttenlocher, A., & Horwitz, A. R. (2011). Integrins in cell migration. Cold Spring Harb Perspect Biol, 3(9), a005074. Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6), 673-687. Indra, I., Undyala, V., Kandow, C., et al. (2011). An in vitro correlation of mechanical forces and metastatic capacity. Physical Biology, 8(1), 015015. Institute for Quality and Efficiency in Health Care. Cancer: What do the codes in the doctor’s letter mean? (2012). https://www.ncbi.nlm.nih.gov/books/NBK279426. Jaggupilli, A., & Elkord, E. (2012). Significance of CD44 and CD24 as Cancer Stem Cell Markers: An Enduring Ambiguity. Clinical & Developmental Immunology. Joseph, C., Arshad, M., Kurozomi, S., et al. (2019). Overexpression of the cancer stem cell marker CD133 confers a poor prognosis in invasive breast cancer. Breast Cancer Res Treat, 174(2), 387-399. Kai, F., Drain, A. P., & Weaver, V. M. (2019). The Extracellular Matrix Modulates the Metastatic Journey. Developmental Cell, 49(3), 332-346. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation, 119(6), 1420-1428. Kechagia, J. Z., Ivaska, J., & Roca-Cusachs, P. (2019). Integrins as biomechanical sensors of the microenvironment. Nature Reviews Molecular Cell Biology, 20(8), 457-473. Kim, T. H., Gill, N. K., Nyberg, K. D., et al. (2016). Cancer cells become less deformable and more invasive with activation of beta-adrenergic signaling. J Cell Sci, 129(24), 4563-4575. Kitaeva, K. V., Rutland, C. S., Rizvanov, A. A., et al. (2020). Cell Culture Based in vitro Test Systems for Anticancer Drug Screening. Frontiers in Bioengineering and Biotechnology, 8. Kondo, J., & Inoue, M. (2019). Application of Cancer Organoid Model for Drug Screening and Personalized Therapy. Cells, 8(5). Kris, M. G., Natale, R. B., Herbst, R. S., et al. (2003). Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer - A randomized trial. Jama-Journal of the American Medical Association, 290(16), 2149-2158. Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 15(3), 178-196. Langhans, S. A. (2018). Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol, 9, 6. Laupacis, A., Sekar, N., & Stiell, I. G. (1997). Clinical prediction rules - A review and suggested modifications of methodological standards. Jama-Journal of the American Medical Association, 277(6), 488-494. Lenz, H. J. (2006). Anti-EGFR mechanism of action: antitumor effect and underlying cause of adverse events. Oncology (Williston Park), 20(5 Suppl 2), 5-13. Li, X. L., Liu, L., Li, D. D., et al. (2017). Integrin beta4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma. Sci Rep, 7, 40464. Li, Z. Q., Tian, X. J., Yuan, Y., et al. (2013). Effect of cell culture using chitosan membranes on stemness marker genes in mesenchymal stem cells. Molecular Medicine Reports, 7(6), 1945-1949. Liotta, L. A., Lee, C. W., & Morakis, D. J. (1980). New method for preparing large surfaces of intact human basement membrane for tumor invasion studies. Cancer Lett, 11(2), 141-152. Liu, W. F., & Chen, C. S. (2005). Engineering biomaterials to control cell function. Materials Today, 8(12), 28-35. Liu, Y., Nenutil, R., Appleyard, M. V., et al. (2014). Lack of correlation of stem cell markers in breast cancer stem cells. Br J Cancer, 110(8), 2063-2071. Lopez-Ayllon, B. D., Moncho-Amor, V., Abarrategi, A., et al. (2014). Cancer stem cells and cisplatin-resistant cells isolated from non-small-lung cancer cell lines constitute related cell populations. Cancer Med, 3(5), 1099-1111. Madamanchi, A., Zijlstra, A., & Zutter, M. M. (2014). Flipping the Switch: Integrin Switching Provides Metastatic Competence. Science Signaling, 7(318). Mani, S. A., Guo, W., Liao, M. J., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704-715. Mather, J. P., & Roberts, P. E. Introduction to cell and tissue culture: Theory and technique. New York: Plenum Press. (1998). p. 241. Mayeux, R. (2004). Biomarkers: potential uses and limitations. NeuroRx, 1(2), 182-188. Mazer, B. L., Homer, R. J., & Rimm, D. L. (2019). False-positive pathology: improving reproducibility with the next generation of pathologists. Laboratory Investigation, 99(9), 1260-1265. Meng, X. J., Li, M., Wang, X. W., et al. (2009). Both CD133(+) and CD133(-) subpopulations of A549 and H446 cells contain cancer-initiating cells. Cancer Science, 100(6), 1040-1046. Morata-Tarifa, C., Jimenez, G., Garcia, M. A., et al. (2016). Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells. Sci Rep, 6, 18772. National Cancer Institute. Tumor Grade. (2014). https://www.cancer.gov/about-cancer/diagnosis-staging/prognosis/tumor-grade-fact-sheet. Neelakantan, D., Drasin, D. J., & Ford, H. L. (2015). Intratumoral heterogeneity: Clonal cooperation in epithelial-to-mesenchymal transition and metastasis. Cell Adh Migr, 9(4), 265-276. Nyberg, K. D., Scott, M. B., Bruce, S. L., et al. (2016). The physical origins of transit time measurements for rapid, single cell mechanotyping. Lab Chip, 16(17), 3330-3339. Ono, M., & Kuwano, M. (2006). Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clinical Cancer Research, 12(24), 7242-7251. Pastrana, E., Silva-Vargas, V., & Doetsch, F. (2011). Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell, 8(5), 486-498. Perez-Gracia, J. L., Sanmamed, M. F., Bosch, A., et al. (2017). Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treat Rev, 53, 79-97. Polley, M. Y., Freidlin, B., Korn, E. L., et al. (2013). Statistical and practical considerations for clinical evaluation of predictive biomarkers. J Natl Cancer Inst, 105(22), 1677-1683. Polyak, K. (2011). Heterogeneity in breast cancer. Journal of Clinical Investigation, 121(10), 3786-3788. Rajendran, V., & Jain, M. V. (2018). In Vitro Tumorigenic Assay: Colony Forming Assay for Cancer Stem Cells. In G. Papaccio & V. Desiderio (Eds.), Cancer Stem Cells: Methods and Protocols (pp. 89-95). New York, NY: Springer New York Rasti, A., Mehrazma, M., Madjd, Z., et al. (2018). Co-expression of Cancer Stem Cell Markers OCT4 and NANOG Predicts Poor Prognosis in Renal Cell Carcinomas. Sci Rep, 8(1), 11739. Reher, D., Klink, B., Deutsch, A., et al. (2017). Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model. Biology Direct, 12(1), 18. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. Rizvi, I., Gurkan, U. A., Tasoglu, S., et al. (2013). Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc Natl Acad Sci U S A, 110(22), E1974-1983. Roberts, P. J., & Der, C. J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26(22), 3291-3310. Rodriguez, A. D., Horowitz, L. F., Castro, K., et al. (2020). A microfluidic platform for functional testing of cancer drugs on intact tumor slices. Lab on a Chip, 20(9), 1658-1675. Ruzycka, M., Cimpan, M. R., Rios-Mondragon, I., et al. (2019). Microfluidics for studying metastatic patterns of lung cancer. Journal of Nanobiotechnology, 17. Salnikov, A. V., Kusumawidjaja, G., Rausch, V., et al. (2009). Cancer stem cell marker expression in hepatocellular carcinoma and liver metastases is not sufficient as single prognostic parameter. Cancer Lett, 275(2), 185-193. Samal, S. K., Dash, M., Van Vlierberghe, S., et al. (2012). Cationic polymers and their therapeutic potential. Chemical Society Reviews, 41(21), 7147-7194. Sawyers, C. L. (2008). The cancer biomarker problem. Nature, 452(7187), 548-552. Scheel, C., & Weinberg, R. A. (2012). Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol, 22(5-6), 396-403. SEER Cancer Stat Facts: Lung and Bronchus Cancer. National Cancer Institute. Bethesda, MD. (2019). https://seer.cancer.gov/statfacts/html/lungb.html. Seguin, L., Desgrosellier, J. S., Weis, S. M., et al. (2015). Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol, 25(4), 234-240. Shang, M. L., Soon, R. H., Lim, C. T., et al. (2019). Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab on a Chip, 19(3), 369-386. Shao, H. J., Lee, Y. T., Chen, C. S., et al. (2010). Modulation of gene expression and collagen production of anterior cruciate ligament cells through cell shape changes on polycaprolactone/chitosan blends. Biomaterials, 31(17), 4695-4705. Shmelkov, S. V., Butler, J. M., Hooper, A. T., et al. (2008). CD133 expression is not restricted to stem cells, and both CD133(+) and CD133(-) metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation, 118(6), 2111-2120. Sokeland, G., & Schumacher, U. (2019). The functional role of integrins during intra- and extravasation within the metastatic cascade. Molecular Cancer, 18. Spencer, A., & Baker, A. B. (2016). High Throughput Label Free Measurement of Cancer Cell Adhesion Kinetics Under Hemodynamic Flow. Scientific Reports, 6. Spencer, A., Spruell, C., Nandi, S., et al. (2016). A high-throughput mechanofluidic screening platform for investigating tumor cell adhesion during metastasis. Lab Chip, 16(1), 142-152. Statista. Predicted number of cancer deaths worldwide from 2018 to 2040. (2019). https://www.statista.com/statistics/1031323/cancer-deaths-forecast-worldwide. Steeg, P. S. (2016). Targeting metastasis. Nature Reviews Cancer, 16(4), 201-218. Stewart, R. L., West, D., Wang, C., et al. (2016). Elevated integrin alpha 6 beta 4 expression is associated with venous invasion and decreased overall survival in non-small cell lung cancer. Human Pathology, 54, 174-183. Suarato, G., Li, W., & Meng, Y. (2016). Role of pH-responsiveness in the design of chitosan-based cancer nanotherapeutics: A review. Biointerphases, 11(4), 04B201. Suresh, S. (2007). Biomechanics and biophysics of cancer cells. Acta Biomater, 3(4), 413-438. Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147(2), 275-292. Veiseh, M., Kwon, D. H., Borowsky, A. D., et al. (2014). Cellular heterogeneity profiling by hyaluronan probes reveals an invasive but slow-growing breast tumor subset. Proc Natl Acad Sci U S A, 111(17), E1731-1739. Vermes, I., Haanen, C., Steffens-Nakken, H., et al. (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods, 184(1), 39-51. Vickers, A. J. (2011). Prediction models in cancer care. CA Cancer J Clin, 61(5), 315-326. Visvader, J. E., & Lindeman, G. J. (2012). Cancer Stem Cells: Current Status and Evolving Complexities. Cell Stem Cell, 10(6), 717-728. Walia, V., & Elble, R. C. (2010). Enrichment for breast cancer cells with stem/progenitor properties by differential adhesion. Stem Cells Dev, 19(8), 1175-1182. Wang, G., Zhou, H., Gu, Z., et al. (2018). Oct4 promotes cancer cell proliferation and migration and leads to poor prognosis associated with the survivin/STAT3 pathway in hepatocellular carcinoma. Oncol Rep, 40(2), 979-987. Wasson, J. H., Sox, H. C., Neff, R. K., et al. (1985). Clinical-Prediction Rules - Applications and Methodological Standards. New England Journal of Medicine, 313(13), 793-799. Webb, K., Hlady, V., & Tresco, P. A. (1998). Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res, 41(3), 422-430. Wee, P., & Wang, Z. (2017). Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel), 9(5). Wu, L., & Qu, X. G. (2015). Cancer biomarker detection: recent achievements and challenges. Chemical Society Reviews, 44(10), 2963-2997. Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Research, 19(2), 156-172. Yadav, S., Barton, M. J., & Nguyen, N. T. (2019). Biophysical properties of cells for cancer diagnosis. Journal of Biomechanics, 86, 1-7. Yang, T. L. (2011). Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci, 12(3), 1936-1963. Yeh, H. Y., & Lin, J. C. (2008). Surface characterization and in vitro platelet compatibility study of surface sulfonated chitosan membrane with amino group protection-deprotection strategy. J Biomater Sci Polym Ed, 19(3), 291-310. Yen, C. H., Li, S. T., Cheng, N. C., et al. (2020). Label-free platform on pH-responsive chitosan: Adhesive heterogeneity for cancer stem-like cell isolation from A549 cells via integrin beta4. Carbohydr Polym, 239, 116168. Yen, C. H., Young, T. H., Hsieh, M. C., et al. (2019). Increased Cell Detachment Ratio of Mesenchymal-Type Lung Cancer Cells on pH-Responsive Chitosan through the beta3 Integrin. Mar Drugs, 17(12). Yi, S. Y., Hao, Y. B., Nan, K. J., et al. (2013). Cancer stem cells niche: a target for novel cancer therapeutics. Cancer Treat Rev, 39(3), 290-296. Yilmaz, M., & Christofori, G. (2010). Mechanisms of Motility in Metastasizing Cells. Molecular Cancer Research, 8(5), 629-642. Yip, P. Y., Cooper, W. A., Kohonen-Corish, M. R., et al. (2014). Phosphorylated Akt expression is a prognostic marker in early-stage non-small cell lung cancer. J Clin Pathol, 67(4), 333-340. Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs, 13(3), 1133-1174. Yu, Z., Pestell, T. G., Lisanti, M. P., et al. (2012). Cancer stem cells. Int J Biochem Cell Biol, 44(12), 2144-2151. Zeng, J., Liu, D., Qiu, Z., et al. (2014). GSK3beta overexpression indicates poor prognosis and its inhibition reduces cell proliferation and survival of non-small cell lung cancer cells. PLoS One, 9(3), e91231. Zhang, S. X., Liu, L., & Zhao, W. (2018a). Targeting Biophysical Cues: a Niche Approach to Study, Diagnose, and Treat Cancer. Trends in Cancer, 4(4), 268-271. Zhang, S. X., Liu, L. N., & Zhao, W. A. (2018b). Targeting Biophysical Cues: a Niche Approach to Study, Diagnose, and Treat Cancer. Trends in Cancer, 4(4), 268-271. Zhang, W., Kai, K., Ueno, N. T., et al. (2013). A Brief Review of the Biophysical Hallmarks of Metastatic Cancer Cells. Cancer Hallm, 1(2-3), 59-66. Zhang, Y., Wu, M., Han, X., et al. (2015). High-Throughput, Label-Free Isolation of Cancer Stem Cells on the Basis of Cell Adhesion Capacity. Angew Chem Int Ed Engl, 54(37), 10838-10842. Zhou, D. W., & Garcia, A. J. (2015). Measurement systems for cell adhesive forces. Journal of Biomechanical Engineering, 137(2), 020908. Zugazagoitia, J., Guedes, C., Ponce, S., et al. (2016). Current Challenges in Cancer Treatment. Clinical Therapeutics, 38(7), 1551-1566. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85843 | - |
| dc.description.abstract | 癌細胞的轉移(Cancer metastasis)被視為是癌症的致命殺手鐧,目前文獻上主要藉分子生物標記(molecular biomarker)的方法來評估轉移發生機會。然而腫瘤異質性(tumor heterogeneity)的存在使得分子指標出現捉摸不定的現象,導致應用上缺乏專一性。鑒於高轉移力表型(metastatic phenotype)的癌細胞在腫瘤群體中展現相對較低的黏附能力,這項特殊性質反而能作為引導癌症治療方式發展的突破點,進而減少肇因於轉移發生的死亡。近年來,從生物物理角度出發的分析逐漸蔚為新勢力,它主要偵測癌症侵襲-轉移級聯中(invasion-metastasis cascade),於特定階段時必然發生的細胞力學表型(mechanical phenotype),故較為穩定可靠。先前實驗室的研究發現,幾丁聚醣(chitosan)能透過調整環境酸鹼值而成功從異質群體裡分選出黏附能力相異的細胞,使之脫附並收集。且過程中幾丁聚醣上細胞外基質蛋白的脫附與腫瘤發生轉移之初,周圍基質蛋白瓦解的情形極為相似。因此,在細胞脫附相關的生醫研究上,以幾丁聚醣作為免標記平台頗具前瞻性。本論文將利用幾丁聚醣上的細胞脫附分析來針對癌症轉移評估之相關主題進行探討。 第一部分,嘗試從人類非小細胞肺癌細胞株A549中分選出癌幹細胞(cancer stem-like cell)次族群。所涉及之培養基酸鹼值變化範圍皆控制在pH 6.99至pH 7.65間。研究首先利用西方墨點法確認於微酸性環境下在幾丁聚醣上進行之短時間培養,對細胞幹性表現及上皮間質轉化(epithelial-to-mesenchymal transition)並無明顯調控和改變。隨著酸鹼值的提升,15.7±1.9% 的細胞於一個小時內迅速脫附離開幾丁聚醣基材。經由一系列試驗後發現,脫附細胞群相較於基材上之未脫附細胞母群,呈現出更強勢的癌幹細胞特性,諸如細胞多能性、上皮間質轉化能力、細胞侵襲和轉移潛力、抗藥性、群落形成能力與裸鼠異種移植瘤生成能力。除此之外,細胞黏附分子家族中的integrin β4在脫附細胞群裡的大量基因表現相較於未脫附細胞母群具顯著差異。進一步在兩群體內加入抑制integrin β4功能之中和抗體後,於第二輪的細胞脫附分析中,脫附細胞群的脫附率由34.2±3.9% 顯著下滑至12.2±0.4%;反之,在未脫附細胞母群裡並未產生明顯的影響。此一現象同時也意味著反覆進行多次細胞脫附實驗能夠完成癌幹細胞池的富集。最後,經螢光染色疊圖的驗證,兩群體等比例混和並回種於幾丁聚醣基材上,較強integrin β4螢光表現的細胞於脫附實驗後便幾乎消失在顯微鏡視野下。此一研究證實了利用癌細胞的黏附異質性可於酸鹼應答幾丁聚醣上將A549之癌幹細胞篩選出來,且此過程是在integrin β4的驅動下完成。 第二部分,嘗試利用酸鹼應答幾丁聚醣上所得之細胞脫附率將癌細胞侵襲能力參數化。本研究選擇帶有異常ErbB受體訊號的非小細胞肺癌PC9及乳癌BT474細胞株,並採用已獲FDA核准之gefitinib作為標靶治療藥物。研究首先由細胞活性曲線圖找出gefitinib對各細胞株的最佳工作濃度,同時建立癌細胞抑制模型,再透過生物分析如ErbB相關訊號、細胞運動和侵襲能力以及異種移植瘤生成能力的衰退與減弱,驗證該模型的成功建立。接著從幾丁聚醣上細胞脫附分析結果可知,細胞脫附率會隨著抑制後癌化程度的衰退而同步消長。此外,反向利用人類轉化生長因子(transforming growth factor-β1)於頭頸癌、肺癌、肝癌、子宮頸癌、乳癌和大腸直腸癌等細胞株,分別誘導細胞進行上皮間質轉化,發現細胞脫附率亦隨癌化程度增加而提高。另一方面,在PC9及BT474細胞膜上受gefitinib抑制而顯著影響脫附能力之特定integrin,經蛋白陣列搭配抗體阻斷法(antibody blockade)得到驗證,而此結果最後也與免疫螢光染色具一致性。此一研究證實了於幾丁聚醣上所得之重要生醫參數-細胞脫附率,能作為量測癌細胞轉移潛力的工具並轉譯為個體反應以評估預後及藥物治療效果。 本論文使用幾丁聚醣作為免標記平台,以調控培養基酸鹼值的溫和手法成功揭露細胞脫附力與癌症侵襲之間的關聯性,同時這種採以生物物理為切入點的對策不僅拓展了生醫材料的應用性,也為癌症醫學領域向前邁出重要一步。 | zh_TW |
| dc.description.abstract | Metastasis is what proves fatal in cancer, not the primary tumor. Current approaches associated with metastatic assessment in the literature such as the cancer stem-like cell (CSLC) targeting and the prognostic judgment are primary by the employment of molecular biomarkers. However, the changeable molecular signature beneath the tumor heterogeneity results in an unsatisfactory specificity in practice. Given the low adhesive profile observed in the metastatic phenotype among heterogeneous cancer populations, this distinctive hierarchy holds a crucial breakthrough to shepherd the evolution of more refined treatment solutions against the cancer mortality that majorly caused by the metastasis. In the past decades, biophysical assays that have become a rising trend are focus on mechanical phenotyping at specific steps of the invasion-metastasis cascade. While molecular signaling network is diversified, capturing the mechanical features underlying metastasis is rather stable, compared to tracing the curious molecular biomarkers. Beneficial from its polycationic nature, the biopolymer chitosan enables cell adhesion selection from a miscellaneous population simply via pH adjustment and thereupon has the potential to serve as a label-free platform. Of most importance, the extra-cellular matrix (ECM) protein withdrawal on the de-protonated chitosan resembles the collapse of matrix components at the beginning of tumor invasion. Hence, chitosan is a promising candidate for solution realization of the biomedical demands associated with cell detachment. The purpose of the current dissertation is to apply cell detachment assays on chitosan for addressing the unsolved issues in cancer research. In chapter 2, the pH-dependent cell detachment assay (CDA) on chitosan was utilized as an alternative to isolating the stem-like subpopulation from non-small cell lung cancer (NSCLC) cell line A549. Manipulation of the medium pH was in the range between 6.99 and 7.65. The assay began with a short-term cell incubation on chitosan at pH 6.99 for 24 h. Immuno-blotting found no obvious regulation of cell pluripotency and epithelial-to-mesenchymal transition (EMT) at this period. As the culture medium pH elevated from 6.99 to 7.65, 15.7±1.9% of A549 rapidly detached from the chitosan substrate within an hour. Compared with their remaining high-adhesive counterpart, this subpopulation of cells with low adhesiveness exhibited superior CSLC hallmarks, including cell pluripotency, EMT potential, invasive and metastatic ability, therapeutic resistance, colony formation in vitro as well as nude mice xenograft in vivo for tumorigenicity. Subsequently, the integrin family of adhesion receptors was probed in the detached population and their adherent counterpart. From the genetic analyses, integrin β4 (ITGb4) in the detached population outstood among a subset of integrin subunits, in contrast to that in the adherent counterpart. These two populations were then subjected to the second round of CDA with and without the addition of ITGb4 neutralizing antibody. The acquired cell detachment ratio (CDR) indicated a drastic drop from 34.2±3.9% to 12.2±0.4% (p<.001) in the detached population, while there was no significant difference in the adherent population after experiencing functional inhibition of ITGb4. This phenomenon also implied that the enrichment of a CSLC pool may be achieved by multiple rounds of CDA. For further validation, those highly ITGb4-expressing cells were mostly absent in the field of vision following the detachment process as visualized by the fluorescence. To conclude, pH-responsive chitosan is capable of discriminating CSLC from A549 by adhesion heterogeneity and this process is driven by the ITGb4 on cell surfaces. In chapter 3, the CDR derived from pH-responsive chitosan was introduced for the parameterization of the cancer aggressiveness in cells harboring aberrant ErbB signals (NSCLC cell line PC9 and breast cancer cell line BT474). The FDA-approved drug gefitinib was administered as a selective epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor of the targeted therapy. Prior to applying the detachment assay on chitosan, gefitinib dosage was optimized in respective cell lines along with the identification of the drug-induced tumor regression by the attenuated ErbB-related signaling, the reduced migratory and invasive ability in vitro as well as the repressed tumor engraftment in nude mice. From the gathered results, the corresponding CDR acquired from the pH-dependent detachment process goes synchronously with the extent of tumor regression in response to the medication. Inversely, the elevated CDR to an advanced malignancy also validated by the employment of EMT inducer transforming growth factor-beta 1 (TGF-β1) in several tumor cell lines, including hypopharyngeal (FaDu), hepatocellular (HepG2), lung (PC9), cervical (HeLa), breast (BT474), and colorectal carcinoma (HCT116). Moreover, the integrin protein array in company with the antibody blockade disclosed the definite integrin subunits in PC9 and BT474 respectively that mediate the detachment step in the presence of gefitinib. In the visualization of immuno-fluorescence, the differential expression of the dictated integrins in the drug-treated groups and the vehicle controls of both cell lines were collectively characterized. To conclude, the biometrical identifier CDR is capable of measuring metastatic potential and reasonably translate into the patient response for further prognostic judgment and drug efficacy assessment. The intimate correspondence between the cell detachment ability and cancer aggressiveness was successfully unveiled through the mild approach on pH-responsive chitosan as demonstrated in this dissertation. This biophysical-associated strategy not only expands the horizons of biomaterial-based applications but also represents a step forward in cancer medicine. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:26:09Z (GMT). No. of bitstreams: 1 U0001-0212202111144300.pdf: 8082024 bytes, checksum: 05bf7b9f5768c1993f77dab9493cb30d (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v Contents viii List of Abbreviation xi List of Tables xiii List of Figures xiv Chapter 1 Background 1 1.1 Biophysical hallmarks in cancer metastasis 1 1.2 Adhesion heterogeneity 3 1.3 pH-responsive chitosan 4 1.4 Objective and Strategy 6 Chapter 2 Adhesive heterogeneity for label-free cancer stem-like cell isolation 8 2.1 Introduction 8 2.1.1 Cancer stem-like cell 8 2.1.2 Current approaches for cancer stem-like cell isolation 8 2.1.3 Specific aim 9 2.2 Materials and Methods 11 2.2.1 Preparation of chitosan substrate 11 2.2.2 Medium preparation and cell culture 11 2.2.3 Cell detachment assay and cell detachment ratio 12 2.2.4 Lactate dehydrogenase colorimetric assay 12 2.2.5 Western blot analysis 13 2.2.6 Quantitative reverse transcription-polymerase chain reaction 14 2.2.7 Wound healing assay 14 2.2.8 Matrigel invasion assay 15 2.2.9 Drug-resistance study 15 2.2.10 Clonogenicity (in vitro tumorigenesis) 16 2.2.11 Tumorigenic capacity in nude mice xenograft 16 2.2.12 Immunofluorescent staining 17 2.2.13 Integrin-mediated functional inhibition 18 2.2.14 Statistical analysis 18 2.3 Results 19 2.3.1 The cell detachment assay 19 2.3.2 Maintenance of the native phenotype before pH-dependent cell detachment 20 2.3.3 Gene expression of self-renewal and epithelial-to-mesenchymal transition 20 2.3.4 Metastatic ability 21 2.3.5 Chemo-resistance 22 2.3.6 Tumor-initiating potential 23 2.3.7 The role of integrin in cancer stem-like cell isolation 24 2.4 Discussion 26 Chapter 3 A biometrical index for measuring cell aggressiveness 32 3.1 Introduction 32 3.1.1 Cancer prognosis judgment 32 3.1.2 Current approaches to define cancer progression 34 3.1.3 Specific aim 35 3.2 Materials and Methods 38 3.2.1 Preparation of chitosan substrate 38 3.2.2 Medium preparation and cell culture 38 3.2.3 Cell viability 39 3.2.4 Western blot analysis 39 3.2.5 Scratch assay 40 3.2.6 Matrigel invasion assay 41 3.2.7 In vivo tumorigenicity in nude mice 41 3.2.8 Cell detachment assay and cell detachment ratio 42 3.2.9 Detection of cell apoptosis 42 3.2.10 Integrin protein array 43 3.2.11 Integrin-mediated functional inhibition 43 3.2.12 Immunofluorescence 44 3.2.13 Statistical analysis 44 3.3 Results 46 3.3.1 Dose-response curves to gefitinib 46 3.3.2 Expression of ErbB signaling pathway 46 3.3.3 Migratory and invasive ability 47 3.3.4 Tumor engraftment in nude mice 47 3.3.5 Cell detachment assay on pH-responsive chitosan 48 3.3.6 Flow cytometry analysis for cell apoptosis 49 3.3.7 Effect of the integrin-mediated inhibition on the cell detachment ratio 50 3.4 Discussion 53 Chapter 4 4.1 Highlights and Conclusion 60 4.2 Perspective 62 References 64 Tables 80 Figures 87 | |
| dc.language.iso | en | |
| dc.subject | 免標記平台 | zh_TW |
| dc.subject | 預後評估 | zh_TW |
| dc.subject | 整聯蛋白 | zh_TW |
| dc.subject | 細胞脫附率 | zh_TW |
| dc.subject | 癌幹細胞 | zh_TW |
| dc.subject | 細胞黏附力 | zh_TW |
| dc.subject | 酸鹼應答幾丁聚醣 | zh_TW |
| dc.subject | Cell adhesion strength | en |
| dc.subject | Integrin | en |
| dc.subject | Prognostic judgment | en |
| dc.subject | Cancer stem-like cell | en |
| dc.subject | Cell detachment ratio | en |
| dc.subject | Label-free platform | en |
| dc.subject | pH-responsive chitosan | en |
| dc.title | 聚焦於黏附異質性:探討幾丁聚醣作為酸鹼應答平台應用於癌症醫學之研究 | zh_TW |
| dc.title | Focusing on the adhesion heterogeneity: the study of chitosan as a pH-responsive platform in cancer medicine | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-1554-7482 | |
| dc.contributor.oralexamcommittee | 黃琮瑋(Tsung-Wei Huang),鄭乃禎(Nai-Chen Cheng),王至弘(Jyh-Horng Wang),梁祥光(Hsiang-Kuang Tony Liang),黃義侑(Yi-You Huang) | |
| dc.subject.keyword | 酸鹼應答幾丁聚醣,細胞黏附力,免標記平台,細胞脫附率,癌幹細胞,預後評估,整聯蛋白, | zh_TW |
| dc.subject.keyword | pH-responsive chitosan,Cell adhesion strength,Label-free platform,Cell detachment ratio,Cancer stem-like cell,Prognostic judgment,Integrin, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU202104503 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-12-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-04-26 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0212202111144300.pdf | 7.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
