Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85780
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張皓巽zh_TW
dc.contributor.advisorHao-Xun Changen
dc.contributor.author林鈺晟zh_TW
dc.contributor.authorYu-Cheng Linen
dc.date.accessioned2023-03-19T23:24:10Z-
dc.date.available2023-12-26-
dc.date.copyright2022-07-06-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAnderson, N. A. 1982. The genetics and pathology of Rhizoctonia solani. Ann. Rev. Phytopathol. 20(1):329–347.
Anonymous. 1979. List of Plant Diseases in Taiwan. Plant Protection Society, Republic of China.
Abd‐Elsalam, K. A., Omar, M. R., and Aly, A. A. 2010. First report of Rhizoctonia solani AG‐7 on cotton in Egypt. J. Phytopathol. 158:307–309.
Ajayi‐Oyetunde, O. O., and Bradley, C. A. 2017. Identification and characterization of Rhizoctonia species associated with soybean seedling disease. Plant Dis. 101(4):520–33.
Ajayi‐Oyetunde, O. O., and Bradley, C. A. 2018. Rhizoctonia solani: taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol. 67(1):3–17.
Aliferis, K.A., and Jabaji, S. 2010. Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates. J. Agric. Food Chem. 58(13):7604–7615.
Albertorio, F., Chapa, V. A., Chen, X., Diaz, A. J., and Cremer, P. S. 2007. The α, α-(1→ 1) linkage of trehalose is key to anhydrobiotic preservation. J. Am. Chem. Soc. 129(34):10567–10574.
Al-Bader, N., Meier, A., Geniza, M., Gongora, Y. S., Oard, J., and Jaiswal, P. 2019. Loss of premature stop codon in the Wall-Associated Kinase 91 (OsWAK91) gene confers sheath blight disease resistance in rice. biorxiv 625509.
Amselem, J., Cuomo, C. A., van Kan, J. A., Viaud, M., Benito, E. P., Couloux, A., Coutinho, P. M., de Vries, R. P., Dyer, P. S., Fillinger, S., Fournier, E., Gout, L., Hahn, M., Kohn, L., Lapalu, N., Plummer, K. M., Pradier, J. M., Quévillon, E., Sharon, A., Simon, A., Tudzynski, B., Tudzynski, P., Wincker, P., Andrew, M.,Anthouard, V., Beever, R. E., Beffa, R., Benoit, I., Bouzid, O., Brault, B., Chen, Z., Choquer, M., Collémare, J., Cotton, P., Danchin, E. G., Da Silva, C., Gautier, A., Giraud, C., Giraud, T., Gonzalez, C., Grossetete, S., Güldener, U., Henrissat, B., Howlett, B. J., Kodira, C., Kretschmer, M., Lappartient, A., Leroch, M., Levis, C., Mauceli, E., Neuvéglise, C., Oeser, B., Pearson, M., Poulain, J., Poussereau, N., Quesneville, H., Rascle, C., Schumacher, J., Ségurens, B., Sexton, A., Silva, E., Sirven, C., Soanes, D. M., Talbot, N. J., Templeton, M., Yandava, C., Yarden, O., Zeng, Q., Rollins, J. A., Lebrun, M. H., and Dickman, M. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS genetics 7(8):e1002230.
Armentrout, V.N., and Downer, A.J. 1987. Infection cushion development by Rhizoctonia solani on cotton. Phytopathology 77(4):619–623.
Arnér, E. S., and Holmgren, A. 2000. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267(20):6102–6109.
Bandy, B. P. 1988. Anastomosis groups 3 is the major cause of Rhizoctonia disease of potato in Maine. Plant Dis. 72(7):596–598.
Bahn, Y. S., Xue, C., Idnurm, A., Rutherford, J. C., Heitman, J., and Cardenas, M. E. 2007. Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5(1):57– 69.
Baird, R. E., Carling, D. E., and Mullinix, B. G. 1996. Characterization and Comparison of Isolates of Rhizoctonia solani AG-7 from Arkansas, Indiana, and Japan, and Select AG-4 Isolates. Plant Dis. 80:1421–1424.
Baird, R. E., Gitaitis, R. D., Carling, D. E., Baird, S. M., Alt, P. J., and Mullinix, B. G. 2000. Determination of whole-cell fatty acid profiles for the characterization and differentiation of isolates of Rhizoctonia solani AG-4 and AG-7. Plant Dis.
84(7):785–788
Bayram, Ö., Krappmann, S., Ni, M., Bok, J. W., Helmstaedt, K., Valerius, O., Braus-
Stromeyer, S., Kwon, N. J., Keller, N. P., Yu, J. H., and Braus, G. H. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320(5882):1504–1506.
Belmar, S. B., Jones, R. K., and Starr, J. L. 1987. Influence of crop rotation on inoculum density of Rhizoctonia solani and sheath blight incidence in rice. Phytopathology 77(8):1138–1143.
Benjamini, Y., and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B 57:289–300.
Bok, J. W., Noordermeer, D., Kale, S. P., and Keller, N. P. 2006. Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol. Microbiol. 61(6):1636-1645.
Bolton, M. D., Thomma, B. P., and Nelson, B. D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7(1):1–16.
Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., and Buckler, E. S. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635.
Bradley, C. A., Hartman, G. L., Nelson, R. L., Mueller, D. S., and Pederson, W. L. 2001. Response of ancestral soybean lines and commercial cultivars to Rhizoctonia root and hypocotyl rot. Plant Dis. 85:1091–5.
Bradley, C. A., Mueller, D. S., Hoffman, D. D., Nickell, C. D., Pedersen, W. L. and Hartman, G. L. 2005. Genetic analysis of partial resistance to Rhizoctonia solani in the soybean cultivar ‘Savoy’. Can. J. Plant Pathol. 27(1):137–142.
Bradley, C. A., Allen, T. W., Sisson, A. J., Bergstrom, G. C., Bissonnette, K. M., Bond, J., Byamukama, E., Chilvers, M. I., Collins, A. A., Damicone, J. P., and Dorrance, A. E. 2021. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2015 to 2019. Plant Health Prog. 22(4)483–495.
Broberg, M., Dubey, M., Sun, M. H., Ihrmark, K., Schroers, H. J., Li, S. D., Jensen, D. F., Brandström Durling, M., and Karlsson, M. 2018. Out in the cold: identification of genomic regions associated with cold tolerance in the biocontrol fungus Clonostachys rosea through genome-wide association mapping. Front. Microbiol. 9:2844.
Calvo, A. M., and Cary, J. W. 2015. Association of fungal secondary metabolism and sclerotial biology. Front. Microbiol. 6:62.
Carling, D. E. 1996. Grouping in Rhizoctonia solani by the anastomosis reaction. Pages 37–47 in: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh, S. Jabaji-Hare, S. Neate, and G. Dijst, eds. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Carling, D. E. 2002. Hyphal anastomosis reactions, and rDNA-ITS sequences and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology 92:43–50.
Cao, H., Huang, P., Zhang, L., Shi, Y., Sun, D., Yan, Y., and Lu, J. 2016. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. New Phytol. 211: 1035–51.
Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973.
Chang, P. K., Scharfenstein, L. L., Mack, B., and Ehrlich, K. C. 2012. Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis. Appl. Environ. Microbiol. 78(21):7557–7563.
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., and Lee, J. J. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4(1):13742–015.
Charoensopharat, K., Aukkanit, N., Thanonkeo, S., Saksirirat, W., Thanonkeo, P., and Akiyama, K. 2008. Targeted disruption of a G protein α subunit gene results in reduced growth and pathogenicity in Rhizoctonia solani. World J. Microbiol. Biotechnol. 24(3):345–351.
Chen, X., Li, L., He, Z., Zhang, J., Huang, B., Chen, Z., Zuo, S., and Xu, J. 2018. Molecular cloning and functional analysis of two novel polygalacturonase genes in Rhizoctonia solani. Can. J. Plant Pathol. 40(1):39–47.
Chen, C., and Dickman, M. B. 2005. cAMP blocks MAPK activation and sclerotial development via Rap‐1 in a PKA‐independent manner in Sclerotinia sclerotiorum. Mol. Microbiol. 55(1):299–311.
Copley, T. R., Duggavathi, R. and Jabaji, S. 2017. The transcriptional landscape of Rhizoctonia solani AG-1 IA during infection of soybean as defined by RNA-seq. PLoS One 12(9):e0184095.
Cubeta, M.A., and Vilgalys, R. 1997. Population biology of the Rhizoctonia solani complex. Phytopathology 87(4):480–484.
Cubeta, M. A., Thomas, E., Dean, R. A., Jabaji, S., Neate, S. M., Tavantzis, S., Toda, T., Vilgalys, R., Bharathan, N., Fedorova-Abrams, N., and Pakala, S. B. 2014. Draft genome sequence of the plant-pathogenic soil fungus Rhizoctonia solani
anastomosis group 3 strain Rhs1AP. Genome announc. 2(5):e01072–14.
Dalman, K., Himmelstrand, K., Olson, Å., Lind, M., Brandström-Durling, M., and Stenlid,
J. 2013. A genome-wide association study identifies genomic regions for virulence
in the non-model organism Heterobasidion annosum ss. PLoS One 8(1):e53525. Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., and Durbin,
R. 2011. The variant call format and VCFtools. Bioinformatics 27(15):2156–2158. Davis, M.W., and Jorgensen, E. M. 2022. ApE, A plasmid Editor: a freely available DNA
manipulation and visualization program. Front. Bioinform. 2:818619. Doehlemann, G., Berndt, P., and Hahn, M. 2006. Different signalling pathways involving a Gα protein, cAMP and a MAP kinase control germination of Botrytis cinerea
conidia. Mol. Microbiol. 59(3):821–835.
Dorrance, A. E., Kleinhenz, M. D., McClure, S. A., and Tuttle, N. T. 2003. Temperature,
moisture, and seed treatment effects on Rhizoctonia solani root rot of soybean. Plant
Dis. 87:533–538.
Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., and
Mitchell, S. E. 2011. A robust, simple genotyping-by-sequencing (GBS) approach
for high diversity species. PLoS One 6:e19379.
Erental, A., Dickman, M. B., and Yarden, O. 2008. Sclerotial development in Sclerotinia
sclerotiorum: awakening molecular analysis of a “Dormant” structure. Fungal Biol.
Rev. 22(1):6–16.
Feng, S., Shu, C., Wang, C., Jiang, S., and Zhou, E. 2017. Survival of Rhizoctonia solani
AG-1 IA, the causal agent of rice sheath blight, under different environmental conditions. J. Phytopathol. 165:44–52.
Fenille, R. C., De Souza, N. L., and Kuramae, E. E. 2002. Characterization of Rhizoctonia solani associated with soybean in Brazil. Eur. J. Plant Pathol. 108(8):783–792. Fukutomi, M., and Takada, H. 1979. Ultrastructure of infection process of Rhizoctonia
solani Kühn in cucumber hypocotyls. Ann. Phytopath. Soc. Jpn 45:453–462. Fujikawa, T., Sakaguchi, A., nishizawa, Y., Kouzai Y., Minami, E., Yano, S., Koga, H., Meshi, T., and Nichimura, M. 2012. Surface α-1,3-glucan facilitates fungal stealth
infection by interfering with innate immunity in plants. PLoS Pathog. 8(8):e1002882. Georgiou, C. D. 1997. Lipid peroxidation in Sclerotium rolfsii: a new look into the
mechanism of sclerotial biogenesis in fungi. Mycol. Res. 101:460–464.
Gao, Y., Liu, Z., Faris, J. D., Richards, J., Brueggeman, R. S., Li, X., Oliver, R. P., McDonald, B. A., and Friesen, T. L. 2016. Validation of genome-wide association studies as a tool to identify virulence factors in Parastagonospora nodorum.
Phytopathology 106(10):1177–1185.
Georgiou, C. D., Patsoukis, N., Papapostolou, I., and Zervoudakis, G. 2006. Sclerotial
metamorphosis in filamentous fungi is induced by oxidative stress. Integr. Comp.
Biol. 46:691–712.
Gordon, A., Basler, R., Bansept-Basler, P., Fanstone, V., Harinarayan, L., Grant, P. K.,
Birchmore, R., Bayles, R. A., Boyd, L. A., and O’Sullivan, D. M. 2015. The identification of QTL controlling ergot sclerotia size in hexaploid wheat implicates a role for the Rht dwarfing alleles. Theor. Appl. Genet. 128(12):2447–2460.
Gordon, A., McCartney, C., Knox, R. E., Ereful, N., Hiebert, C. W., Konkin, D. J., Hsueh, Y. C., Bhadauria, V., Sgroi, M., O’Sullivan, D. M., and Hadley, C. 2020. Genetic and transcriptional dissection of resistance to Claviceps purpurea in the durum wheat cultivar Greenshank. Theor. Appl. Genet. 133(6):1873–1886.
Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075.
Hane, J. K., Anderson, J. P., Williams, A. H., Sperschneider, J., and Singh, K. B. 2014. Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8. PLoS Genet. 10(5):e1004281.
Hartmann, F., Sánchez-Vallet, A., McDonald, B., and Croll, D. 2017. A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements. ISME J. 11:1189–1204.
Hashiba, T., and Ishikawa, T. 1978. Effect of adenosine 3', 5'-cyclic monophosphate on induction of sclerotia in Rhizoctonia solani. Phytopathology 68:1723–1727.
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35:518–522.
Hu, W., Pan, X., Abbas, H.M.K., Li, F., and Dong, W. 2017. Metabolites contributing to Rhizoctonia solani AG-1 IA maturation and sclerotial differentiation revealed by UPLC-QTOF-MS metabolomics. PLoS One 12(5):e0177464.
Huang, M., Liu, X., Zhou, Y., Summers, R. M., and Zhang, Z. 2019. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 8(2):giy154.
Hyakumachi, M., and Ui, T. 1987. Non-self-anastomosing isolates of Rhizoctonia solani obtained from fields of sugarbeet monoculture. Trans. Br. Mycol. Soc. 89(2):155– 159.
Jin, F. J., Takahashi, T., Matsushima, K. I., Hara, S., Shinohara, Y., Maruyama, J. I., Kitamoto, K., and Koyama, Y. 2011. SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in
Aspergillus oryzae. Eukaryot. Cell 10(7):945–955.
Johanson, A., Turner, H. C., McKay, G. J., and Brown, A. E. 1998. A PCR-based method
to distinguish fungi of the rice sheath-blight complex, Rhizoctonia solani, R. oryzae
and R. oryzae-sativae. FEMS Microbiol. Lett. 162(2):289–294.
Jørgensen, T. R., Burggraaf, A. M., Arentshorst, M., Schutze, T., Lamers, G., Niu, J., Kwon, M. J., Park, J., Frisvad, J. C., Nielsen, K. F., and Meyer, V. 2020. Identification of SclB, a Zn (II) 2Cys6 transcription factor involved in sclerotium
formation in Aspergillus niger. Fungal Genet. Biol. 139:103377. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat.
Methods 14:587–589.
Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S. Y., Freimer, N. B., Sabatti,
C., and Eskin, E. 2010. Variance component model to account for sample structure
in genome-wide association studies. Nat. Genet. 42(4):348–354.
Katoh, K., Rozewicki, J., and Yamada, K. D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform.
20(4):1060–1066.
Kaushik, A., Roberts, D. P., Ramaprasad, A., Mfarrej, S., Nair, M. B., Lakshman, D., and
Pain, A. 2020. The pangenome analysis of the soil-borne fungal phytopathogen Rhizoctonia solani and development of a comprehensive web resource: RsolaniDB. bioRxiv 423518.
Ko, W. H., and Hora, F. K. 1971. A selective medium for the quantitative determination of Rhizoctonia solani in soil. Phytopathology 61:707–710.
Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P.A. 2019. Assembly of long, error- prone reads using repeat graphs. Nature Biotechnol. 37(5):540–546.
Korinsak, S., Tangphatsornruang, S., Pootakham, W., Wanchana, S., Plabpla, A., Jantasuriyarat, C., Patarapuwadol, S., Vanavichit, A., and Toojinda, T. 2019. Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach. Genomics 111(4):661–668.
Kouzai, Y., Kimura, M., Watanabe, M., Kusunoki, K., Osaka, D., Suzuki, T., Matsui, H., Yamamoto, M., Ichinose, Y., Toyoda, K., and Matsuura, T. 2018. Salicylic acid‐ dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon. New Phytol. 217(2):771–783.
Kwon, Y. S., Kim, S. G., Chung, W. S., Bae, H., Jeong, S. W., Shin, S. C., Jeong, M. J., Park, S. C., Kwak, Y. S., Bae, D. W., and Lee, Y. B. 2014. Proteomic analysis of Rhizoctonia solani AG-1 sclerotia maturation. Fungal Biol. 118(5-6):433–443.
Lee, F. N., 1981. Number, viability, and buoyancy of Rhizoctonia solani sclerotia in Arkansas rice fields. Plant Dis. 64:298–300.
Li, H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27(21):2987–2993.
Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA- MEM. arXiv preprint arXiv:1303.3997.
Li, H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100.
Lepais, O., and Weir, J. T. 2014. SimRAD: an R package for simulation‐based prediction of the number of loci expected in RAD seq and similar genotyping by sequencing approaches. Mol. Ecol. Resour. 14(6):1314–1321.
Letunic, I., and Bork, P. 2021. Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(1): 293–296.
Li, Z., Pinson, S. R. M., Marchetti, M. A., Stansel, J. W., and Park, W. D. 1995.
Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor. Appl. Genet. 91:382– 388.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079.
Li, C., Gong, W., Zhang, L., Yang, Z., Nong, W., Bian, Y., Kwan, H. S., Cheung, M. K., and Xiao, Y. 2017. Association mapping reveals genetic loci associated with important agronomic traits in Lentinula edodes, shiitake mushroom. Front. Microbiol. 8:237.
Li, N., Lin, B., Wang, H., Li, X., Yang, F., Ding, X., Yan, J., and Chu, Z. 2019. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat. Genet. 51:1540–1548.
Li, C., Guo, Z., Zhou, S., Han, Q., Zhang, M., Peng, Y., Hsiang, T., and Chen, X. 2021. Evolutionary and genomic comparisons of hybrid uninucleate and nonhybrid Rhizoctonia fungi. Commun. Biol. 4(1):1–15.
Liu, Z. L., and Sinclair, J. B. 1992. Genetic diversity of Rhizoctonia solani anastomosis group 2. Phytopathology 82:778–787.
Liu, G., Jia, Y., Correa-Victoria, F. J., Prado, G. A., Yeater, K. M., McClung, A., and Correll, J. C., 2009. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology 99(9):1078–1084.
Liu, B., Wang, H., Ma, Z., Gai, X., Sun, Y., He, S., Liu, X., Wang, Y., Xuan, Y., and Gao, Z. 2018. Transcriptomic evidence for involvement of reactive oxygen species in Rhizoctonia solani AG-1 IA sclerotia maturation. PeerJ 6:e5103.
Liu, L., Lyu, X., Pan, Z., Wang, Q., Mu, W., Benny, U., Rollins, J.A., and Pan, H. 2022. The C2H2 transcription factor SsZFH1 regulates the size, number and development of apothecia in Sclerotinia sclerotiorum. Phytopathology (ja).
Lu, L., Shu, C., Liu, C., Wang, C., and Zhou, E. 2016. The impacts of natural antioxidants on sclerotial differentiation and development in Rhizoctonia solani AG-1 IA. Eur. J. Plant Pathol. 146(4):729–740.
Luo, X., Xie, C., Dong, J., and Yang, X. 2019. Comparative transcriptome analysis reveals regulatory networks and key genes of microsclerotia formation in the cotton vascular wilt pathogen. Fungal Genet. Biol. 126:25–36.
Marcel, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1):10–12.
Moore, W. 1993. Density of sclerotia of Rhizoctonia solani and incidence of sheath blight in rice fields in Mississippi. Plant Dis. 77(3):257.
MacNish, G. C., Carling, D. E., and Brainard, K. A. 1997. Relationship of microscopic and macroscopic vegetative reactions in Rhizoctonia solani and the occurrence of vegetatively compatible populations (VCPs) in AG-8. Mycol. Res. 101(1):61–68.
Mahoney, A. K., Babiker, E. M., Paulitz, T. C., See, D., Okubara, P. A., and Hulbert, S. H. 2016. Characterizing and mapping resistance in synthetic-derived wheat to Rhizoctonia root rot in a green bridge environment. Phytopathology 106:1170–1176.
Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L., and Zimin, A. 2018. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 14(1):e1005944.
Martin, A., Moolhuijzen, P., Tao, Y., McIlroy, J., Ellwood, S. R., Fowler, R. A., Platz, G. J., Kilian, A., and Snyman, L. 2020. Genomic regions associated with virulence in Pyrenophora teres f. teres identified by genome-wide association analysis and biparental mapping. Phytopathology 110(4):881–891.
Michelmore, R. W., Paran, I., and Kesseli, R. V. 1991. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl Acad. Sci. 88:9828–9832.
Molla, K. A., Karmakar, S., Chanda, P. K., Ghosh, S., Sarkar, S. N., Datta, S. K., and Datta, K. 2013. Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Mol. Plant. Pathol. 14(9):910–22.
Molla, K. A., Karmakar, S., Molla, J., Bajaj, P., Varshney, R. K., Datta, S. K., and Datta, K. 2020. Understanding sheath blight resistance in rice: the road behind and the road ahead. Plant Biotechnol. J. 18(4):895–915.
Muyolo, N. G., Lipps, P. E., and Schmitthenner, A. F. 1993. Anastomosis grouping and variation in virulence among isolates of Rhizoctonia solani associated with dry bean and soybean in Ohio and Zaire. Phytopathology 83:438–44.
Nagarajkumara, M., Jayaraj, J., Muthukrishnan, S., Bhaskaran, R., and Velazhahan, R. 2005. Detoxification of oxalic acid by Pseudomonas fluorescens PfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiol. Res. 160:291–298
Nelson, B., Helms, T., Christianson, T., and Kural, I. 1996. Characterization and pathogenicity of Rhizoctonia from soybean. Plant Dis. 80:74–80.
Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32:268–274.
Oladzad, A., Zitnick-Anderson, K., Jain, S., Simons, K., Osorno, J. M., McClean, P. E., and Pasche, J.S. 2019. Genotypes and genomic regions associated with Rhizoctonia solani resistance in common bean. Front. Pant Sci. 10:956.
Palma-Guerrero, J., Hall, C. R., Kowbel, D., Welch, J., Taylor, J. W., Brem, R. B., and Glass, N. L. 2013. Genome-wide association identifies novel loci involved in fungal communication. PLoS Genet. 9(8):e1003669.
Papapostolou, I., and Georgiou, C. D. 2010. Hydrogen peroxide is involved in the sclerotial differentiation of filamentous phytopathogenic fungi. J. Appl. Microbiol. 109(6):1929–1936.
Pereira, D., McDonald, B. A., and Croll, D. 2020. The genetic architecture of emerging fungicide resistance in populations of a global wheat pathogen. Genome Biol. Evol. 12(12):2231–2244.
Prasad, K., and Weigle, J. L. 1976. Association of seed coat factors with resistance to Rhizoctonia solani in Phaseolus vulgaris. Phytopathology 66:342–345.
Price, A. L., Zaitlen, N. A., Reich, D., and Patterson, N. 2010. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 11(7):459–463.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., De Bakker, P. I., Daly, M. J., and Sham, P. C. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum.
Genet. 81(3):559–575.
Richa, K., Tiwari, I. M., Devanna, B. N., Botella, J. R., Sharma, V., and Sharma, T. R.
2017. Novel chitinase gene LOC_Os11g47510 from indica rice Tetep provides enhanced resistance against sheath blight pathogen Rhizoctonia solani in rice. Front. Plant Sci. 8:596.
Rollins, J. A. and Dickman, M. B. 1998. Increase in endogenous and exogenous cyclic AMP levels inhibits sclerotial development in Sclerotinia sclerotiorum. Appl. Environ. Microbiol. 64(7):2539–2544.
Rothrock, C. S., Winters, S. A., Kinney, P. M., and Carling, D. E. 1993. Occurrence of Rhizoctonia solani (Thanatephorus cucumeris) AG-7 in Arkansas. Plant Dis. 77:1262.
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7):671–675.
Sharon, M., Kuninaga, S., Hyakumachi, M., and Sneh, B. 2006. The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience 47:299–316.
Sharon, M., Kuninaga, S., Hyakumachi, M., and Sneh, B. 2008. Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 49:93–114.
Shu, C., Zhao, M., Anderson, J. P., Garg, G., Singh, K. B., Zheng, W., Wang, C., Yang, M., and Zhou, E. 2019. Transcriptome analysis reveals molecular mechanisms of sclerotial development in the rice sheath blight pathogen Rhizoctonia solani AG-1 IA. Funct. Integr. Genomics 19(5):743–758.
Silva, J., Scheffler, B., Sanabria, Y., De Guzman, C., Galam, D., Farmer, A., Woodward, J., May, G., and Oard, J. 2012. Identification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing. Theor. Appl. Genet. 124(1):63–74.
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212.
Smith, M. E., Henkel, T. W., and Rollins, J. A., 2015. How many fungi make sclerotia? Fungal Ecol. 13:211–220.
Spanner, R., Taliadoros, D., Richards, J., Rivera-Varas, V., Neubauer, J., Natwick, M., Hamilton, O., Vaghefi, N., Pethybridge, S., Secor, G. A., and Friesen, T. L. 2021. Genome-wide association and selective sweep studies reveal the complex genetic architecture of DMI fungicide resistance in Cercospora beticola. Genome Biol. Evol. 13(9):evab209.
Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34:W435–W439.
Stinnett, S. M., Espeso, E. A., Cobeño, L., Araújo-Bazán, L., and Calvo, A. M. 2007. Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol. Microbiol. 63(1):242–55.
Sumner, D. R. 1996. Sclerotia formation by Rhizoctonia species and their survival. Pages 207–215 in: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh, S. Jabaji-Hare, S. Neate, and G. Dijst, eds. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Takashi, N., and Tadao, U. 1978. Ecological and morphological characteristics of the sclerotia of Rhizoctonia solani Kühn produced in soil. Soil Biol. Biochem. 10(6):471–478.
Talas, F., Kalih, R., Miedaner, T., and McDonald, B. A. 2016. Genome-wide association study identifies novel candidate genes for aggressiveness, deoxynivalenol production, and azole sensitivity in natural field populations of Fusarium graminearum. Mol. Plant Microbe Interact. 29(5):417–430.
Team, R. C. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R- project.org/.
Townsend, B. B., and Willetts, H. J. 1954. The development of sclerotia of certain fungi. Trans. Br. Mycol. Soc. 37(3)213–221.
Tran, V. T., Braus‐Stromeyer, S. A., Kusch, H., Reusche, M., Kaever, A., Kühn, A., Valerius, O., Landesfeind, M., Aßhauer, K., Tech, M., and Hoff, K. 2014. V erticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots. New Phytol. 202(2):565–581.
VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91(11):4414–4423.
Van Schoonhoven, A., and Pastor-Corrales, M. 1987. Standard System for the Evaluation of Bean Germplasm. Pages 36–38 in: Cali: Centro Internacional de Agricultura Tropical.
Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. 2017. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27(5):737–746.
Wang, H., Meng, J., Peng, X., Tang, X., Zhou, P., Xiang, J., and Deng, X. 2015. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight. Plant Mol. Biol. 89: 157– 171.
Wang, J., and Zhang, Z. 2021. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform. 19:1–12.
Wibberg, D., Jelonek, L., Rupp, O., Hennig, M., Eikmeyer, F., Goesmann, A., Hartmann, A., Borriss, R., Grosch, R., Pühler, A., and Schlüter, A. 2013. Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14. J. Biotechnol. 167(2):142–155.
Wibberg, D., Andersson, L., Tzelepis, G., Rupp, O., Blom, J., Jelonek, L., Pühler, A., Fogelqvist, J., Varrelmann, M., Schlüter, A., and Dixelius, C. 2016. Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2 IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes. BMC Genom. 17(1):1–12.
Wibberg, D., Genzel, F., Verwaaijen, B., Blom, J., Rupp, O., Goesmann, A., Zrenner, R., Grosch, R., Pühler, A., and Schlüter, A., 2017. Draft genome sequence of the potato pathogen Rhizoctonia solani AG3-PT isolate Ben3. Arch. Microbiol. 199(7):1065– 1068.
Wick, R. R, Judd, L. M., Gorrie, C. L., and Holt, K. E. 2017. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 3(10):e000132.
Willetts, H. J., and Bullock, S. 1992. Developmental biology of sclerotia. Mycol. Res. 96(10):801–816.
Wrather, A., Shannon, G., Balardin, R., Carregal, L., Escobar, R., Gupta, G. K., Ma, Z., Morel, W., Ploper, D., and Tenuta, A. 2010. Effect of diseases on soybean yield in the top eight producing countries in 2006. Plant Health Prog. 11(1):29.
Xia, Y., Fei, B., He, J., Zhou, M., Zhang, D., Pan, L., Li, S., Liang, Y., Wang, L., Zhu, J., Li, P., and Zheng., A. 2017. Transcriptome analysis reveals the host selection fitness mechanisms of the Rhizoctonia solani AG-1 IA pathogen. Sci. Rep. 7:10120.
Yang, X. B., Berggren, G. T., and Snow, J. P. 1990. Seedling infection of soybean by isolates of Rhizoctonia solani AG-1, causal agent of aerial blight and web blight of soybean. Plant Dis. 74:485–488.
Yadav, S., Anuradha, G., Kumar, R. R., Vemireddy, L. R., Sudhakar, R., Donempudi, K., Venkata, D., Jabeen, F., Narasimhan, Y. K., Marathi, B., and Siddiq, E. A. 2015. Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice (Oryza sativa L.). Springerplus 4:175.
Yu, J., Pressoir, G., Briggs, W. H., Vroh Bi, I., Yamasaki, M., Doebley, J. F., McMullen, M. D., Gaut, B. S., Nielsen, D. M., Holland, J. B., and Kresovich, S. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38(2):203–208.
Yun Y., Zhou X., Yang S., Wen Y., You H., Zheng Y., Norvienyeku J., Shim WB., and Wang Z. 2019. Fusarium oxysporum f. sp. lycopersici C2H2 transcription factor FolCzf1 is required for conidiation, fusaric acid production, and early host infection. Curr Genet. 65(3):773–783.
Zhao, G., Ablett, G. R., Anderson, T. R., Rajcan, I., and Schaafsma, A. W. 2005a. Inheritance and genetic mapping of resistance to rhizoctonia root and hypocotyl rot in soybean. Crop Sci. 45:1441–7.
Zhao, G., Ablett, G. R., Anderson, T. R., Rajcan, I., and Schaafsma, A. W. 2005b. Anastomosis groups of Rhizoctonia solani associated with soybean root and hypocotyl rot in Ontario and resistance of accession PI 442031 to different anastomosis groups. Can. J. Plant Pathol. 27(1):108–117.
Zhao, M., Zhang, Z., Zhang, S., Li, W., Jeffers, D. P., Rong, T., and Pan, G. 2006. Quantitative trait loci for resistance to banded leaf and sheath blight in maize. Crop Sci. 46(3):1039–1045.
Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., Bradbury, P. J., Yu, J., Arnett, D. K., Ordovas, J. M., and Buckler, E. S. 2010. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42(4):355–360.
Zhang, J., Wang, Y., Du, J., Huang, Z., Fang, A., Yang, Y., Bi, C., Qing, L., and Yu, Y. 2019. Sclerotinia sclerotiorum thioredoxin reductase is required for oxidative stress tolerance, virulence, and sclerotial development. Front. Microbiol. 10:233.
Zhang, Z., Xia, X., Du, Q., Xia, L., Ma, X., Li, Q., and Liu, W. 2021. Genome Sequence of Rhizoctonia solani anastomosis group 4 strain Rhs4ca, a widespread pathomycete in field crops. Mol. Plant Microbe Interact. 34(7):826–829.
Zheng, A., Lin, R., Zhang, D., Qin, P., Xu, L., Ai, P., Ding, L., Wang, Y., Chen, Y., Liu, Y.M., and Sun, Z. 2013. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat. Commun. 4(1):1–10.
Zrenner, R., Genzel, F., Verwaaijen, B., Wibberg, D., and Grosch, R. 2020. Necrotrophic lifestyle of Rhizoctonia solani AG-3 PT during interaction with its host plant potato as revealed by transcriptome analysis. Sci. Rep. 10(1):1–14.
Zuo, S. M., Zhu, Y. J., Yin, Y. J., Wang, H., Zhang, Y. F., Chen, Z. X., Gu, S. L., and Pan, X. B. 2014. Comparison and confirmation of quantitative trait loci conferring partial resistance to rice sheath blight on chromosome 9. Plant Dis. 98(7):957–964.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85780-
dc.description.abstract立枯絲核菌 (Rhizoctonia solani) 是造成大豆 (Glycine max) 苗期病害的病原 菌之一,其de (sclerotia) 能於田間殘存並在大豆苗期造成重大的損失。立枯絲核 菌具有 14 種菌絲融合群 (anastomosis group; AG),且至少有七種可以感染大豆。 大豆為臺灣重要的經濟作物,其中作為蔬食用的毛豆,外銷產值連年超過 20 億新 臺幣,故研究毛豆病害為產業永續發展的重要課題。本研究於 2020 年自臺灣高屏 四個田區分離感染大豆根部的立枯絲核菌,並透過型態與分子鑑定發現共有 AG- 1、AG-7 和 AG-F 三種 AG 族群。針對最常見的 AG-7 進行臺灣 16 個大豆品種之 抗病性篩選,結果發現黑豆品種如恆春黑豆,通常對於 AG-7 有較佳的耐病性。由 於本次分離的 AG-7 菌株具有菌核形成能力之差異,故應用全基因體關聯性分析 (genome-wide association study, GWAS) 研究其遺傳組成。首先以影像分析方法進 行菌核數量與菌核大小的定量,再針對各菌株以測序基因分型 (genotyping-by- sequencing) 比較藉由 Oxford Nanopore 定序及組裝的 AG-7 基因體,以獲得 154 隻 AG-7 菌株之單一核f酸多態性 (single nucleotide polymorphism; SNPs)。實驗結果 發現 154 隻菌株並無依地域性所產生的族群結構,但有八個與菌核形成能力顯著 關聯的 SNPs。針對與菌核數量與大小顯著關聯的 SNPs,其連鎖不平衡區間內皆有 發現抗氧化相關基因;另外,與菌核數量較為相關的基因則有 DNA 處理、轉譯與 信息傳導等;而與菌核大小較為相關的則為代謝與細胞壁重組等基因。後續研究需 進行候選基因的功能性分析,方能確認這些基因如何影響族群內菌核形成數量與 大小之差異。本研究成果增進了對臺灣大豆立枯絲核菌的田間族群結構與臺灣大 豆品種抗病程度的理解,更首次完成立枯絲核菌 AG-7 基因體,並應用 GWAS 對菌核形成能力進行遺傳分析。未來研究將持續以大豆抗病品種與降低病原菌田間 殘存的菌核為目標,達到病害防治的永續發展。zh_TW
dc.description.abstractRhizoctonia solani causes soybean (Glycine max) seedling diseases and it disseminates in fields by its survival structures, sclerotia. There are at least 14 anastomosis groups (AGs) for R. solani, and seven of them can infect soybean. With soybean production having achieved annual revenue over 2 billion NTD, the potential risk of this disease should be more recognized. This study aimed to characterize the Rhizoctonia population in soybean fields of Taiwan, assess the Rhizoctonia resistance in 16 soybean varieties of Taiwan, as well as study the genetic makeup of sclerotia-forming capability in R. solani. Rhizoctonia isolates were collected from four soybean fields in southern Taiwan and three AGs including AG-1, AG-7, and AG-F were identified. The predominant AG-7 was used to screen for Rhizoctonia resistance, and showed black soybeans, such as ‘Hengchun-black-soybean’, being more resistant to seed-rot and root- rot. To study sclerotia-forming capability, an image-based assay was established for phenotypic quantification and variations of sclerotia numbers and sizes produced by 154 AG-7 isolates were observed. In addition, genotyping-by-sequencing (GBS) was applied to obtain the single-nucleotide polymorphisms (SNPs) of the 154 isolates. The Illumina paired-end reads of each isolate were mapped to the reference-guided genome assembly of AG-7, which was sequenced and assembled using the Oxford Nanopore platform. Subsequently, 12,938 SNPs were obtained for genome-wide association study (GWAS). While the results showed no geographic population structure among the 154 isolates, three and five significant SNPs were associated with the sclerotia number and size, respectively. Genes within the regions in linkage-disequilibrium (LD) with the significant SNPs were annotated. As a result, genes related to DNA-binding, translation and signal transduction were more frequently observed for sclerotia number, whereas the majority of genes associated with sclerotia size were related to metabolic pathways, cell differentiation and cell wall modification. Despite the difference, oxidative stress-related genes were observed in both of the sclerotia number- and size-associated loci. This study not only reveals the geographic population structure of R. solani and the Rhizoctonia resistance in the soybean varieties of Taiwan, but also illuminates the heritability and candidate genes associated with sclerotia-forming capability of R. solani. Future studies will continue to improve soybean disease resistance and decrease sclerotia residues in fields to sustain soybean production in Taiwan.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:24:10Z (GMT). No. of bitstreams: 1
U0001-1404202214544000.pdf: 30057154 bytes, checksum: 0fceee809cccd8582cc2a7cc17e65a7b (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
Table of Contents vi
Table indexes viii
Figure indexes ix
Chapter 1. Introduction 1
1.1 The biology of Rhizoctonia solani 1
1.2 The principles of Rhizoctonia anastomosis group (AG) identification 1
1.3 The pathogenesis of R. solani 3
1.4 The plant resistance mechanisms against R. solani 4
1.5 The mechanisms of sclerotia formation in R. solani 6
1.6 Genetic mapping for genes associated with the sclerotia-forming capability 9
1.7 Research objectives 10
Chapter 2. Materials and methods 11
2.1 Maintenance of plant and fungal materials 11
2.2 Phylogenetic analysis for Rhizoctonia solani anastomosis groups (AGs) 11
2.3 Establishment of the plate assay for screening the seed-rot resistance 12
2.4 Establishment of the pot assay for screening the root-rot resistance 14
2.5 Image analysis for quantifying the sclerotia-forming capability 15
2.6 Whole-genome sequencing of the R. solani AG-7 isolate No.123 16
2.7 Genotyping-by-sequencing (GBS) library construction 17
2.8 SNP calling pipeline 19
2.9 Genome-wide association study (GWAS) 19
Chapter 3. Results 21
3.1 Field survey of Rhizoctonia solani AGs in the soybean fields of Taiwan. 21
3.2 Seed-rot resistance for R. solani AG-7 in the soybean varieties of Taiwan 23
3.3 Root-rot resistance for R. solani AG-7 in soybean varieties of Taiwan 25
3.4 Quantification of the sclerotia-forming capability of R. solani AG-7 26
3.5 Genome assembly of the R. solani AG-7 isolate No.123 27
3.6 Genotyping the R. solani AG-7 field population 28
3.7 GWAS for the sclerotia number and sclerotia size 28
Chapter 4. Discussion 31
4.1 Rhizoctonia solani AG-7 causes soybean seedling diseases in Taiwan 31
4.2 Rhizoctonia resistance in the soybean varieties of Taiwan 32
4.3 GWAS for the sclerotia-forming capability in R. solani AG-7 33
4.4 Genetic components affecting the variation in the sclerotia numbers and size 34
4.5 Conclusions 37
References 39
Figures 60
Tables 85
Supplementary data 113
-
dc.language.isozh_TW-
dc.title臺灣大豆立枯絲核菌病害與菌核形成之研究zh_TW
dc.titleThe Disease and Sclerotia-forming Capability of Soybean Pathogen Rhizoctonia solani in Taiwanen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林彥蓉;曾敏南;鍾嘉綾zh_TW
dc.contributor.oralexamcommitteeYann-Rong Lin;Min-Nan Tseng;Chia-Lin Chungen
dc.subject.keyword立枯絲核菌,全基因體關聯性分析,抗病篩選,菌核,菌絲融合群,測序基因分型,zh_TW
dc.subject.keywordRhizoctonia solani,Genome-wide association study,Resistance screening,Sclerotia,Anastomosis groups,Genotyping-by-sequencing,en
dc.relation.page119-
dc.identifier.doi10.6342/NTU202200698-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-04-26-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-lift2027-04-26-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  此日期後於網路公開 2027-04-26
29.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved