請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85830完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏璋(Miin-Jang Chen) | |
| dc.contributor.author | Wei-Chung Kao | en |
| dc.contributor.author | 高偉中 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:25:43Z | - |
| dc.date.copyright | 2022-04-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-03-07 | |
| dc.identifier.citation | Strite, a.S. and H. Morkoç, GaN, AlN, and InN: a review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1992. 10(4): p. 1237-1266. Ambacher, O., Growth and applications of group III-nitrides. Journal of Physics D: Applied Physics, 1998. 31(20): p. 2653. Jabbar, H.D., M.A. Fakhri, and M.J. AbdulRazzaq, Gallium Nitride–Based Photodiode: A review. Materials Today: Proceedings, 2021. Ambacher, O., B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. Journal of Applied Physics, 2000. 87(1): p. 334-344. Vurgaftman, I. and J.n. Meyer, Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, 2003. 94(6): p. 3675-3696. Van de Walle, C.G. and J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides. Journal of Applied Physics, 2004. 95(8): p. 3851-3879. Johnson, W.C., J. Parson, and M. Crew, Nitrogen compounds of Gallium. III. The Journal of Physical Chemistry, 2002. 36(10): p. 2651-2654. Maruska, H.P. and J. Tietjen, The preparation and properties of vapor‐deposited single‐crystal‐line GaN. Applied Physics Letters, 1969. 15(10): p. 327-329. DenBaars, S.P., D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, and R. Farrell, Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Materialia, 2013. 61(3): p. 945-951. Heber, J., Nobel Prize 2014: Akasaki, Amano & Nakamura. Nature Physics, 2014. 10(11): p. 791-791. Oxley, C. and M. Uren, Measurements of unity gain cutoff frequency and saturation velocity of a GaN HEMT transistor. IEEE Transactions on Electron Devices, 2005. 52(2): p. 165-169. Shen, L., S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. Smorchkova, S. Keller, S. DenBaars, and U. Mishra, AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Letters, 2001. 22(10): p. 457-459. Arteev, D.S., A.V. Sakharov, E.E. Zavarin, W.V. Lundin, A.N. Smirnov, V.Y. Davydov, M.A. Yagovkina, S.O. Usov, and A.F. Tsatsulnikov, Investigation of Statistical Broadening in InGaN Alloys. Journal of Physics: Conference Series, 2018. 1135: p. 012050. Antoine-Vincent, N., F. Natali, M. Mihailovic, A. Vasson, J. Leymarie, P. Disseix, D. Byrne, F. Semond, and J. Massies, Determination of the refractive indices of AlN, GaN, and AlxGa1−xN grown on (111) Si substrates. Journal of Applied Physics, 2003. 93(9): p. 5222-5226. Laws, G., E. Larkins, I. Harrison, C. Molloy, and D. Somerford, Improved refractive index formulas for the AlxGa1−xN and InyGa1−yN alloys. Journal of Applied Physics, 2001. 89(2): p. 1108-1115. Guo, Q., O. Kato, M. Fujisawa, and A. Yoshida, Optical constants of indium nitride. Solid State Communications, 1992. 83(9): p. 721-723. Acharya, A.R., Group III–nitride semiconductors: preeminent materials for modern electronic and optoelectronic applications. Himalayan Physics, 2014. 5: p. 22-26. Taniyasu, Y., M. Kasu, and T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 2006. 441(7091): p. 325-328. Hui, Y. and M. Rinaldi, Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element. Applied Physics Letters, 2013. 102(9): p. 093501. Abdallah, B., S. Al-Khawaja, and A. Alkhawwam, Electrical characteristics of insulating aluminum nitride MIS nanostructures. Applied Surface Science, 2011. 258(1): p. 419-424. Zimmermann, T., D. Deen, Y. Cao, J. Simon, P. Fay, D. Jena, and H.G. Xing, AlN/GaN insulated-gate HEMTs with 2.3 Å/mm output current and 480 mS/mm transconductance. IEEE Electron Device Letters, 2008. 29(7): p. 661-664. Tsubouchi, K. and N. Mikoshiba, Zero-temperature-coefficient SAW devices on AlN epitaxial films. IEEE Transactions on Sonics Ultrasonics, 1985. 32: p. 634-644. Bellotti, E. and F. Bertazzi, Nitride Semiconductor Devices: Fundamentals and Applications, edited by J. Piprek. 2007, Wiley, Hoboken, NJ. Zhang, B., M. Wu, X. Shen, J. Chen, J. Zhu, J. Liu, G. Feng, D. Zhao, Y. Wang, and H. Yang, Influence of high-temperature AIN buffer thickness on the properties of GaN grown on Si (111). Journal of Crystal Growth, 2003. 258(1-2): p. 34-40. Pelá, R., C. Caetano, M. Marques, L. Ferreira, J. Furthmüller, and L. Teles, Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach. Applied Physics Letters, 2011. 98(15): p. 151907. Koleske, D., R. Henry, M. Twigg, J. Culbertson, S. Binari, A. Wickenden, and M. Fatemi, Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC. Applied Physics Letters, 2002. 80(23): p. 4372-4374. Walker, D., X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, AlGaN ultraviolet photoconductors grown on sapphire. Applied Physics Letters, 1996. 68(15): p. 2100-2101. Mishra, U.K., P. Parikh, and Y.-F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications. Proceedings of the IEEE, 2002. 90(6): p. 1022-1031. Angerer, H., D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Höpler, T. Metzger, E. Born, G. Dollinger, and A. Bergmaier, Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1−xN films. Applied Physics Letters, 1997. 71(11): p. 1504-1506. Able, A., W. Wegscheider, K. Engl, and J. Zweck, Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers. Journal of Crystal Growth, 2005. 276(3-4): p. 415-418. Tsai, Y.-L., C.-L. Wang, P.-H. Lin, W.-T. Liao, and J.-R. Gong, Observation of compositional pulling phenomenon in AlxGa1−xN (0.4< x<1.0) films grown on (0001) sapphire substrates. Applied Physics Letters, 2003. 82(1): p. 31-33. Lin, H., Y. Chen, T. Lin, C. Shih, K. Liu, and N. Chen, Direct evidence of compositional pulling effect in AlxGa1− xN epilayers. Journal of Crystal Growth, 2006. 290(1): p. 225-228. Liu, B., R. Zhang, J. Zheng, X. Ji, D. Fu, Z. Xie, D. Chen, P. Chen, R. Jiang, and Y. Zheng, Composition pulling effect and strain relief mechanism in AlGaN/AlN distributed Bragg reflectors. Applied Physics Letters, 2011. 98(26): p. 261916. Staszczak, G., I. Gorczyca, E. Grzanka, J. Smalc‐Koziorowska, G. Targowski, R. Czernecki, M. Siekacz, S. Grzanka, C. Skierbiszewski, and T. Schulz, Bandgap behavior of InGaN/GaN short period superlattices grown by metal‐organic vapor phase epitaxy. Physica Status Solidi (b), 2017. 254(8): p. 1600710. Gorczyca, I., T. Suski, N. Christensen, and A. Svane, Theoretical study of nitride short period superlattices. Journal of Physics: Condensed Matter, 2018. 30(6): p. 063001. Lundin, W., A. Nikolaev, A. Sakharov, E. Zavarin, G. Valkovskiy, M. Yagovkina, S. Usov, N. Kryzhanovskaya, V. Sizov, and P. Brunkov, Single quantum well deep-green LEDs with buried InGaN/GaN short-period superlattice. Journal of Crystal Growth, 2011. 315(1): p. 267-271. Suzuki, Y. and H. Okamoto, Refractive index of GaAs-AlAs superlattice grown by MBE. Journal of Electronic Materials, 1983. 12(2): p. 397-411. Hsu, L. and W. Walukiewicz, Effect of polarization fields on transport properties in AlGaN/GaN heterostructures. Journal of Applied Physics, 2001. 89(3): p. 1783-1789. Feltin, E., B. Beaumont, M. Laügt, P. De Mierry, P. Vennéguès, M. Leroux, and P. Gibart, Crack‐free thick GaN layers on silicon (111) by metalorganic vapor phase epitaxy. Physica Status Solidi (a), 2001. 188(2): p. 531-535. Jang, S.-H. and C.-R. Lee, High-quality GaN/Si (111) epitaxial layers grown with various Al0.3Ga0.7N/GaN superlattices as intermediate layer by MOCVD. Journal of Crystal Growth, 2003. 253(1-4): p. 64-70. Einfeldt, S., H. Heinke, V. Kirchner, and D. Hommel, Strain relaxation in AlGaN/GaN superlattices grown on GaN. Journal of Applied Physics, 2001. 89(4): p. 2160-2167. Cherns, P., C. McAleese, M. Kappers, and C. Humphreys, Strain relaxation in an AlGaN/GaN quantum well system, in Microscopy of Semiconducting Materials 2007. 2008, Springer. p. 25-28. Kucheyev, S., J. Williams, C. Jagadish, J. Zou, V. Craig, and G. Li, Ion-beam-induced porosity of GaN. Applied Physics Letters, 2000. 77(10): p. 1455-1457. Calleja, E., M. Sánchez-Garcı́a, F. Sanchez, F. Calle, F. Naranjo, E. Munoz, S. Molina, A. Sanchez, F. Pacheco, and R. Garcıa, Growth of III-nitrides on Si (111) by molecular beam epitaxy Doping, optical, and electrical properties. Journal of Crystal Growth, 1999. 201: p. 296-317. Kukushkin, S., A. Osipov, V. Bessolov, B. Medvedev, V. Nevolin, and K. Tcarik, Substrates for epitaxy of gallium nitride: new materials and techniques. Rev. Adv. Mater. Sci, 2008. 17(1/2): p. 1-32. Liu, L. and J.H. Edgar, Substrates for gallium nitride epitaxy. Materials Science and Engineering: R: Reports, 2002. 37(3): p. 61-127. Avrov, D., S. Dorozhkin, A. Lebedev, and Y.M. Tairov, Domain formation during syntaxy of polytypes of silicon carbide. Semiconductors, 2007. 41(12): p. 1389-1393. Gupta, A.K., P. Wu, V. Rengarajan, X.P. Xu, M. Yoganathan, C. Martin, E. Emorhokpor, A. Souzis, I. Zwieback, and T. Anderson. Status of large diameter SiC single crystals. in Materials Science Forum. 2012. Trans Tech Publ. Suntola, T., Atomic layer epitaxy. Thin Solid Films, 1992. 216(1): p. 84-89. Ritala, M. and M. Leskelä, Atomic layer epitaxy-a valuable tool for 90 nanotechnology? Nanotechnology, 1999. 10(1): p. 19. Puurunen, R.L., A short history of atomic layer deposition: Tuomo Suntola's atomic layer epitaxy. Chemical Vapor Deposition, 2014. 20(10-11-12): p. 332-344. Xu, S. and Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Research, 2011. 4(11): p. 1013-1098. Vanderbilt, D., X. Zhao, and D. Ceresoli, Structural and dielectric properties of crystalline and amorphous ZrO2. Thin Solid Films, 2005. 486(1-2): p. 125-128. Yamabi, S. and H. Imai, Growth conditions for wurtzite zinc oxide films in aqueous solutions. Journal of Materials Chemistry, 2002. 12(12): p. 3773-3778. George, S.M., Atomic layer deposition: an overview. Chemical Reviews, 2010. 110(1): p. 111-131. Profijt, H., S. Potts, M. Van de Sanden, and W. Kessels, Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2011. 29(5): p. 050801. Parsons, G.N., S.M. George, and M. Knez, Progress and future directions for atomic layer deposition and ALD-based chemistry. Mrs Bulletin, 2011. 36(11): p. 865-871. George, S., A. Ott, and J. Klaus, Surface chemistry for atomic layer growth. The Journal of Physical Chemistry, 1996. 100(31): p. 13121-13131. Dillon, A., A. Ott, J. Way, and S. George, Surface chemistry of Al2O3 deposition using Al(CH3)3 and H2O in a binary reaction sequence. Surface Science, 1995. 322(1-3): p. 230-242. Ott, A., J. Klaus, J. Johnson, and S. George, Al3O3 thin film growth on Si (100) using binary reaction sequence chemistry. Thin Solid Films, 1997. 292(1-2): p. 135-144. Widjaja, Y. and C.B. Musgrave, Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition. Applied Physics Letters, 2002. 80(18): p. 3304-3306. Hoex, B., S. Heil, E. Langereis, M. Van de Sanden, and W. Kessels, Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Applied Physics Letters, 2006. 89(4): p. 042112. Lim, J.W. and S.J. Yun, Electrical properties of alumina films by plasma-enhanced atomic layer deposition. Electrochemical and Solid State Letters, 2004. 7(8): p. F45. Rossnagel, S., A. Sherman, and F. Turner, Plasma-enhanced atomic layer deposition of Ta and Ti for interconnect diffusion barriers. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2000. 18(4): p. 2016-2020. Kim, H., C.C. Jr., C. Lavoie, and S.M. Rossnagel, Diffusion barrier properties of transition metal thin films grown by plasma-enhanced atomic-layer deposition. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2002. 20(4): p. 1321-1326. Min, J.-S., Y.-W. Son, W.-G. Kang, S.-S. Chun, and S.-W. Kang, Atomic layer deposition of TiN films by alternate supply of tetrakis (ethylmethylamino)-titanium and ammonia. Japanese Journal of Applied Physics, 1998. 37(9R): p. 4999. Lim, J.-W., H.-S. Park, and S.-W. Kang, Kinetic modeling of film growth rate in atomic layer deposition. Journal of The Electrochemical Society, 2001. 148(6): p. C403. Okano, H., N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz‐band surface acoustic wave devices. Applied Physics Letters, 1994. 64(2): p. 166-168. Chin, A., C. Lai, B. Hung, C. Cheng, S.P. McAlister, C. Zhu, M.-F. Li, and D.-L. Kwong. A novel program-erasable high-k AlN capacitor with memory function. in Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference. 2004. IEEE. Auner, G., F. Jin, V. Naik, and R. Naik, Microstructure of low temperature grown AlN thin films on Si (111). Journal of Applied Physics, 1999. 85(11): p. 7879-7883. Wong, Y.-Y., Y.-S. Chiu, T.-T. Luong, T.-M. Lin, Y.-T. Ho, Y.-C. Lin, and E.Y. Chang. Growth and fabrication of AlGaN/GaN HEMT on SiC substrate. in 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE). 2012. IEEE. Ponce, F., B. Krusor, J. Major Jr, W. Plano, and D. Welch, Microstructure of GaN epitaxy on SiC using AlN buffer layers. Applied Physics Letters, 1995. 67(3): p. 410-412. Codreanu, C., M. Avram, E. Carbunescu, and E. Iliescu, Comparison of 3C–SiC, 6H–SiC and 4H–SiC MESFETs performances. Materials Science in Semiconductor Processing, 2000. 3(1-2): p. 137-142. Uehara, K., C.-M. Yang, T. Furusho, S.-K. Kim, S. Kameda, H. Nakase, S. Nishino, and K. Tsubouchi. AlN epitaxial film on 6H-SiC (0001) using MOCVD for GHz-band saw devices. in IEEE Symposium on Ultrasonics, 2003. 2003. IEEE. Tanaka, S., R.S. Kern, and R.F. Davis, Initial stage of aluminum nitride film growth on 6H‐silicon carbide by plasma‐assisted, gas‐source molecular beam epitaxy. Applied Physics Letters, 1995. 66(1): p. 37-39. Taniyasu, Y., M. Kasu, and T. Makimoto, Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0001) substrate. Journal of Crystal Growth, 2007. 298: p. 310-315. Leskelä, M. and M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films, 2002. 409(1): p. 138-146. Gusev, E., C. Cabral Jr, M. Copel, C. D’emic, and M. Gribelyuk, Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications. Microelectronic Engineering, 2003. 69(2-4): p. 145-151. Choi, B., D.S. Jeong, S. Kim, C. Rohde, S. Choi, J. Oh, H. Kim, C. Hwang, K. Szot, and R. Waser, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. Journal of Applied Physics, 2005. 98(3): p. 033715. Boukhalfa, S., K. Evanoff, and G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy & Environmental Science, 2012. 5(5): p. 6872-6879. Chen, P., T. Mitsui, D.B. Farmer, J. Golovchenko, R.G. Gordon, and D. Branton, Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Letters, 2004. 4(7): p. 1333-1337. Schilirò, E., R. Lo Nigro, P. Fiorenza, and F. Roccaforte, Negative charge trapping effects in Al2O3 films grown by atomic layer deposition onto thermally oxidized 4H-SiC. AIP Advances, 2016. 6(7): p. 075021. Lupina, G., G. Kozlowski, P. Dudek, J. Dabrowski, C. Wenger, G. Lippert, and H.-J. Mussig. Dielectric characteristics of amorphous and crystalline BaHfO3 high-k layers on TiN for memory capacitor applications. in 2008 9th International Conference on Ultimate Integration of Silicon. 2008. IEEE. Huang, J.-J., L.-T. Huang, M.-C. Tsai, M.-H. Lee, and M.-J. Chen, Improvement of capacitance equivalent thickness, leakage current, and interfacial state density based on crystallized high-k dielectrics/nitrided buffer layer gate stacks. ECS Journal of Solid State Science and Technology, 2013. 2(12): p. P524. Shih, H.-Y., W.-H. Lee, W.-C. Kao, Y.-C. Chuang, R.-M. Lin, H.-C. Lin, M. Shiojiri, and M.-J. Chen, Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing. Scientific Reports, 2017. 7(1): p. 1-8. Cao, X., S. Pearton, A. Zhang, G. Dang, F. Ren, R. Shul, L. Zhang, R. Hickman, and J. Van Hove, Electrical effects of plasma damage in p-GaN. Applied Physics Letters, 1999. 75(17): p. 2569-2571. Holgado, J., A. Barranco, F. Yubero, J. Espinos, and A. González-Elipe, Ion beam effects in SiOx (x<2) subjected to low energy Ar+, He+ and N2+ bombardment. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002. 187(4): p. 465-474. Ferguson, E.E., Calculation of cross sections for zero activation energy processes by simple collision models with emphasis on the Penning effect. Physical Review, 1962. 128(1): p. 210. Kao, W.-C., W.-H. Lee, S.-H. Yi, T.-H. Shen, H.-C. Lin, and M.-J. Chen, AlN epitaxy on SiC by low-temperature atomic layer deposition via layer-by-layer, in situ atomic layer annealing. RSC Advances, 2019. 9(22): p. 12226-12231. Liu, M. and H.K. Kim, Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Applied Physics Letters, 2004. 84(2): p. 173-175. Druijf, K., J. De Nijs, E. Drift, E. Granneman, and P. Balk, Nature of defects in the Si‐SiO2 system generated by vacuum‐ultraviolet irradiation. Applied Physics Letters, 1994. 65(3): p. 347-349. Mego, T.J., Improved feedback charge method for quasistatic CV measurements in semiconductors. Review of Scientific Instruments, 1986. 57(11): p. 2798-2805. Aboelfotoh, M., R. Kern, S. Tanaka, R. Davis, and C. Harris, Electrical characteristics of metal/AlN/n‐type 6H–SiC (0001) heterostructures. Applied Physics Letters, 1996. 69(19): p. 2873-2875. Zan, H.-W., K.-H. Yen, P.-K. Liu, K.-H. Ku, C.-H. Chen, and J. Hwang, Low-voltage organic thin film transistors with hydrophobic aluminum nitride film as gate insulator. Organic Electronics, 2007. 8(4): p. 450-454. Zetterling, C.-M., M. Östling, K. Wongchotigul, M. Spencer, X. Tang, C. Harris, N. Nordell, and S. Wong, Investigation of aluminum nitride grown by metal–organic chemical-vapor deposition on silicon carbide. Journal of Applied Physics, 1997. 82(6): p. 2990-2995. Noreika, A., M. Francombe, and S. Zeitman, Dielectric properties of reactively sputtered films of aluminum nitride. Journal of Vacuum Science and Technology, 1969. 6(1): p. 194-197. Tran, B.T., N. Maeda, M. Jo, D. Inoue, T. Kikitsu, and H. Hirayama, Performance improvement of AlN crystal quality grown on patterned Si (111) substrate for deep UV-LED applications. Scientific Reports, 2016. 6(1): p. 1-6. Kneissl, M., Z. Yang, M. Teepe, C. Knollenberg, O. Schmidt, P. Kiesel, N.M. Johnson, S. Schujman, and L.J. Schowalter, Ultraviolet semiconductor laser diodes on bulk AlN. Journal of Applied Physics, 2007. 101(12): p. 123103. Li, J., Z. Fan, R. Dahal, M. Nakarmi, J. Lin, and H. Jiang, 200 nm deep ultraviolet photodetectors based on AlN. Applied Physics Letters, 2006. 89(21): p. 213510. Zhu, J.-J., X.-H. Ma, Y. Xie, B. Hou, W.-W. Chen, J.-C. Zhang, and Y. Hao, Improved interface and transport properties of AlGaN/GaN MIS-HEMTs with PEALD-grown AlN gate dielectric. IEEE Transactions on Electron Devices, 2014. 62(2): p. 512-518. Tonisch, K., V. Cimalla, C. Foerster, H. Romanus, O. Ambacher, and D. Dontsov, Piezoelectric properties of polycrystalline AlN thin films for MEMS application. Sensors and Actuators A: Physical, 2006. 132(2): p. 658-663. Fei, C., X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang, and Q. Zhou, AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy, 2018. 51: p. 146-161. Choi, S.R., D. Kim, S.-H. Choa, S.-H. Lee, and J.-K. Kim, Thermal Conductivity of AlN and SiC Thin Films. International Journal of Thermophysics, 2006. 27(3): p. 896-905. Ohba, Y. and R. Sato, Growth of AlN on sapphire substrates by using a thin AlN buffer layer grown two-dimensionally at a very low V/III ratio. Journal of Crystal Growth, 2000. 221(1-4): p. 258-261. Zollner, C.J., A. Almogbel, Y. Yao, B.K. SaifAddin, F. Wu, M. Iza, S.P. DenBaars, J.S. Speck, and S. Nakamura, Reduced dislocation density and residual tension in AlN grown on SiC by metalorganic chemical vapor deposition. Applied Physics Letters, 2019. 115(16): p. 161101. Xu, F., L. Zhang, N. Xie, M. Wang, Y. Sun, B. Liu, W. Ge, X. Wang, and B. Shen, Realization of low dislocation density AlN on a small-coalescence-area nano-patterned sapphire substrate. CrystEngComm, 2019. 21(15): p. 2490-2494. Bai, J., M. Dudley, W. Sun, H. Wang, and M.A. Khan, Reduction of threading dislocation densities in AlN∕sapphire epilayers driven by growth mode modification. Applied Physics Letters, 2006. 88(5): p. 051903. Verdy, A., G. Navarro, M. Bernard, P. Noe, G. Bourgeois, J. Garrione, M.-C. Cyrille, V. Sousa, and E. Nowak. High temperature stability and performance analysis of N-doped Ge-Se-Sb based OTS selector devices. in 2018 IEEE International Memory Workshop (IMW). 2018. IEEE. Ballav, N., S. Schilp, and M. Zharnikov, Electron‐Beam Chemical Lithography with Aliphatic Self‐Assembled Monolayers. Angewandte Chemie, 2008. 120(8): p. 1443-1446. Bowden, M.J., Electron irradiation of polymers and its application to resists for electron-beam lithography. Critical Reviews in Solid State and MaterialSciences, 1979. 8(3): p. 223-264. Göbel, O.F., M. Nedelcu, and U. Steiner, Soft lithography of ceramic patterns. Advanced functional materials, 2007. 17(7): p. 1131-1136. Banhart, F., T. Füller, P. Redlich, and P. Ajayan, The formation, annealing and self-compression of carbon onions under electron irradiation. Chemical Physics Letters, 1997. 269(3-4): p. 349-355. Aukerman, L. and R. Graft, Annealing of electron-irradiated GaAs. Physical Review, 1962. 127(5): p. 1576. Liu, B.L., M. Lachab, A. Jia, A. Yoshikawaa, and K. Takahashi, MOCVD growth of device-quality GaN on sapphire using a three-step approach. Journal of Cryst. Growth., 2002. 234(4): p. 637-645. Brunner, D., H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, Optical constants of epitaxial AlGaN films and their temperature dependence. Journal of Applied Physics, 1997. 82(10): p. 5090-5096. Özgür, Ü., G. Webb-Wood, H.O. Everitt, F. Yun, and H. Morkoç, Systematic measurement of AlxGa1−xN refractive indices. Applied Physics Letters, 2001. 79(25): p. 4103-4105. Silveira, E., J. Freitas, S. Schujman, and L. Schowalter, AlN bandgap temperature dependence from its optical properties. Journal of Crystal Growth, 2008. 310(17): p. 4007-4010. Yamamoto, A., M.R. Islam, T.T. Kang, and A. Hashimoto, Recent advances in InN‐based solar cells: status and challenges in InGaN and InAlN solar cells. Physica Status Solidi C, 2010. 7(5): p. 1309-1316. Dahal, R., B. Pantha, J. Li, J. Lin, and H. Jiang, InGaN/GaN multiple quantum well solar cells with long operating wavelengths. Applied Physics Letters, 2009. 94(6): p. 063505. Hofstetter, D., E. Baumann, F.R. Giorgetta, M. Graf, M. Maier, F. Guillot, E. Bellet-Amalric, and E. Monroy, High-quality AlN/GaN-superlattice structures for the fabrication of narrow-band 1.4 μm photovoltaic intersubband detectors. Applied Physics Letters, 2006. 88(12): p. 121112. Lang, J., N. Young, R.M. Farrell, Y.-R. Wu, and J. Speck, Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells. Applied Physics Letters, 2012. 101(18): p. 181105. Asif Khan, M., AlGaN multiple quantum well based deep UV LEDs and their applications. Physica Status Solidi (a), 2006. 203(7): p. 1764-1770. Hirayama, H., S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, 222–282 nm AlGaN and InAlGaN‐based deep‐UV LEDs fabricated on high‐quality AlN on sapphire. Physica Status Solidi (a), 2009. 206(6): p. 1176-1182. Hirayama, H., S. Fujikawa, and N. Kamata, Recent progress in AlGaN‐based deep‐UV LEDs. Electronics and Communications in Japan, 2015. 98(5): p. 1-8. Hiramatsu, K., Y. Kawaguchi, M. Shimizu, N. Sawaki, T. Zheleva, R.F. Davis, H. Tsuda, W. Taki, N. Kuwano, and K. Oki, The composition pulling effect in MOVPE grown InGaN on GaN and AlGaN and its TEM characterization. Materials Research Society Internet Journal of Nitride Semiconductor Research, 1997. 2. Yan Zhang, Y. and Y. An Yin, Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer. Applied Physics Letters, 2011. 99(22): p. 221103. Park, J.H., D. Yeong Kim, S. Hwang, D. Meyaard, E. Fred Schubert, Y. Dae Han, J. Won Choi, J. Cho, and J. Kyu Kim, Enhanced overall efficiency of GaInN-based light-emitting diodes with reduced efficiency droop by Al-composition-graded AlGaN/GaN superlattice electron blocking layer. Applied Physics Letters, 2013. 103(6): p. 061104. Sheu, J.-K., C.-C. Yang, S.-J. Tu, K.-H. Chang, M.-L. Lee, W.-C. Lai, and L.-C. Peng, Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers. IEEE Electron Device Letters, 2009. 30(3): p. 225-227. Cui, X., B. Delley, and C. Stampfl, Band gap engineering of wurtzite and zinc-blende GaN/AlN superlattices from first principles. Journal of Applied Physics, 2010. 108(10): p. 103701. Kamiya, K., Y. Ebihara, K. Shiraishi, and M. Kasu, Structural design of AlN/GaN superlattices for deep-ultraviolet light-emitting diodes with high emission efficiency. Applied Physics Letters, 2011. 99(15): p. 151108. Taniyasu, Y. and M. Kasu, Polarization property of deep-ultraviolet light emission from C-plane AlN/GaN short-period superlattices. Applied Physics Letters, 2011. 99(25): p. 251112. Sellés, J., C. Brimont, G. Cassabois, P. Valvin, T. Guillet, I. Roland, Y. Zeng, X. Checoury, P. Boucaud, and M. Mexis, Deep-UV nitride-on-silicon microdisk lasers. Scientific Reports, 2016. 6(1): p. 1-7. Islam, S., V. Protasenko, S. Rouvimov, H.G. Xing, and D. Jena, Sub-230 nm deep-UV emission from GaN quantum disks in AlN grown by a modified Stranski–Krastanov mode. Japanese Journal of Applied Physics, 2016. 55(5S): p. 05FF06. Bayerl, D., S. Islam, C.M. Jones, V. Protasenko, D. Jena, and E. Kioupakis, Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Applied Physics Letters, 2016. 109(24): p. 241102. Islam, S., K. Lee, J. Verma, V. Protasenko, S. Rouvimov, S. Bharadwaj, H. Xing, and D. Jena, MBE-grown 232–270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Applied Physics Letters, 2017. 110(4): p. 041108. Khoshman, J.M. and M.E. Kordesch, Optical characterization of sputtered amorphous aluminum nitride thin films by spectroscopic ellipsometry. Journal of Non-crystalline Solids, 2005. 351(40-42): p. 3334-3340. Sun, W., C.-K. Tan, and N. Tansu, AlN/GaN Digital alloy for mid-and deep-ultraviolet optoelectronics. Scientific Reports, 2017. 7(1): p. 1-8. Kim, Y., M.S. Kim, H.J. Yun, S.Y. Ryu, and B.J. Choi, Effect of growth temperature on AlN thin films fabricated by atomic layer deposition. Ceramics International, 2018. 44(14): p. 17447-17452. Taniyasu, Y. and M. Kasu, Surface 210 nm light emission from an AlN p–n junction light-emitting diode enhanced by A-plane growth orientation. Applied Physics Letters, 2010. 96(22): p. 221110. Beheshtian, J., M.T. Baei, Z. Bagheri, and A.A. Peyghan, AlN nanotube as a potential electronic sensor for nitrogen dioxide. Microelectronics Journal, 2012. 43(7): p. 452-455. Pan, F., S. Gao, C. Chen, C. Song, and F. Zeng, Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Materials Science and Engineering: R: Reports, 2014. 83: p. 1-59. Chen, Y., Z. Zhang, H. Jiang, Z. Li, G. Miao, and H. Song, The optimized growth of AlN templates for back-illuminated AlGaN-based solar-blind ultraviolet photodetectors by MOCVD. Journal of Materials Chemistry C, 2018. 6(18): p. 4936-4942. George, S.M., Atomic layer deposition: an overview. Chemical Reviews, 2009. 110(1): p. 111-131. Leskelä, M. and M. Ritala, Atomic layer deposition chemistry: recent developments and future challenges. Angewandte Chemie International Edition, 2003. 42(45): p. 5548-5554. Bakke, J.R., K.L. Pickrahn, T.P. Brennan, and S.F. Bent, Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale, 2011. 3(9): p. 3482-3508. Ahmed, B., C. Xia, and H.N. Alshareef, Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage. Nano Today, 2016. 11(2): p. 250-271. Chiappim, W., M.A. Fraga, H.S. Maciel, and R.S. Pessoa, An Experimental and Theoretical Study of the Impact of the Precursor Pulse Time on the Growth Per Cycle and Crystallinity Quality of TiO2 Thin Films Grown by ALD and PEALD Technique. Frontiers in Mechanical Engineering, 2020. 6: p. 80. Richey, N.E., C. de Paula, and S.F. Bent, Understanding chemical and physical mechanisms in atomic layer deposition. The Journal of Chemical Physics, 2020. 152(4): p. 040902. Puurunen, R.L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 2005. 97(12): p. 9. Vandalon, V. and W. Kessels, Revisiting the growth mechanism of atomic layer deposition of Al2O3: A vibrational sum-frequency generation study. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2017. 35(5): p. 05C313. Elliott, S.D., G. Dey, and Y. Maimaiti, Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations. The Journal of Chemical Physics, 2017. 146(5): p. 052822. Nam, T., H. Lee, T. Choi, S. Seo, C.M. Yoon, Y. Choi, H. Jeong, H.K. Lingam, V.R. Chitturi, and A. Korolev, Low-temperature, high-growth-rate ALD of SiO2 using aminodisilane precursor. Applied Surface Science, 2019. 485: p. 381-390. Jung, Y.C., S.M. Hwang, D.N. Le, A.L. Kondusamy, J. Mohan, S.W. Kim, J.H. Kim, A.T. Lucero, A. Ravichandran, and H.S. Kim, Low temperature thermal atomic layer deposition of aluminum nitride using hydrazine as the nitrogen source. Materials, 2020. 13(15): p. 3387. Elliott, S.D., Improving ALD growth rate via ligand basicity: Quantum chemical calculations on lanthanum precursors. Surface and Coatings Technology, 2007. 201(22-23): p. 9076-9081. Lee, S.W., J.H. Han, S. Han, W. Lee, J.H. Jang, M. Seo, S.K. Kim, C. Dussarrat, J. Gatineau, and Y.-S. Min, Atomic layer deposition of SrTiO3 thin films with highly enhanced growth rate for ultrahigh density capacitors. Chemistry of Materials, 2011. 23(8): p. 2227-2236. Lee, W.-H., W.-C. Kao, Y.-T. Yin, S.-H. Yi, K.-W. Huang, H.-C. Lin, and M.-J. Chen, Sub-nanometer heating depth of atomic layer annealing. Applied Surface Science, 2020. 525: p. 146615. Carrère, H., A. Arnoult, E. Bedel-Pereira, and A. Ricard, Influence of radio frequency plasma cell conditions on the incorporation of nitrogen into GaAsN and GaInAsN. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2004. 22(5): p. 2448-2453. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85830 | - |
| dc.description.abstract | 三族氮化物半導體由於具有寬能隙、較強的鍵結、以及良好導熱特性等優越的物理性質,因此於高頻、高功率的應用具有良好的前景。本論文透過電漿輔助原子層沉積結合創新的原子層退火技術,開發高品質的氮化鋁磊晶薄膜以及氮化鋁/氮化鎵超晶格結構,並利用大面積電子束退火成長出高品質氮化鋁磊晶薄膜。本論文第一部分,我們透過原子層退火技術進行原位、逐層電漿退火處理,成功於攝氏300度的低溫,於碳化矽基板上成長出厚度僅20奈米的高品質氮化鋁磊晶薄膜。本論文第二部分的研究主題為電子束退火技術。我們利用大面積電子束照射位於藍寶石基板上的氮化鋁奈米薄膜,大幅提高氮化鋁薄膜的結晶品質。研究結果顯示大面積、快速的電子束退火,對於低熱預算的退火製程是相當關鍵的技術。接下來,本論文利用電漿增強原子層沉積技術成長氮化鋁/氮化鎵超晶格結構,並透過原子層退火處理來提升磊晶品質。我們能透過改變氮化鋁與氮化鎵的厚度以達到微調其能隙的目的。本研究將原子層退火技術的應用從薄膜擴展到超晶格結構,成功在低溫下成長出能隙可調控的高品質氮化鋁/氮化鎵超晶格磊晶層。最後,我們透過對三甲基鋁前驅物時進行電漿處理,使得使用原子層沉積技術所成長之氮化鋁薄膜的成長速度得到提升,並大幅提升氮化鋁薄膜的結晶品質。 | zh_TW |
| dc.description.abstract | Because of excellent physical properties such as wide bandgap, strong bonds, and good thermal conductivity, group-III nitride semiconductors have been wide recognized as very promising materials for high-frequency and high-power applications. By utilizing plasma enhanced atomic layer deposition (PEALD) along with the atomic layer annealing (ALA) technique, we are able to deposit AlN and AlN/GaN superlattice with excellent epitaxial quality in this thesis. In addition, high quality AlN epilayers are achieved via the large-area electron beam annealing (EBA) technique. In the first part of this thesis, the growth of high quality AlN epilayers on SiC wafer at a temperature as low as 300 °C were realized by incorporating the in-situ, layer-by-layer plasma treatment referred to as the ALA technique. In the second part of this thesis, electron irradiation in a large EBA system was used to greatly improve the crystalline quality of the AlN thin films on sapphire substrates. The research results demonstrate that the large-area, rapid EBA system is a critical technique for the annealing process with a low thermal budget. Next, we utilized the PEALD and ALA techniques to deposit AlN/GaN superlattice structure with a high crystallinity. The bandgap energy can be tailored by changing the thickness of each layer. The result indicates that the applications of the ALA technique have been extended from nanoscale thin films to superlattice structures, and high-quality superlattice epilayers with adjustable bandgap energy have also been achieved. Finally, the growth per cycle (GPC) and the crystallinity of AlN thin films prepared by PEALD were significantly enhanced by the plasma treatment on the trimethylaluminum precursor. This research demonstrates that the growth rate and the crystal quality of nanoscale thin films can be tailored by the plasma treatment on the precursors used in the ALD process. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:25:43Z (GMT). No. of bitstreams: 1 U0001-0403202215071300.pdf: 4604405 bytes, checksum: 45c6ff8c08ac74806fc331cc9cd2b7d7 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii Content v List of Figures vii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Outline of this thesis 3 Chapter 2 Background 5 2.1 III-Nitride semiconductors 5 2.1.1 Introduction 5 2.1.2 Gallium nitride 8 2.1.3 Aluminum Nitride 10 2.1.4 AlGaN alloy 11 2.1.5 Superlattice 12 2.1.6 Substrates for III-nitride epitaxy 14 2.2 Atomic Layer Deposition 18 2.2.1 Introduction 18 2.2.2 Mechanism 22 Chapter 3 AlN on SiC by low-temperature atomic layer deposition via layer-by-layer, in situ atomic layer annealing 30 3.1 Introduction 30 3.2 Experimental Section 33 3.3 Results and discussions 35 3.4 Conclusion 43 Chapter 4 High-quality AlN epilayer via rapid large-area electron beam annealing 44 4.1 Introduction 44 4.2 Experimental Section 46 4.3 Results and discussions 48 4.4 Conclusion 57 Chapter 5 AlN/GaN superlattice via Atomic layer Annealing 59 5.1 Introduction 59 5.2 Experimental Section 60 5.3 Results and discussions 62 5.4 Conclusion 71 Chapter 6 AlN nanofilms with TMA plasma treatment and in-situ atomic layer annealing for enhanced growth rate and crystal quality 72 6.1 Introduction 72 6.2 Experimental Section 74 6.3 Results and discussions 75 6.4 Conclusion 83 Chapter 7 Summary 84 References 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 原子層退火技術 | zh_TW |
| dc.subject | 電子束退火技術 | zh_TW |
| dc.subject | 氮化鋁/氮化鎵超晶格 | zh_TW |
| dc.subject | 氮化鋁 | zh_TW |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | electron beam annealing | en |
| dc.subject | atomic layer deposition (ALD) | en |
| dc.subject | AlN | en |
| dc.subject | AlN/GaN superlattice | en |
| dc.subject | atomic layer annealing (ALA) | en |
| dc.title | 以原子層磊晶與電子束退火成長高品質氮化鋁磊晶薄膜及氮化鋁/氮化鎵超晶格 | zh_TW |
| dc.title | High quality AlN epilayer and AlN/GaN superlattice via atomic layer epitaxy and electron beam annealing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0002-6601-8786 | |
| dc.contributor.oralexamcommittee | 吳肇欣(Chao-Hsin Wu),李志偉(Jyh-Wei Lee),陳良益(Liang-Yih Chen),陳建彰(Jian-Zhang Chen) | |
| dc.subject.keyword | 原子層沉積技術,原子層退火技術,氮化鋁,氮化鋁/氮化鎵超晶格,電子束退火技術, | zh_TW |
| dc.subject.keyword | atomic layer deposition (ALD),atomic layer annealing (ALA),AlN,AlN/GaN superlattice,electron beam annealing, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU202200616 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-03-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-04-26 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0403202215071300.pdf | 4.5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
