Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85833
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋孔彬zh_TW
dc.contributor.advisorKung-Bin Sungen
dc.contributor.author張祐祥zh_TW
dc.contributor.authorYu-Hsiang Changen
dc.date.accessioned2023-03-19T23:25:49Z-
dc.date.available2024-04-03-
dc.date.copyright2022-03-07-
dc.date.issued2021-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Pernow, J., et al., Red blood cell dysfunction: a new player in cardiovascular disease. Cardiovascular Research, 2019. 115(11): p. 1596-1605.
2. Sacks, D.B., Measurement of hemoglobin A(1c): a new twist on the path to harmony. Diabetes Care, 2012. 35(12): p. 2674-80.
3. Satoh, K., et al., Recent Advances in the Understanding of Thrombosis. Arteriosclerosis Thrombosis and Vascular Biology, 2019. 39(6): p. E159-E165.
4. Hsu, W.C., et al., Tomographic diffractive microscopy of living cells based on a common-path configuration. Optics Letters, 2014. 39(7): p. 2210-2213.
5. Memmolo, P., et al., Hydrodynamic Red Blood Cells Deformation by Quantitative Phase Microscopy and Zernike Polynomials. Frontiers in Physics, 2019. 7.
6. Mugnano, M., et al., Label-Free Optical Marker for Red-Blood-Cell Phenotyping of Inherited Anemias. Analytical Chemistry, 2018. 90(12): p. 7495-7501.
7. Merola, F., et al., Tomographic flow cytometry by digital holography. Light-Science & Applications, 2017. 6.
8. Byrnes, J.R. and A.S. Wolberg, Red blood cells in thrombosis. Blood, 2017. 130(16): p. 1795-1799.
9. Park, H.S., et al., Invited Article: Digital refocusing in quantitative phase imaging for flowing red blood cells. Apl Photonics, 2018. 3(11).
10. Reichel, F., et al., High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability. Biophysical Journal, 2019. 117(1): p. 14-24.
11. Tomaiuolo, G., Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics, 2014. 8(5).
12. Renoux, C., et al., Impact of surface-area-to-volume ratio, internal viscosity and membrane viscoelasticity on red blood cell deformability measured in isotonic condition. Scientific Reports, 2019. 9.
13. Ates, A.H., et al., Association of red Cell Distribution width with Characteristics of Coronary Atherosclerotic Plaques as Detected by Computed Tomography Angiography. European Journal of Therapeutics, 2019. 25(1): p. 58-63.
14. Danese, E., G. Lippi, and M. Montagnana, Red blood cell distribution width and cardiovascular diseases. Journal of Thoracic Disease, 2015. 7(10): p. E402-E411.
15. Weisel, J.W. and R.I. Litvinov, Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost, 2019. 17(2): p. 271-282.
16. Ford, J., Red blood cell morphology. Int J Lab Hematol, 2013. 35(3): p. 351-7.
17. Korber, C., et al., Red blood cell morphology in patients with beta-thalassemia minor. Laboratoriumsmedizin-Journal of Laboratory Medicine, 2017. 41(1): p. 49-52.
18. Zamora, E.A. and C.A. Schaefer, Hereditary Spherocytosis, in StatPearls. 2021: Treasure Island (FL).
19. Chabner, D.-E., The language of medicine. 2017.
20. NeamTu, M.C., et al., The prevalence of the red cell morphology changes in patients with type 2 diabetes mellitus. Rom J Morphol Embryol, 2015. 56(1): p. 183-9.
21. Buys, A.V., et al., Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovascular Diabetology, 2013. 12.
22. Rowley, T., Flow Cytometry - A Survey and the Basics. Materials and Methods, 2012.
23. Marczak, A. and Z. Jozwiak, The interaction of DNR and glutaraldehyde with cell membrane proteins leads to morphological changes in erythrocytes. Cancer Letters, 2008. 260(1-2): p. 118-126.
24. Marczak, A., M. Walczak, and Z. Jozwiak, The combined effect of IDA and glutaraldehyde on the erythrocyte membrane proteins. International Journal of Pharmaceutics, 2007. 335(1-2): p. 154-162.
25. Park, Y.K., et al., Metabolic remodeling of the human red blood cell membrane. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(4): p. 1289-1294.
26. Hur, J., et al., Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques. Scientific Reports, 2017. 7.
27. Lee, S., et al., Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Scientific Reports, 2017. 7.
28. Paul, R., et al., Quantitative absorption imaging of red blood cells to determine physical and mechanical properties. Rsc Advances, 2020. 10(64): p. 38923-38936.
29. Oshiro, I., T. Takenaka, and J. Maeda, New Method for Hemoglobin Determination by Using Sodium Lauryl Sulfate (Sls). Clinical Biochemistry, 1982. 15(2): p. 83-88.
30. Valavi, E., M.J.A. Ansari, and K. Zandian, How to Reach Rapid Diagnosis in Sickle Cell Disease? Iranian Journal of Pediatrics, 2010. 20(1): p. 69-74.
31. Yashunsky, V., et al., Surface plasmon-based infrared spectroscopy for cell biosensing. Journal of Biomedical Optics, 2012. 17(8).
32. Jin, Y.L., et al., Refractive index measurement for biomaterial samples by total internal reflection. Physics in Medicine and Biology, 2006. 51(20): p. N371-N379.
33. Mirjam Schürmann, J.S., Paul Müller, Chii J. Chan, Andrew E. Ekpenyong, Kevin J. Chalut, Jochen Guck,, Chapter 9 - Refractive index measurements of single, spherical cells using digital holographic microscopy. Methods in Cell Biology, 2015. 125: p. 143-159.
34. Charriere, F., et al., Characterization of microlenses by digital holographic microscopy. Applied Optics, 2006. 45(5): p. 829-835.
35. Iwai, H., et al., Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Optics Letters, 2004. 29(20): p. 2399-2401.
36. Popescu, G., et al., Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells Molecules and Diseases, 2008. 41(1): p. 10-16.
37. Micó, V., J. Garcia-Monreal, and Z. Zalevsky, Quantitative phase imaging by common-path interferometric microscopy: application to super-resolved imaging and nanophotonics. Journal of Nanophotonics, 2009. 3(1): p. 031780.
38. Shaked, N.T., et al., Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells. Optics Express, 2009. 17(18): p. 15585-15591.
39. Popescu, G., et al., Diffraction phase microscopy for quantifying cell structure and dynamics. Optics Letters, 2006. 31(6): p. 775-777.
40. Guo, R.L., et al., Quantitative phase imaging by wide-field interferometry with variable shearing distance uncoupled from the off-axis angle. Optics Express, 2020. 28(4): p. 5617-5628.
41. Deng, D.N., et al., Off-axis tilt compensation in common-path digital holographic microscopy based on hologram rotation. Optics Letters, 2017. 42(24): p. 5282-5285.
42. Choi, W., et al., Tomographic phase microscopy. Nature Methods, 2007. 4(9): p. 717-719.
43. Su, J.W., et al., Digital holographic microtomography for high-resolution refractive index mapping of live cells. Journal of Biophotonics, 2013. 6(5): p. 416-424.
44. Barer, R., Refractometry and Interferometry of Living Cells. Journal of the Optical Society of America, 1957. 47(6): p. 545-556.
45. Mazarevica, G., T. Freivalds, and A. Jurka, Properties of erythrocyte light refraction in diabetic patients. Journal of Biomedical Optics, 2002. 7(2): p. 244-247.
46. Lee, H.J., et al., Three-Dimensional Shapes and Cell Deformability of Rat Red Blood Cells during and after Asphyxial Cardiac Arrest. Emerg Med Int, 2019. 2019: p. 6027236.
47. Park, H.S., et al., Quantitative phase imaging of erythrocytes under microfluidic constriction in a high refractive index medium reveals water content changes. Microsystems & Nanoengineering, 2019. 5.
48. Dannhauser, D., et al., Label-free analysis of mononuclear human blood cells in microfluidic flow by coherent imaging tools. Journal of Biophotonics, 2017. 10(5): p. 683-689.
49. Liu, C.G., S. Marchesini, and M.K. Kim, Quantitative phase-contrast confocal microscope. Optics Express, 2014. 22(15): p. 17830-17839.
50. Bedrossian, M., et al., Enhancing final image contrast in off-axis digital holography using residual fringes. Optics Express, 2020. 28(11): p. 16764-16771.
51. Ahmad, A., et al. Reduction of spatial phase noise in the laser based digital holographic microscopy for the quantitative phase measurement of biological cells. in Advances in Microscopic Imaging. 2017. Munich: Optical Society of America.
52. Abdelsalam, D.G. and T. Yasui, High brightness, low coherence, digital holographic microscopy for 3D visualization of an in-vitro sandwiched biological sample. Applied Optics, 2017. 56(13): p. F1-F6.
53. Zheng, C., et al., Diffraction phase microscopy realized with an automatic digital pinhole. Optics Communications, 2017. 404: p. 5-10.
54. Gillespie, A.H. and A. Doctor, Red Blood Cell Contribution to Hemostasis. Frontiers in Pediatrics, 2021. 9.
55. Patel, Y.M., et al., An inexpensive microfluidic device for three-dimensional hydrodynamic focusing in imaging flow cytometry. Biomicrofluidics, 2020. 14(6).
56. Bhattacharya, S., et al., Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of Microelectromechanical Systems, 2005. 14(3): p. 590-597.
57. Herraez, M.A., et al., Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Applied Optics, 2002. 41(35): p. 7437-7444.
58. Tayal, S., et al., Speckle-free quantitative phase and amplitude imaging using common-path lateral shearing interference microscope with pseudo-thermal light source illumination. Optik, 2019. 180: p. 991-996.
59. Farrokhi, H., et al., Speckle reduction in quantitative phase imaging by generating spatially incoherent laser field at electroactive optical diffusers. Optics Express, 2017. 25(10): p. 10791-10800.
60. Zhao, H., et al., ICNet for Real-Time Semantic Segmentation on High-Resolution Images. European Conference on Computer Vision (ECCV), 2018.
61. P. Langehanenberg, B.K., G. von Bally,, Autofocus algorithms for digital-holographic microscopy. Optics in Life Science, 2007. Vol. 6633.
62. Fonseca, E.S.R., et al., Comparative analysis of autofocus functions in digital in-line phase-shifting holography. Applied Optics, 2016. 55(27): p. 7663-7674.
63. Mohammed, S.K., et al., Quality assessment of refocus criteria for particle imaging in digital off-axis holography. Applied Optics, 2017. 56(13): p. F158-F166.
64. Kaye, E.A., et al., Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound. Medical Physics, 2012. 39(10): p. 6254-6263.
65. P. Müller, M.S., J. Guck,, The theory of diffraction tomography. arXiv : 1507.00466, 2015.
66. Ding, C. and Z. Tan, Improved longitudinal resolution in tomographic diffractive microscopy with an ellipsoidal mirror. Journal of Microscopy, 2016. 262(1): p. 33-39.
67. Velikina, J., S. Leng, and G.-H. Chen, Limited view angle tomographic image reconstruction via total variation minimization. Medical Imaging. Vol. 6510. 2007: SPIE.
68. Abay, A., et al., Glutaraldehyde - A Subtle Tool in the Investigation of Healthy and Pathologic Red Blood Cells. Frontiers in Physiology, 2019. 10.
69. Sutera, S.P. and M.H. Mehrjardi, Deformation and Fragmentation of Human Red Blood-Cells in Turbulent Shear-Flow. Biophysical Journal, 1975. 15(1): p. 1-10.
70. Deuling, H.J. and W. Helfrich, Red Blood-Cell Shapes as Explained on Basis of Curvature Elasticity. Biophysical Journal, 1976. 16(8): p. 861-868.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85833-
dc.description.abstract作為人體氣體與調控循環系統的核心,紅血球的三維圓盤形狀、兩側表面凹陷程度、血紅素狀態甚至細胞膜表面的黏彈性,都與其物質攜帶交換的能力息息相關。因此可以推論出當其中出現變化勢必會伴隨著相關疾病的存在,像是貧血、糖尿病等患者都有異常血球的出現。臨床上針對紅血球的型態檢驗方式主要是血液抹片,但此方式在判定上較為緩慢且主觀,而在黏彈性等資訊上則需利用滲透壓梯度細胞計數儀等專業器材獲得。因此需多相關研究都提出不同的三維血球分析方式,包含在更高通量下獲取資訊,或是以旋轉樣本或旋轉光源方式拍攝紅血球三維資訊。本文整合並提升這些方式中的技術,達到高通量又能定量分析的三維紅血球量測技術。
定量相位顯微術作為一種免標記技術,可以動態的將樣本厚度及內部物質折射率資訊定量的記錄在干涉影像中,而這樣的技術去除了人為觀察,並可將其中所有參數以數值方式定量記錄。在先前文獻中即提出利用此技術結合微流道建立出高通量斷層繞射顯微系統以提升拍攝通量,並實現三維影像的擷取。建立在此技術之上,本研究將其最佳化並建立高通量斷層繞射顯微系統。在拍攝通量上可達到每分鐘43顆紅血球的拍攝速度,而為使處理速度同樣提升,利用深度學習模型進行影像分割並以圖形處理器進行後續運算上的加速。在三維重建流程中,本實驗提升澤爾尼克多項式擬合角度的正確性,並修正三維重建中資訊缺失的問題。文中將此技術應用在加入不同濃度戊二醛,來模擬血球型態異常之紅血球與一般情況之對比分析。在結果上平均物質質量、光學體積、細胞膜表面黏彈性、大小、體積、血球表面凹陷程度、球型率等變化,皆符合假設與文獻結果且都具有顯著差異。由此可以預期此技術在紅血球相關疾病或是觀察藥物影響的應用上,能以定量且快速的優勢輔助臨床檢驗。
zh_TW
dc.description.abstractAs the central cell of the gas and circulatory system regulation, the characteristic of red blood cells includes disk shape, biconcave geometry, hemoglobin concentration, or even membrane fluctuation all related to the ability to carry and exchange. Therefore, we can speculate that the variation of that property will accompany the disease. For instance, in anemia, diabetes patients have been found to have abnormal RBCs. In clinical, the analysis of RBCs 3D features mainly uses blood smear, but the process is slow and subjective and the viscoelasticity of red blood cells requires professional equipment to measure, such as osmotic gradient ektacytometry. Hence, many studies have proposed different methods to analyze RBC, including higher throughput or captured 3D information by rotating incident light or sample. In this article, we have incorporated some of these techniques to achieve higher throughput while quantitatively measuring RBC.
Digital holographic microscopy is a label-free method that can dynamically and quantitatively encode sample thickness and inner substance into an interferogram. This method records all parameters in numerical values to eliminate subjective judgments. In this study, we combined a digital holographic microscope with a microfluidic device to construct optical diffraction tomography to improve capture throughput. The results show that with this setting, 43 RBCs can be captured per minute. As throughput increases, this article uses deep learning and GPU to accelerate processing. For 3D RBC reconstruction, this research optimizes the Zernike polynomial angle estimation algorithm and minimizes the problems caused by the missing angle problem. Finally, this setting was applied to observe red blood cells induced by different amounts of glutaraldehyde to simulate the comparison between abnormal red blood cells and normal red blood cells. The result shows that mean mass density, optical volume, membrane fluctuation, size, volume, sphericity, and concavity are all in agreement with the hypothesis and previous research significantly. From the result, this research is expected to use quantitative and rapid advantages to assist clinical testing on other RBC-related diseases or measure the impact of drugs.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:25:49Z (GMT). No. of bitstreams: 1
U0001-1702202222242900.pdf: 8880097 bytes, checksum: d1bde711cd3f4fd155fdf0b4dfaf66ee (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xiii
第一章:導論 1
1.1 研究背景 1
1.2 研究動機及目標 2
第二章:文獻回顧 5
2.1 紅血球與其疾病成因 5
2.2 紅血球關聯疾病 6
2.2.1 心血管疾病與紅血球關聯性 6
2.2.2 貧血 6
2.2.3 糖尿病與紅血球關聯 8
2.3 血球分析技術 8
2.3.1 全血形態分析技術 8
2.3.2 單顆血球形態分析技術 10
2.3.3 臨床紅血球檢測方式與相關參數 12
2.4 定量相位顯微術 13
2.4.1 全像素顯微鏡(digital holographic microscopy, DMH) 13
2.4.2 原理及回顧 14
2.4.3 光學繞射斷層顯微鏡 16
2.5 以定量相位顯微術分析紅血球 18
第三章:方法與結果 23
3.1 光學架構與驗證 23
3.1.1 光學架構 23
3.1.2 系統放大率 25
3.1.3 視野大小 26
3.1.4 系統側向解析度 26
3.1.5 干涉條紋對比度 27
3.1.6 時間與空間相位雜訊 28
3.2 微流道裝置 30
3.2.1 流體內的血球運動 30
3.2.2 流體動力聚焦(hydrodynamic focusing) 31
3.2.3 微流道晶片製備 31
3.2.4 流體注射幫補 33
3.2.5 微流道裝置設置流程 34
3.3 相位回復與驗證 34
3.3.1 相位回復 34
3.3.1.1 相位回復方法 34
3.3.1.2 相位回復結果 37
3.3.2 相位值驗證 38
3.3.2.1 光學架構驗證樣本製備 38
3.3.2.2 相位值驗證 39
3.3.2.3 微流道內樣本相位值驗證 39
3.3.3 相位值雜訊探討 40
3.3.3.1 消除光斑 40
3.3.3.2 相機比較 41
3.4 相位影像分割與追蹤 43
3.5 數值方法重新對焦 46
3.5.1 重新對焦原理與方法 46
3.5.2 重新對焦結果 48
3.6 轉動與滾動角度估算 48
3.6.1 角度估算方法 48
3.6.1.1 Z軸轉動角度校正 49
3.6.1.2 Zernike fitting 50
3.6.1.3 角度對應 52
3.6.2 角度估算結果 53
3.6.2.1 轉動角度 53
3.6.2.2 滾動角度 54
3.7 三維重建與角度缺失問題修正 56
3.7.1 原理與方法 56
3.7.1.1 傅立葉繞射理論 56
3.7.1.2 角度缺失問題(missing cone problem) 58
3.7.2 計算結果 60
3.7.2.1 三維重建結果 60
3.7.2.2 Missing cone problem平滑結果 61
3.8 影像二值化與形態處理 62
3.9 誤差分析 63
3.9.1 角度估算誤差 63
3.9.2 三維重建誤差 66
第四章:應用 69
4.1 驗證及實驗樣本製備 69
4.1.1 正常與疾病血球樣本製備 69
4.1.2 戊二醛處裡樣本製備 69
4.2 參數分析 70
 幾何特性 70
 內部物質組成 73
 細胞膜表面黏彈性 73
4.3 紅血球結果分析 74
4.3.1 戊二醛作用結果比較 74
4.3.2 疾病血球比較 77
第五章:結論與未來展望 79
5.1 結論與討論 79
5.2 未來展望 81
參考文獻 83
-
dc.language.isozh_TW-
dc.subject斷層繞射顯微鏡zh_TW
dc.subject紅血球zh_TW
dc.subject高通量zh_TW
dc.subject免標記zh_TW
dc.subject澤爾尼克多項式擬合zh_TW
dc.subject三維重建zh_TW
dc.subjectlabel-freeen
dc.subjectZernike polynomial fittingen
dc.subjecthigh throughputen
dc.subjectoptical diffraction tomographyen
dc.subjectRed blood cellen
dc.subject3D reconstructionen
dc.title高通量免標定光學繞射斷層掃描術於紅血球三維型態之分析zh_TW
dc.titleLabel-free Characterization of Red Blood Cell 3D Morphology with High-Throughput Optical Diffraction Tomographyen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃念祖;駱遠zh_TW
dc.contributor.oralexamcommitteeNien-Tsu Huang;Yuan Luoen
dc.subject.keyword紅血球,高通量,免標記,斷層繞射顯微鏡,澤爾尼克多項式擬合,三維重建,zh_TW
dc.subject.keywordRed blood cell,high throughput,label-free,optical diffraction tomography,Zernike polynomial fitting,3D reconstruction,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202200599-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-03-04-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2024-03-31-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf8.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved