Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85831
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復(Cheng-Fu Chou)
dc.contributor.authorChih-Chung Chouen
dc.contributor.author周執中zh_TW
dc.date.accessioned2023-03-19T23:25:45Z-
dc.date.copyright2022-04-26
dc.date.issued2022
dc.date.submitted2022-03-04
dc.identifier.citationBay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In European conference on computer vision, pages 404–417. Springer. Biber, P. and Strasser, W. (2003). The Normal Distributions Transform: A New Approach to Laser Scan Matching. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2743–2748. Booij, O. and Zivkovic, Z. (2009). The planar two point algorithm. Technical report, Intelligent Systems Laboratory Amsterdam, University of Amsterdam. Brockett, R. W. (1984). Robotic manipulators and the product of exponentials formula. In Mathe- matical theory of networks and systems, pages 120–129. Springer. Carlevaris-Bianco, N., Kaess, M., and Eustice, R. M. (2014). Generic node removal for factor-graph SLAM. IEEE Transactions on Robotics, 30(6):1371–1385. Chou, C. C. and Wang, C.-C. (2015). 2-point ransac for scene image matching under large viewpoint changes. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 3646–3651. IEEE. Chum, O. and Matas, J. (2005). Matching with prosac-progressive sample consensus. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 220–226. IEEE. Cvisˇic ́,I.,C ́esic ́,J.,Markovic ́,I.,andPetrovic ́,I.(2018).SOFT-SLAM:Computationallyefficient stereo visual simultaneous localization and mapping for autonomous unmanned aerial vehicles. Journal of Field Robotics, 35(4):578–595. Cvisic, I. and Petrovic, I. (2015). Stereo odometry based on careful feature selection and tracking. In Proceedings of 2015 European Conference on Mobile Robots. Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6). Dellaert, F. and Kaess, M. (2006). Square root sam: Simultaneous localization and mapping via square root information smoothing. The International Journal of Robotics Research, 25(12):1181–1203. Deschaud, J. (2018). IMLS-SLAM: Scan-to-model matching based on 3D data. International Conference on Robotics and Automation, pages 2480–2485. Eberly, D. (2000). Intersection of ellipses. Geometric Tools, 200:1998–2008. Engel, J., Scho ̈ps, T., and Cremers, D. (2014). LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the European Conference on Computer Vision, pages 834–849. Fischler, M. A. and Bolles, R. C. (1981a). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395. Fischler, M. A. and Bolles, R. C. (1981b). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of ACM, 24:381–395. Forster, C., Carlone, L., Dellaert, F., and Scaramuzza, D. (2015). IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation. In Proceedings of Robotics Science and Systems. Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo: Fast semi-direct monocular visual odome- try. In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages 15–22. IEEE. Geiger, A., Moosmann, F., Car, O., and Schuster, B. (2012). Automatic camera and range sen- sor calibration using a single shot. In 2012 IEEE International Conference on Robotics and Automation, pages 3936–3943. Goedeme ́,T.,Tuytelaars,T.,VanGool,L.,Vanacker,G.,andNuttin,M.(2005). Featurebased omnidirectional sparse visual path following. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pages 1806–1811. IEEE. Graeter, J., Wilczynski, A., and Lauer, M. (2018). LIMO: Lidar-monocular visual odometry. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Grupp, M. (2017). evo: Python package for the evaluation of odometry and SLAM. https://github.com/MichaelGrupp/evo.87 Hess, W., Kohler, D., Rapp, H., and Andor, D. (2016). Real-time loop closure in 2D LIDAR SLAM. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 1271– 1278. Hsiung, J., Hsiao, M., Westman, E., Valencia, R., and Kaess, M. (2018). Information sparsification in visual-inertial odometry. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1146–1153. IEEE. Jeong, J., Cho, Y., Shin, Y.-S., Roh, H., and Kim, A. (2019). Complex urban dataset with multi- level sensors from highly diverse urban environments. The International Journal of Robotics Research, 38(6):642–657. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., and Dellaert, F. (2012). isam2: In- cremental smoothing and mapping using the bayes tree. The International Journal of Robotics Research, 31(2):216–235. Kaess, M., Ranganathan, A., and Dellaert, F. (2008). isam: Incremental smoothing and mapping. IEEE Transactions on Robotics, 24(6):1365–1378. Kitt, B., Geiger, A., and Lategahn, H. (2010). Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme. In Intelligent Vehicles Symposium (IV). Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small ar workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on, pages 225–234. IEEE. Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). g2o: A general framework for graph optimization. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 3607–3613, Shanghai, China. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and Furgale, P. (2015). Keyframe-based visual– inertial odometry using nonlinear optimization. The International Journal of Robotics Re- search, 34(3):314–334. Levinson, J. and Thrun, S. (2013). Automatic online calibration of cameras and lasers. Liu, Y., Feng, R., and Zhang, H. (2015). Keypoint matching by outlier pruning with consensus constraint. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 5481–5486. IEEE. Lourakis, M. I. and Argyros, A. A. (2009). Sba: A software package for generic sparse bundle adjustment. ACM Transactions on Mathematical Software, 36(1):2. Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the International Conference on Computer Vision, pages 1150–1157. Lu, F. and Milios, E. (1997). Robot pose estimation in unknown environments by matching 2D range scans. Journal of Intelligent and Robotic Systems, 18(3):249–275. Mahony, R., Hamel, T., and Pflimlin, J.-M. (2008). Nonlinear complementary filters on the special orthogonal group. IEEE Transactions on Automatic Control, 53(5):1203–1218. Majdik, A. L., Albers-Schoenberg, Y., and Scaramuzza, D. (2013). Mav urban localization from google street view data. In IEEE/RSJ International Conference on Intelligent Robots and Sys- tems (IROS), pages 3979–3986. Moisan, L., Moulon, P., and Monasse, P. (2012). Automatic homographic registration of a pair of images, with a contrario elimination of outliers. Image Processing On Line, 2:56–73. Morel, J.-M. and Yu, G. (2009). Asift: A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2(2):438–469. Mourikis, A. I. and Roumeliotis, S. I. (2007). A multi-state constraint kalman filter for vision-aided inertial navigation. In Robotics and automation, 2007 IEEE international conference on, pages 3565–3572. IEEE. Mourikis, A. I. and Roumeliotis, S. I. (2007). A multi-state constraint Kalman filter for vision- aided inertial navigation. In Proceedings 2007 IEEE International Conference on Robotics and Automation, pages 3565–3572. Mur-Artal, R., Montiel, J., and Tardos, J. D. (2015). ORB-SLAM: a versatile and accurate monoc- ular SLAM system. IEEE Transactions on Robotics, 31(5):1147–1163. Mur-Artal, R. and Tardos, J. D. (2016). ORB-SLAM2: an open-source SLAM system for monocu- lar, stereo and RGB-D cameras. arXiv preprint arXiv:1610.06475. Niste ́r, D. (2004). An efficient solution to the five-point relative pose problem. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(6):756–770. Niste ́r, D. (2005). Preemptive ransac for live structure and motion estimation. Machine Vision and Applications, 16(5):321–329. Nister, D., Naroditsky, O., and Bergen, J. R. (2006). Visual odometry for ground vehicle applica- tions. Journal of Field Robotics, 23(1):3–20. Ortin, D. and Montiel, J. (2001). Indoor robot motion based on monocular images. Robotica, 19(03):331–342. Pandey, G., McBride, J., Savarese, S., and Eustice, R. (2014). Automatic extrinsic calibration of vision and lidar by maximizing mutual information. Journal of Field Robotics, 32. Qin, T., Li, P., and Shen, S. (2018). VINS-Mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020. Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). Orb: An efficient alternative to sift or surf. In 2011 International conference on computer vision, pages 2564–2571. IEEE. Scaramuzza, D. (2011a). 1-point-ransac structure from motion for vehicle-mounted cameras by exploiting non-holonomic constraints. International Journal of Computer Vision, 95(1):74–85. Scaramuzza, D. (2011b). Performance evaluation of 1-point-ransac visual odometry. Journal of Field Robotics, 28(5):792–811. Scaramuzza, D. and Fraundorfer, F. (2011). Visual Odometry: Part I – The First 30 Years and Fundamentals. IEEE Robotics and Automation Magazine, 18(4):80–92. Scott, T., Morye, A., Pinies, P., Paz, L., Posner, I., and Newman, P. (2016). Choosing a time and place for calibration of lidar-camera systems. pages 4349–4356. Segal, A., Ha ̈hnel, D., and Thrun, S. (2009). Generalized-ICP. Shan, T., Englot, B., Meyers, D., Wang, W., Ratti, C., and Rus, D. (2020). Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and mapping. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5135–5142. IEEE. Shan, T., Englot, B., Ratti, C., and Rus, D. (2021). Lvi-sam: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. arXiv preprint arXiv:2104.10831. Torr, P. and Zisserman, A. (1998). Robust computation and parametrization of multiple view relations. In Computer Vision, 1998. Sixth International Conference on, pages 727–732. IEEE. Torr, P. H. and Zisserman, A. (2000). Mlesac: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding, 78(1):138–156. Ye, H., Chen, Y., and Liu, M. (2019). Tightly coupled 3D lidar inertial odometry and mapping. In 2019 International Conference on Robotics and Automation (ICRA), pages 3144–3150. IEEE. Zhang, J., Kaess, M., and Singh, S. (2014). Real-time depth enhanced monocular odometry. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL. Zhang, J., Kaess, M., and Singh, S. (2016). On degeneracy of optimization-based state estimation problems. In IEEE International Conference on Robotics and Automation. Zhang, J. and Singh, S. (2014). LOAM: Lidar odometry and mapping in real-time. In Proceedings of the Robotics: Science and Systems Conference. Zhang, J. and Singh, S. (2015). Visual-lidar odometry and mapping: Low-drift, robust, and fast. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 2174– 2181. Zhang, J. and Singh, S. (2018). Laser–visual–inertial odometry and mapping with high robustness and low drift. Journal of Field Robotics, 35(8):1242–1264. Zisserman, R. H. A. (2004). Multiple view geometry in computer vision. Cambridge Univ Press. Zuo, X., Geneva, P., Lee, W., Liu, Y., and Huang, G. (2019). LIC-Fusion: LiDAR-inertial-camera odometry. Zuo, X., Yang, Y., Geneva, P., Lv, J., Liu, Y., Huang, G., and Pollefeys, M. (2020). LIC-Fusion 2.0: LiDAR-inertial-camera odometry with sliding-window plane-feature tracking. arXiv preprint arXiv:2008.07196.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85831-
dc.description.abstractSLAM(Simultaneous Localization And Mapping, 同時定位與建圖)技術是近代機器人系統的 核心技術之一。近年來,基於激光雷達的SLAM系統已經在多種應用場景展現出令人信服的 效果。另一方面,由於相機的低成本,輕量與節能特性,基於相機圖像的視覺SLAM方案在 攜帶式裝置與小型飛行器上仍是主流。然而,兩種方案皆有其侷限性:激光方案容易受到退 化情境的影響,例如在並缺乏形狀特徵的道路上的定位就表現不佳。相機方案則易受到光照 條件與環境中動態物體的影響,使其在臃堵場景下穩定性較差。 本篇工作致力於解決視覺與激光SLAM中的主要挑戰,並藉由緊耦合視覺與激光傳感器量 測的方式來進一步提升SLAM的準確性,效率及穩定性。在激光方面,本篇工作提出了強健 的激光回環檢測方法,它能比常用的視覺方案檢測到更多回環,並藉由分析SLAM圖模型的 方式來保證檢測正確率。為了同時維持SLAM的效率與精確度,本篇工作提出了GLF(General Lidar Factor)來將多個激光傳感器量測進行壓縮,這可以精簡地保存單次激光定位的資訊。 在視覺方面,本篇工作致力解決極端場景下的圖像匹配問題。視覺SLAM的精度依賴於找出 兩張圖像間的正確匹配特徵。雖然現存方法在輸入圖像為高頻且連續序列時基本能保證正確 性,但在有強烈光照,視角及場景組成變化下的圖像匹配仍是一開放性的難題。這也是 SLAM在真實世界應用中能提升效能的關鍵。 在本篇工作的結尾,我們提出了一新穎的方式來結合視覺與激光SLAM系統。現存工作大 多試圖用激光的距離量測來加強視覺SLAM,或者單純將視覺SLAM的運動估計作爲激光 SLAM的輸入使用。本篇工作提出緊耦合的視覺激光SLAM(Tightly-Coupled Visual Lidar SLAM, TVL-SLAM)。在此系統中,視覺與激光SLAM的前端特徵提取和狀態估計是獨立運 作的,但是視覺與激光量測會在後端進行協同優化來估計整個系統的狀態。此系統是基於開 源的ORB-SLAM2視覺系統,及自行研發的激光SLAM系統進行融合。雖然作為基礎的單傳感 器SLAM本身都只有平均水準的表現,但融合後的系統明顯優於現存最先進的SLAM方法, 在自動駕駛的KITTI訓練數據上達到了0.52%的相對誤差,並在線上競賽的測試集達到了 0.56%的相對誤差。zh_TW
dc.description.abstractSLAM(Simultaneous Localization And Mapping) is an essential element for modern robotic systems. In recent years, Lidar-based SLAM solutions are already proved to be promising in many practical applications. On the other hand, because of its low cost, light weight and power consumption, camera-based SLAM solution is highly preferred for portable devices and MAV(Micro Aerial Vehicle) platforms. Nevertheless, both solutions have their draw- backs. Lidar-based solution suffers from the shape-degenerate scenarios, e.g. it is easy to fail on long and straight roads with very few geometry features. Camera-based solution is weak to illumination changes and moving objects, and exhibits poor robustness in crowded scenarios. This thesis aims to tackle the major challenges of the visual and lidar SLAM, then further im- prove the accuracy, efficiency and robustness of SLAM system by tightly coupling the visual and lidar measurements. For the lidar side, we proposed a robust lidar loop detection approach, which can detect much more loops than the vision-only methods, and guaranteed the correctness by ana- lyzing the SLAM graph model. To maintain both the efficiency and accurancy for large-scale SLAM tasks, a general lidar factor(GLF) is proposed to compress a bunch of lidar residuals into one resid- ual, while it preserves the information of the original lidar registration. For the vision side, this work aims to solve the image matching problem under extremely high outlier measurements. The visual SLAM accuracy largely depends on finding correct correspondences between two images. Though most state-of-art approaches can guarantee robust matching for consecutive and high-frequency im- ages, the accurate feature matching for images with large viewpoint, illumination and composition differences is still a open question. Which is significant for improving the robustness and accuracy of visual SLAM in the real world. In the end, we investigate a novel way to integrate visual SLAM and lidar SLAM. Instead of enhancing visual odometry via lidar depths or visual odometry as the motion initial guess of lidar odometry, we propose tightly-coupled visual-lidar SLAM (TVL-SLAM), in which the visual and lidar front-end are run independently and which incorporates all of the visual and lidar measurements in the backend optimizations. The visual-lidar SLAM system implemented in this work is based on the open-source ORB-SLAM2 and a lidar SLAM method with average performance, whereas the resulting visual-lidar SLAM clearly outperforms existing visual/lidar SLAM approaches, achieving 0.52% error on KITTI training sequences and 0.56% error on testing sequences.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:25:45Z (GMT). No. of bitstreams: 1
U0001-0303202216040400.pdf: 37862726 bytes, checksum: ae9bc5c0d86071e40baeda873dbb0180 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsABSTRACT.......................................... ii LISTOFFIGURES ...................................... v LISTOFTABLES....................................... vii CHAPTER1. Introduction.................................. 1 1.1. Motivations...................................... 1 CHAPTER2. Related Works ................................ 8 2.1. ImageMatching ................................... 8 2.2. Visual SLAM and Visual odometry.......................... 10 2.3. Visual-LidarSLAM ................................. 11 CHAPTER3. SLAM system overview............................ 14 3.1. System Overview................................... 14 3.1.1. SLAM system diagram ............................. 14 3.1.2. Variable and coordinate notation ........................ 17 CHAPTER4. Efficient lidar SLAM with MHT loop detection . . . . . . . . . . . . . . . . 18 4.0.1. Lidar odometry ................................. 18 4.0.2. Lidar loop detection............................... 19 4.0.3. Experimental results............................... 23 CHAPTER5. Image Matching under Large Viewpoint Changes . . . . . . . . . . . . . . . 32 5.1. Image matching ................................... 33 5.2. Algorithm ...................................... 34 5.2.1. Overview .................................... 34 5.2.2. 2-PointMotionEstimation ........................... 37 5.2.3. 2-Point Motion Estimation with Inertial Measurements . . . . . . . . . . . . . 40 5.2.4. Two-StageSampling .............................. 41 5.2.5. PlaneVoting................................... 45 5.3. ExperimentalResults................................. 50 5.4. Conclusion...................................... 53 CHAPTER6. VisualLidarSLAM.............................. 62 6.1. Introduction ..................................... 62 6.2. Tightly-coupled Visual-Lidar SLAM(TVL-SLAM) . . . . . . . . . . . . . . . . . 63 6.2.1. Overview .................................... 63 6.2.2. Factor graph formulation ............................ 63 6.2.3. General lidar factor(GLF)............................ 65 6.2.4. Comparison of residual compression methods . . . . . . . . . . . . . . . . . . 67 6.2.5. Optimization across different Lie algebra systems. . . . . . . . . . . . . . . . 70 6.2.6. Practical implementation of Lie algebra adaptation . . . . . . . . . . . . . . . 71 6.2.7. SLAM with extrinsics calibration ........................ 73 6.2.8. Moving object removal ............................. 75 6.3. Experiments ..................................... 75 6.3.1. Overview .................................... 75 6.3.2. Effects of loop detection............................. 77 6.3.3. Effect of extrinsics calibration.......................... 77 6.3.4. Comparison of state-of-the-art methods on KITTI dataset . . . . . . . . . . . . 79 6.3.5. Experiments on KAIST dataset ......................... 80 CHAPTER7. Conclusion .................................. 86
dc.language.isoen
dc.subject激光zh_TW
dc.subject定位zh_TW
dc.subject多傳感器融合zh_TW
dc.subject圖像匹配zh_TW
dc.subject建圖zh_TW
dc.subjectSensor fusionen
dc.subjectSLAMen
dc.subjectAutonomous drivingen
dc.subjectLidaren
dc.subjectImage matchingen
dc.title緊耦合視覺激光傳感器以提升定位與建圖的效能zh_TW
dc.titleEnhance SLAM Performance With Tightly-Coupled Camera And Lidar Fusionen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee李明穗(Ming-Sui Lee),郭振華(Jen-Hwa Guo),廖婉君(Wan-jiun Liao),連豊力(Feng-Li Lian),李綱(Kang LI),吳曉光(Hsiao-kuang Wu)
dc.subject.keyword定位,建圖,激光,圖像匹配,多傳感器融合,zh_TW
dc.subject.keywordSLAM,Autonomous driving,Lidar,Image matching,Sensor fusion,en
dc.relation.page92
dc.identifier.doi10.6342/NTU202200615
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-03-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2022-04-26-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-0303202216040400.pdf36.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved