請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85807完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃文達(Wwn-Dar Huang) | |
| dc.contributor.author | Cai-Lin Chen | en |
| dc.contributor.author | 陳采璘 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:24:59Z | - |
| dc.date.copyright | 2022-04-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-03-31 | |
| dc.identifier.citation | 李水盛、徐鳳麟、邱泰惠、陳益昇、賴慧真。 (2019)。常用中藥 (Vol. 2)。 臺灣: 知音。 張同吳、黃鵬、宣大平。 (2012)。 東部地區常見藥用植物圖鑑-1(花蓮農改專刊104號)。臺灣: 行政院農業委員會花蓮區農業改良場。 許明晃、楊志維、黃秀鳳、楊棋明、郭宗甫、黃文達。 (2014) 。 氮肥對大葉石龍尾抗氧化力及其抑制黃嘌呤氧化酶活性之影響。 中華民國雜草學會會刊, 35(1),1-14。 楊志維、黃文達、楊棋明。(2012)。水稻葉片葉綠素生合成與降解途徑之研究。 桃園區農業改良場研究彙報(71),17-34。 衛生福利部臺灣中藥典第三版編輯工作小組。 (2018) 。 臺灣中藥典第三版, 243。 Alamed, J., Chaiyasit, W., McClements, D. J. & Decker E. A. (2009). Relationships between free radical scavenging and antioxidant activity in Foods. Journal of Agricultural and Food Chemistry, 57(7), 2969-2976. Allahdadi, M., & Farzane P. (2018). Influence of different levels of nitrogen fertilizer on some phytochemical characteristics of artichoke (Cynara scolymus L.) leaves. Journal of Medicinal Plants Studies, 6(1), 109-115. Aminifard, M., Aroiee, H., Nemati, H., Azizi, M., & Khayyat, M. (2012). Effect of nitrogen fertilizer on vegetative and reproductive growth of pepper plants under field conditions. Journal of plant nutrition, 35(2), 235-242. Ardalani, H., Hadipanah, A., Pazoki, A., & Zolfaghar, M. (2017). Phytochemical, morphological and yield responses of Mentha canadensis to organic and nitrogen fertilizers. Journal of Essential Oil Bearing Plants, 20(3), 752-757. Attridge, T. H., Johnson, C. B., & Smith, H. (1974). Density-labelling evidence for the phytochrome-mediated activation of phenylalanine ammonia-lyase in mustard cotyledons. Biochimica et Biophysica Acta (BBA)-General Subjects, 343(3), 440-451. Bénard, C., Gautier, H., Bourgaud, F., Grasselly, D., Navez, B., Caris-Veyrat, C., Weiss, M., Génard, M. (2009). Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. Journal of Agricultural and Food Chemistry, 57(10), 4112-4123. Bae, J.-H., Park, S.-Y., & Oh, M.-M. (2017). Supplemental irradiation with far-red light-emitting diodes improves growth and phenolic contents in Crepidiastrum denticulatum in a plant factory with artificial lighting. Horticulture, Environment, and Biotechnology, 58(4), 357-366. Bao, J., Cai, Y., Sun, M., Wang, G., & Corke, H. (2005). Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. Journal of Agricultural and Food Chemistry, 53(6), 2327-2332. Bartley, G. E., & Scolnik, P. A. (1995). Plant carotenoids: pigments for photoprotection, visual attraction, and human health. The Plant Cell, 7(7), 1027. Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., & Morelli, I. (2001). Antioxidant principles from bauhinia tarapotensis. Journal of Natural Products, 64(7), 892-895. Buttery, B. R., & Buzzell, R. I. (1977). The relationship between chlorophyll content and rate of photosynthesis in soybeans. Canadian Journal of Plant Science, 57(1), 1-5. Chen, C.-C., Huang, W.-D., Yang Z.-W., Yang C.-M., & Rogers, K. (2021). Water-use efficiency and nitrogen uptake in rice seedlings grown under different light quality. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12127-12127. Chen, C.-C., Huang, M.-Y., Lin, K.-H., Wong, S.-L., Huang, W.-D., & Yang, C.-M. (2014). Effects of light quality on the growth, development and metabolism of rice seedlings (Oryza sativa L.). Research Journal of Biotechnology, 9(4), 15-24. Chen, Y., Zhu, Z., Guo, Q., Zhang, L., & Zhang, X. (2012). Variation in concentrations of major bioactive compounds in Prunella vulgaris L. related to plant parts and phenological stages. Biological Research, 45(2), 171-175. Chiu, L. C.-M., Zhu, W., & Ooi, V. E.-C. (2004). A polysaccharide fraction from medicinal herb Prunella vulgaris downregulates the expression of herpes simplex virus antigen in Vero cells. Journal of Ethnopharmacology, 93(1), 63-68. Chiang, L. C., Chiang, W., Chang, M. Y., Ng, L. T., & Lin, C. C. (2002). Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral Research, 55(1), 53-62. Chua, L. S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. Journal of Ethnopharmacology, 150(3), 805-817. Cohen, R. Z., & Goodwin, T. W. (1962). The effect of red and far-red light on carotenoid synthesis by etiolated maize seedlings. Phytochemistry, 1(2), 67-72. Dörr, O. S., Zimmermann, B. F., Kögler, S., & Mibus, H. (2019). Influence of leaf temperature and blue light on the accumulation of rosmarinic acid and other phenolic compounds in Plectranthus scutellarioides (L.). Environmental and Experimental Botany, 167, 103830. Deng, B., Li, Y., Xu, D., Ye, Q., & Liu, G. (2019). Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. Scientific reports, 9(1), 1-9. Dinis, T. C., Madeira, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of biochemistry and biophysics, 315(1), 161-169. Dorman, H. J. D., Peltoketo, A., Hiltunen, R., & Tikkanen, M. J. (2003). Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chemistry, 83(2), 255-262. Ebrahimzadeh, M. A., Pourmorad, F., & Bekhradnia, A. R. (2008). Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. African Journal of Biotechnology, 7(18). Eskins, K. (1992). Light‐quality effects on Arabidopsis development. Red, blue and far‐red regulation of flowering and morphology. Physiologia Plantarum, 86(3), 439-444. Espíndola, K. M. M., Ferreira, R. G., Narvaez, L. E. M., Silva Rosario, A. C. R., da Silva, A. H. M., Silva, A. G. B., Vieira, A. P. O., Monteiro, M. C. (2019). Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Frontiers in Oncology, 9(541). Feng, L., Jia, X., Zhu, M.-M., Chen, Y., & Shi, F. (2010). Antioxidant activities of total phenols of Prunella vulgaris L. in vitro and in tumor-bearing mice. Molecules, 15(12), 9145-9156. Retrieved from Ferreira, I. C. F. R., Baptista, P., Vilas-Boas, M., & Barros, L. (2007). Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chemistry, 100(4), 1511-1516. Finlayson, S. A., Krishnareddy, S. R., Kebrom, T. H., & Casal, J. J. (2010). Phytochrome regulation of branching in Arabidopsis. Plant Physiology, 152(4), 1914-1927. Gülçin, İ. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217(2), 213-220. Genaro-Mattos, T. C., Maurício, Â. Q., Rettori, D., Alonso, A., & Hermes-Lima, M. (2015). Antioxidant activity of caffeic acid against iron-induced free radical generation—A chemical approach. PLoS One, 10(6), e0129963. Golembiovska, O. I. (2014). Simultaneous determination of flavonoids and phenolic acids in different parts of Prunella vulgaris L. by high-performance liquid chromatography with photodiode array detection. Int. J. Pharmacog. Phytochem, 29(1), 1248-1255. Gonçalves, S., Mansinhos, I., Rodríguez-Solana, R., Pérez-Santín, E., Coelho, N., & Romano, A. (2019). Elicitation improves rosmarinic acid content and antioxidant activity in Thymus lotocephalus shoot cultures. Industrial Crops and Products, 137, 214-220. Green, B. R., & Durnford, D. G. (1996). The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annual review of plant biology, 47(1), 685-714. Hamilton, J., Zangerl, A., DeLucia, E., & Berenbaum, M. (2001). The carbon–nutrient balance hypothesis: its rise and fall. Ecology letters, 4(1), 86-95. Han, E. H., Choi, J. H., Hwang, Y. P., Park, H. J., Choi, C. Y., Chung, Y. C., Seo, J. K. & Jeong, H. G. (2009). Immunostimulatory activity of aqueous extract isolated from Prunella vulgaris. Food and Chemical Toxicology, 47(1), 62-69. Heaton, J. W., Yada, R. Y., & Marangoni, A. G. (1996). Discoloration of coleslaw is caused by chlorophyll degradation. Journal of Agricultural and Food Chemistry, 44(2), 395-398. Heraut-Bron, V., Robin, C., Varlet-Grancher, C., Afif, D., & Guckert, A. (2000). Light quality (red: far-red ratio): does it affect photosynthetic activity, net CO2 assimilation, and morphology of young white clover leaves? Canadian Journal of Botany, 77(10), 1425-1431. Hsu, C.-Y., Chao, P.-Y., Hu, S.-P., & Yang, C.-M. (2013). The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food and Nutrition Sciences, Vol.4 No. 8A, 1-8 Hsu, C.-Y., Yang, C.-M., Chen, C.-M., Chao, P.-Y., & Hu, S.-P. (2005). Effects of chlorophyll-related compounds on hydrogen peroxide induced DNA damage within human lymphocytes. Journal of Agricultural and Food Chemistry, 53(7), 2746-2750. Huang, M.-Y., Hsu M.-H., Huang, W.-D., Chen P.-J., Chang Y.-T., Chao, P.-Y., & Yang C.-M., (2012). Differential contribution of antioxidants to antioxidative functions in galls evaluated by grey system theory. The Journal of Grey System, 4, 359-370 Hwang, Y.-J., Lee, E.-J., Kim, H.-R., & Hwang, K.-A. (2013). In vitro antioxidant and anticancer effects of solvent fractions from Prunella vulgaris var. lilacina. BMC Complementary and Alternative Medicine, 13(1), 310. Ibrahim, M. H., Jaafar, H. Z. E., Rahmat, A., & Rahman, Z. A. (2011). Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip fatimah (Labisia Pumila Blume). International Journal of Molecular Sciences, 12(8), 5238-5254. Joshi, P. C., & Swami, A. (2009). Air pollution induced changes in the photosynthetic pigments of selected plant species. Journal of Environmental Biology, 30(2), 295-298. Khalid, K., & Shedeed, M. (2015). Evaluation and influence nitrogen on growth, yield and chemical content of Nigella sativa L. Thai Journal of Agricultural Science, 48(2), 67-72. Kim, Y. B., Shin, Y., Tuan, P. A., Li, X., Park, Y., Park, N.-I., & Park, S. U. (2014). Molecular cloning and characterization of genes involved in rosmarinic acid biosynthesis from Prunella vulgaris. Biological and Pharmaceutical Bulletin, 37(7), 1221-1227. Kujala, T. S., Loponen, J. M., Klika, K. D., & Pihlaja, K. (2000). Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. Journal of Agricultural and Food Chemistry, 48(11), 5338-5342. Kume, A., Akitsu, T., & Nasahara, K. N. (2018). Why is chlorophyll b only used in light-harvesting systems? Journal of Plant research, 131(6), 961-972. Kuo, T. C.-Y., Chen, C.-H., Chen, S.-H., Lu, I. H., Chu, M.-J., Huang, L.-C., Lin, C.-Y., Lo, H.-F., Jeng, S.-T. & Chen, L.-F. O. (2015). The effect of red light and far-red light conditions on secondary metabolism in Agarwood. BMC Plant Biology, 15(1), 139. Kura-Hotta, M., Satoh, K., & Katoh, S. (1987). Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant and Cell Physiology, 28(7), 1321-1329. La Casa, C., Villegas, I., Alarcón de la Lastra, C., Motilva, V., & Martı́n Calero, M. J. (2000). Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. Journal of Ethnopharmacology, 71(1), 45-53. Lazzarini, L. E. S., Bertolucci, S. K. V., Pacheco, F. V., dos Santos, J., Silva, S. T., de Carvalho, A. A., & Pinto, J. E. B. P. (2018). Quality and intensity of light affect Lippia gracilis Schauer plant growth and volatile compounds in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 135(3), 367-379. Lee, M., Xu, J., Wang, W., & Rajashekar, C. (2019). The effect of supplemental blue, red and far-red light on the growth and the nutritional quality of red and green leaf lettuce. American Journal of Plant Sciences, 10(12), 2219-2235. Legendre, R., & van Iersel, M. W. (2021). Supplemental far-red light stimulates lettuce growth: disentangling morphological and physiological effects. Plants, 10(1), 166. Li, C., You, L., Fu, X., Huang, Q., Yu, S., & Liu, R. H. (2015). Structural characterization and immunomodulatory activity of a new heteropolysaccharide from Prunella vulgaris. Food & function, 6(5), 1557-1567. Li, Q., & Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67(1), 59-64. Li, Q., Xu, J., Yang, L., Sun, Y., Zhou, X., Zheng, Y., Zhang, Y. & Cai, Y. (2021). LED light quality affect growth, alkaloids contents, and expressions of Amaryllidaceae alkaloids Biosynthetic Pathway Genes in Lycoris longituba. Journal of Plant Growth Regulation. Lin, K. H., Huang, M. Y., Huang, W. D., Hsu, M. H., Yang, Z. W., & Yang, C. M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. Lintig, J., Welsch, R., Bonk, M., Giuliano, G., Batschauer, A., & Kleinig, H. (1997). Light‐dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. The Plant Journal, 12(3), 625-634. Liu, W.-g., Ren, M.-l., Liu, T., Du, Y.-l., Zhou T., Liu, X.-m., Liu, J., Hussain, S. & Yang, W.-y. (2018). Effect of shade stress on lignin biosynthesis in soybean stems. Journal of Integrative Agriculture, 17(7), 1594-1604. Majid, M., Khan, M. R., Shah, N. A., Haq, I. U., Farooq, M. A., Ullah, S., Sharif, A., Zahra, Z., Younis, T. & Sajid, M. (2015). Studies on phytochemical, antioxidant, anti-inflammatory and analgesic activities of Euphorbia dracunculoides. BMC Complementary and Alternative Medicine, 15(1), 349. Melis, A., & Harvey, G. W. (1981). Regulation of photosystem stoichiometry, chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 637(1), 138-145. Milde, J., Elstner, E. F., & Graßmann, J. (2004). Synergistic inhibition of low-density lipoprotein oxidation by rutin, γ-terpinene, and ascorbic acid. Phytomedicine, 11(2), 105-113. Mortensen, L. M., & Strømme, E. (1987). Effects of light quality on some greenhouse crops. Scientia Horticulturae, 33(1), 27-36. Muzika, R.-M. (1993). Terpenes and phenolics in response to nitrogen fertilization: a test of the carbon/nutrient balance hypothesis. Chemoecology, 4(1), 3-7. Nguyen, P. M., & Niemeyer, E. D. (2008). Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 56(18), 8685-8691. Nguyen, T. K. L., & Oh, M.-M. (2021). Physiological and biochemical responses of green and red perilla to LED-based light. Journal of the Science of Food and Agriculture, 101(1), 240-252. Nunes, S., Madureira, A. R., Campos, D., Sarmento, B., Gomes, A. M., Pintado, M., & Reis, F. (2017). Therapeutic and nutraceutical potential of rosmarinic acid—Cytoprotective properties and pharmacokinetic profile. Critical reviews in food science and nutrition, 57(9), 1799-1806. Oh, C., Price, J., Brindley, M. A., Widrlechner, M. P., Qu, L., McCoy, J.-A., Patricia, M., Hauck C. & Maury, W. (2011). Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L. Virology Journal, 8(1), 188. Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315. Park, Y. & Runkle, E. S. (2017). Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environmental and Experimental Botany, 136, 41-49. Puad, N. I. M. & Wai, T. C. (2016). A simple and easy method for preparing solid and liquid media for plant culture. Experimental Methods In Modern Biotechnology ,vol. 2, 9-15 Pearman, I., Thomas, S., & Thorne, G. N. (1978). Effect of nitrogen fertilizer on growth and yield of semi-dwarf and tall varieties of winter wheat. The Journal of Agricultural Science, 91(1), 31-45. Plumley, F. G., & Schmidt, G. W. (1989). Nitrogen-dependent regulation of photosynthetic gene expression. Proceedings of the National Academy of Sciences, 86(8), 2678-2682. Pramanik, K., & Bera, A. (2013). Effect of seedling age and nitrogen fertilizer on growth, chlorophyll content, yield and economics of hybrid rice (Oryza sativa L.). International Journal of Agronomy and Plant Production, 4(5), 3489-3499. Price, L., & Klein, W. H. (1961). Red, far-red response & chlorophyll synthesis. Plant Physiology, 36(6), 733. Psotova, J., Svobodova, A., Kolarova, H., & Walterova, D. (2006). Photoprotective properties of Prunella vulgaris and rosmarinic acid on human keratinocytes. Journal of Photochemistry and Photobiology B: Biology, 84(3), 167-174. Psotová, J., Kolář, M., Soušek, J., Švagera, Z., Vičar, J., & Ulrichová, J. (2003). Biological activities of Prunella vulgaris extract. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17(9), 1082-1087. Quail, P. H. (2002). Phytochrome photosensory signalling networks. Nature Reviews Molecular Cell Biology, 3(2), 85-93. Rahman, M. M., Vasiliev, M., & Alameh, K. (2021). LED illumination spectrum manipulation for increasing the yield of sweet basil (Ocimum basilicum L.). Plants, 10(2), 344. Rasool, R., Ganai, B. A., Akbar, S., Kamili, A. N., & Masood, A. (2010). Phytochemical screening of Prunella vulgaris L.-an important medicinal plant of Kashmir. Pak. J. Pharm. Sci, 23(4), 399-402. Reinbothe, S., & Reinbothe, C. (1996). Regulation of chlorophyll biosynthesis in angiosperms. Plant Physiology, 111(1), 1-7. Rockwell, N. C., Su, Y.-S., & Lagarias, J. C. (2006). Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol., 57, 837-858. Ru, M., Wang, K., Bai, Z., Peng, L., He, S., Wang, Y., & Liang, Z. (2017). A tyrosine aminotransferase involved in rosmarinic acid biosynthesis in Prunella vulgaris L. Scientific reports, 7(1), 1-12. Sarian, M. N., Ahmed, Q. U., Mat So’ad, S. Z., Alhassan, A. M., Murugesu, S., Perumal, V., Mohamad, S. N. A. S., Khatib A. & Latip, J. (2017). Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. BioMed Research International, 2017, 8386065. Schwend, T., Prucker, D., Peisl, S., Nitsopoulos, A., & Mempel, H. (2016). The rosmarinic acid content of basil and borage correlates with the ratio of red and far-red light. Eur. J. Hortic. Sci, 81(5), 243-247. Shoji, K., Goto, E., Hashida, S., Goto, F., & Yoshihara, T. (2009). Effect of light quality on the polyphenol content and antioxidant activity of sweet basil (Ocimum basilicum L.). Paper presented at the VI International Symposium on Light in Horticulture, Tsukuba, Japan. Sifola, M. I., & Barbieri, G. (2006). Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Scientia Horticulturae, 108(4), 408-413. Sæbø, A., Krekling, T., & Appelgren, M. (1995). Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell, Tissue and Organ Culture, 41(2), 177-185. Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research/Fundamental and Molecular mechanisms of mutagenesis, 579(1-2), 200-213. Soubeyrand, E., Basteau, C., Hilbert, G., van Leeuwen, C., Delrot, S., & Gomès, E. (2014). Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry, 103, 38-49. Sun, Y., Guo, J., Li, Y., Luo, G., Li, L., Yuan, H., Mur, L. A. J. & Guo, S. (2020). Negative effects of the simulated nitrogen deposition on plant phenolic metabolism: A meta-analysis. Science of The Total Environment, 719, 137442. Szopa, A., Starzec, A., & Ekiert, H. (2018). The importance of monochromatic lights in the production of phenolic acids and flavonoids in shoot cultures of Aronia melanocarpa, Aronia arbutifolia and Aronia ×prunifolia. Journal of Photochemistry and Photobiology B: Biology, 179, 91-97. Tabba, H. D., Chang, R. S., & Smith, K. M. (1989). Isolation, purification, and partial characterization of prunellin, an anti-HIV component from aqueous extracts of Prunella vulgaris. Antiviral Research, 11(5), 263-273. Turk, E. M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Denzel, M. A., Torres, Q. I. & Neff, M. M. (2003). CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiology, 133(4), 1643-1653. Turker, A. U., Yildirim, A. B., Tas, I., Ozkan, E., & Turker, H. (2021). Chemical profile, antibacterial and antioxidant potentials. Biotechnol Lett, 26(2), 2499-2510. Wang, K., Wan, Z., Ou, A., Liang, X., Guo, X., Zhang, Z., Wu, L. & Xue, X. (2019). Monofloral honey from a medical plant, Prunella Vulgaris, protected against dextran sulfate sodium-induced ulcerative colitis via modulating gut microbial populations in rats. Food & function, 10(7), 3828-3838. Yang, F., Feng, L., Liu, Q., Wu, X., Fan, Y., Raza, M. A., Cheng, Y., Chen, J., Wang, X., Yong, T., Liu, W., Liu, J., Du, J., Shu, K. & Yang, W. (2018). Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental and Experimental Botany, 150, 79-87. Yang, J., Guo, J., & Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT - Food Science and Technology, 41(6), 1060-1066. Yang, C. M., Chang, K. W., Yin, M. H. & Huang, H. M. (1998). Methods for the determination of the chlorophylls and their derivatives. Taiwania 43:116-122 Yousefian, S., Lohrasebi, T., Farhadpour, M., & Haghbeen, K. (2020). Effect of methyl jasmonate on phenolic acids accumulation and the expression profile of their biosynthesis-related genes in Mentha spicata hairy root cultures. Plant Cell Tissue and Organ Culture, 142. Zhang, D., Jiang, C., Huang, C., Wen, D., Lu, J., Chen, S., Zhang, T., Shi, Y., Xue, J., Ma, W., Xiang, L., Sun, W. & Chen, S. (2019). The light‐induced transcription factor FtMYB116 promotes accumulation of rutin in Fagopyrum tataricum. Plant, cell & environment, 42(4), 1340-1351. Zhang, Y., Chen, X., Yang, L., Zu, Y., & Lu, Q. (2015). Effects of rosmarinic acid on liver and kidney antioxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice. Food & function, 6(3), 927-931. Zhao, C., Wang, Z., Cui, R., Su, L., Sun, X., Borras-Hidalgo, O., Li, K, Wei, J., Yue, Q. & Zhao, L. (2021). Effects of nitrogen application on phytochemical component levels and anticancer and antioxidant activities of Allium fistulosum. PeerJ, 9, e11706. Zhao, J., Zhou, J.-J., Wang, Y.-Y., Gu, J.-W., & Xie, X.-Z. (2013). Positive regulation of phytochrome B on chlorophyll biosynthesis and chloroplast development in rice. Rice Science, 20(4), 243-248. Zhen, S., & Bugbee, B. (2020). Far‐red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant, cell & environment, 43(5), 1259-1272. Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165-5170. Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. Zou, J., Zhang, Y., Zhang, Y., Bian, Z., Fanourakis, D., Yang, Q., & Li, T. (2019). Morphological and physiological properties of indoor cultivated lettuce in response to additional far-red light. Scientia Horticulturae, 257, 108725. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85807 | - |
| dc.description.abstract | 夏枯草 (Prunella vulgaris) 為唇形科中藥材植物,有長久的應用歷史,現代醫學也多有關於其藥理價值的研究。遠紅光雖非光合有效輻射的波段範圍,但對植物形態及二次代謝物有所影響。氮素等植物營養對植物的生長與二次代謝物的累積亦有相關。本次研究透過植物組織培養方式,以對照 (CK) 及強遠紅光 (FR) 兩種光照環境,以及全劑量 (1N) 、½倍劑量 (½N) 及¼倍劑量 (¼N) 氮素等三種MS培養基,探討遠紅光與氮素施用量,對組織培養夏枯草形態、光合色素及二次代謝物生合成的影響,並測定夏枯草甲醇萃取物抗氧化能力,分析二次代謝物與抗氧化能力的關聯。結果顯示增加遠紅光無增加夏枯草的葉片對數、鮮重與乾重,而氮素則增加乾重。相同氮素施用量下,強遠紅光會降低葉綠素、胡蘿蔔素與葉綠素崩解產物;同光照處理中,氮素較多的組別則有較高的葉綠素及胡蘿蔔素含量,且兩種環境條件會改變不同光合色素間的比值。二次代謝物中總酚、芸香素與迷迭香酸含量會隨氮素與遠紅光的增加而提升,以FR + 1N有最多,分別有總酚 (44.73 mg Gallic acid equivalent g-1 DW) 、芸香素 (0.18 mg g-1 DW) 及迷迭香酸 (20.43 mg g-1 DW) ,CK + 1N有最多的總類黃酮含量 (105.57 mg Rutin equivalent g-1 DW) ,咖啡酸含量在各組間差異不顯著。以半抑制濃度(IC50)比較各組別的抗氧化能力的結果中,FR + 1N在DPPH清除自由基能力 (1.95 mg ml-1) 與還原能力 (2.33 mg ml-1) 的測定上皆有最低的IC50,表示其有最佳的抗氧化能力。以相關性分析得知此兩種抗氧化能力與酚類和迷迭香酸含量有顯著相關。以上結果顯示,在適量的氮素條件下添加額外的遠紅光,有助於增加夏枯草的二次代謝物含量及其抗氧化活性,增加其價值,可供未來穩定生產夏枯草之環境條件參考。 | zh_TW |
| dc.description.abstract | Prunella vulgaris is a traditional chinese medicinal plant of the Lamiaceae family and being used for a long time. There is many modern medicine research about its pharmacological value. The wavelength of far red light is not in the range of photosynthetically active radiation, but it could influence plant growth and secondary metabolites, so does nitrogen, which is an important plant nutrient. In this study, the effect of two light conditions, control (CK) and high far red light (FR) , and MS medium with three nitrogen levels, full (1N) , half (½N) and quarter nitrogen (¼N) , on morphology, photosynthetic pigments, secondary metabolites of in vitro Prunella vulgaris were explored, the antioxidant activities of its methanol extract were determined, and the relationship between secondary metabolites content and antioxidant activities were also analyzed. The result showed that high far red light did not increase the number of leaf pairs, fresh weight and dried weight. The nitrogen increased dried weight. Within the same nitrogen level, the chlorophylls, carotenoids and chlorophyll degradation pigments content decreased in the high far red light treatment. Under the same lighting condition, there were more chlorophyll and carotenoids content with increasing nitrogen level. The light and nitrogen treatment changed the ratio between different photosynthetic pigments. The content of total phenolic, rutin, and rosmarinic acid were increased with the elevated nitrogen level and the far red light, and the maximum content of these metabolites were observed under FR + 1N, which with total phenolic 44.73 mg Gallic acid equivalent g-1 DW, rutin 0.18 mg g-1 DW, and rosmarinic acid 20.43 mg g-1 DW, respectively. There was maximum content of flavonoid under CK + 1N (105.57 mg Rutin equivalent g-1 DW) . The content of caffeic acid among all groups was insignificantly different. Compared antioxidant activity among groups via half maximal inhibitory concentration (IC50), the result indicated that there were best DPPH free-radical scavenging activity (1.95 mg ml-1) and reducing power (2.33 mg ml-1) in FR + 1N. These two antioxidant activities above showed significantly correlated with the content of total phenolic and rosmarinic acid through correlation analysis. The results of this study showed that under appropriate nitrogen level with high far red light would benefit the increase in secondary metabolites and antioxidant activity in Prunella vulgaris to enhance its value, and could be a reference of the environmental condition when producing Prunella vulgaris stably in the future. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:24:59Z (GMT). No. of bitstreams: 1 U0001-0903202213091600.pdf: 2336011 bytes, checksum: 256d6d3dc15b518e8d5d6144a967826b (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 vii 表目錄 viii 第一章 前言 1 一、 夏枯草 1 二、 光合作用色素 2 三、 二次代謝物與保健功效 4 四、 光質對植物生長的影響 5 五、 氮素對植物生長的影響 7 六、 研究方法與目的 9 第二章 材料與方法 10 一、 植物種植條件 10 二、 光照條件 10 三、 外觀性狀調查 11 四、 光合作用色素 11 五、 總酚類含量 13 六、 總類黃酮含量 13 七、 咖啡酸、芸香素及迷迭香酸含量測定 13 八、 抗氧化能力測定 14 1. 清除DPPH自由基能力 14 2. 還原能力測定 15 3. 螯合亞鐵離子能力 15 九、統計分析 16 第三章 結果 17 一、 外觀性狀 17 二、 光合色素 18 1. 葉綠素 18 2. 胡蘿蔔素 18 3. 葉綠素生合成與崩解途徑產物 19 三、 二次代謝物 20 1. 總酚 21 2. 類黃酮 21 3. 咖啡酸 21 4. 芸香素 21 5. 迷迭香酸含量 22 四、 抗氧化能力 22 1. 清除DPPH自由基能力 22 2. 還原能力 23 3. 螯合亞鐵離子能力 23 五、 相關性分析 23 第四章 討論 25 一、 外觀性狀 25 二、 光合色素 26 三、 二次代謝物 29 四、 抗氧化能力 32 第五章 結論 34 第六章 參考文獻 35 圖目錄 圖 1、夏枯草種植之各光照光譜圖。 49 圖 2、氮素與強遠紅光各處理組別夏枯草吡咯紫質含量。 50 圖 3、氮素與強遠紅光各處理組別夏枯草原紫質占總吡咯紫質的比例。 51 圖 4、氮素與強遠紅光各處理組別夏枯草鎂-原紫質占總吡咯紫質的比例。 52 圖 5、氮素與強遠紅光各處理組別夏枯草總酚含量。 53 圖 6、氮素與強遠紅光各處理組別夏枯草總類黃酮含量。 54 圖 7、氮素與強遠紅光各處理組別夏枯草咖啡酸含量。 55 圖 8、氮素與強遠紅光各處理組別夏枯草芸香素含量。 56 圖 9、氮素與強遠紅光各處理組別夏枯草迷迭香酸含量。 57 圖 10、氮素與強遠紅光各處理組別夏枯草不同濃度之清除DPPH自由基能力。 58 圖 11、氮素與強遠紅光各處理組別夏枯草不同濃度之還原能力。 59 圖 12、氮素與強遠紅光各處理組別夏枯草不同濃度之螯合亞鐵離子能力。 60 表目錄 表 1、夏枯草不同氮素施用量之MS培養基 61 表 2、夏枯草外觀性狀、光合色素、二次代謝物及抗氧化能力半抑制濃度(IC50)之均方。 62 表 3、氮素及強遠紅光各處理組別夏枯草之株高、葉片對數、分支數、鮮重及乾重生長調查。 64 表 4、氮素與強遠紅光各處理組別夏枯草之總葉綠素 (Chl) 、葉綠素a (Chl a) 、葉綠素b (Chl b) 含量及葉綠素a/b (Chl a/b) 比值。 65 表 5、氮素與強遠紅光各處理組別夏枯草之總類胡蘿蔔素 (Car) 、低極性與高極性類胡蘿蔔素比值 (LP/MP Car) 、總類胡蘿蔔素/葉綠素 (Car/Chl) 。 66 表 6、氮素與強遠紅光各處理組別夏枯草之光合色素崩解產物脫鎂葉綠素 (Phe)、脫植醇葉綠素 (Chlide) 及兩者比值 (Phe/Chlide) 。 67 表 7、氮素與強遠紅光各處理組別夏枯草之含植醇 (Phytylated) 與脫植醇 (Dephytylated) 光合色素總量與兩者之間的比值 (Phytylated/Dephytylated) 。 68 表 8、氮素與強遠紅光各處理組別夏枯草之清除DPPH自由基能力、還原能力、螯合亞鐵離子能力之半抑制濃度 (IC50 ) 。 69 表 9、總酚類、總類黃酮、咖啡酸、芸香素、迷迭香酸、清除DPPH自由基能力、還原能力、亞鐵離子螯合能力半抑制濃度 (IC50 )之間的相關性分析。 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光合色素 | zh_TW |
| dc.subject | 二次代謝物 | zh_TW |
| dc.subject | 遠紅光 | zh_TW |
| dc.subject | 抗氧化能力 | zh_TW |
| dc.subject | 氮素 | zh_TW |
| dc.subject | 夏枯草 | zh_TW |
| dc.subject | 外觀性狀 | zh_TW |
| dc.subject | antioxidant activity | en |
| dc.subject | Prunella vulgaris | en |
| dc.subject | far red light | en |
| dc.subject | nitrogen | en |
| dc.subject | plant traits | en |
| dc.subject | photosynthetic pigments | en |
| dc.subject | secondary metabolites | en |
| dc.title | 遠紅光及氮素施用量對組織培養夏枯草生理及二次代謝物之影響 | zh_TW |
| dc.title | The Effect of Far-red Light and Nitrogen Fertilization on the Physiology and Secondary Metabolites of Prunella vulgaris in vitro | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳昶璋(Chang-Chang Chen) | |
| dc.contributor.oralexamcommittee | 楊棋明(Chi-Ming Yang),許明晃(Ming-Huang Hsu),楊志維(Zhi-Wei Yang),黃盟元(Meng-Yuan Huang) | |
| dc.subject.keyword | 夏枯草,遠紅光,氮素,外觀性狀,光合色素,二次代謝物,抗氧化能力, | zh_TW |
| dc.subject.keyword | Prunella vulgaris,far red light,nitrogen,plant traits,photosynthetic pigments,secondary metabolites,antioxidant activity, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202200621 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-04-01 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-04-26 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0903202213091600.pdf | 2.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
