請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85751
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊宏智(Hong-Tsu Young) | |
dc.contributor.author | Kuan-Yi Hung | en |
dc.contributor.author | 洪貫益 | zh_TW |
dc.date.accessioned | 2023-03-19T23:23:17Z | - |
dc.date.copyright | 2022-09-30 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-25 | |
dc.identifier.citation | [1] “Advanced packaging industry - overview”, from Yole Developpement, http://www.yole.fr/index.aspx [2] P. Garrou, C. Huffman, “RDL: an integral part of today’s advanced packaging technologies,” Solid State Technology, vol. 54, No. 5, pp. 18-20, 2011. [3] J. H. Lau, P. Tzeng, C. Lee, C. Zhan, M. Li, J. Cline, et al., “Redistribution layers (RDLs) for 2.5D/3D IC integration,” J. Microelectron. Electron. Packag., vol. 11, pp. 16-24, 2014. [4] X. Yin, Z. Zhu, Y. Liu, Q. Lu, X. Liu, Y. Yang, “Ultra-compact TSV-based L-C low-pass filter with stopband up to 40 GHz for microwave application,” IEEE Trans. Microw. Theor. Tech., vol. 67, pp. 738-745, 2019. [5] F. Wang, X. Liu, J. Liu, “Effect of stirring on the defect-free filling of deep through silicon vias,” IEEE Access, vol. 8, pp. 108555-108560, 2020. [6] Ji Xu, Y. Sun, J. Liu, Y. D. Wei, W. S. Zhao, D. W. Wang, “Fabrication and high-frequency characterization of low-cost fan-in/out WLP technology with RDL for 2.5D/3D heterogeneous integration,” Microelectronics Journal, vol. 119, 105332, 2022. [7] J. C. Lin, J. P. Hung, N. W. Liu, Y. C. Mao, W. T. Shih, and T. H. Tung. “Packaged Semiconductor Device With a Molding Compound and a Method of Forming the Same,” U.S. Patent: 9,000,584, 2015. [8] D. -H. Lee, J. S. Choi, H. Chae, C. -H. Chung, S. M. Cho, “Highly efficient phosphorescent polymer OLEDs fabricated by screen printing,” Displays, vol. 29, pp. 436-439, 2008. [9] P. Kopola, M. Tuomikoski, R. Suhonen, A. Maaninen, “Gravure printed organic light emitting diodes for lighting applications,” Thin Solid Films, vol. 517, pp. 5757-5762, 2009. [10] J. Chen, H. Liu, Y. A. Huang, Z. Yin, “High-rate roll-to-roll stack and lamination of multilayer structured membrane electrode assembly,” J. Manuf. Process, vol. 23, pp. 175-182, 2016. [11] K. Kim, S. I. Ahn, K. C. Choi, “Direct fabrication of copper patterns by reactive inkjet printing,” Curr. Appl. Phys., vol. 13, pp. 1870-1873, 2013. [12] 陳忠輝,”印刷電子產業之趨勢及展望”,印刷科技第27卷,第4期,94-92,2011。 [13] K. K. B. Hon, L. Li, I. M. Hutchings, “Direct writing technology—Advances and developments,” CIRP Annals - Manufacturing Technology, vol. 57, pp. 601-620, 2008. [14] G. D. Martin, S. D. Hoath, I. M. Hutchings, “Inkjet Printing—The Physics of Manipulating Liquid Jets and Drops,” J. Phys.: Conf. Ser., vol. 105, 012001, 2008. [15] Elmqvist, Rune, “Measuring Instrument of the Recording Type,” U.S. Patent: 2,566,443, 1951. [16] A. M. Lewis, and A. D. Brown, “Electrically Operated Character Printer,” U.S. Patent: 3,298,030, 1967. [17] W. L. Buehner, J. D. Hill, T. H. Williams, and J. W. Woods, “Application of Ink-Jet Technology to A Word Processing Output Printer,” IBM J. Res. Dev., vol. 21, pp. 2-9, 1977. [18] Zoltan, S. L., “Pulse Droplet Ejection System,” U.S. Patent: 3,683,212, 1972. [19] E. L. Kyser, and S. B. Sears, “Method and Apparatus for Recording with Writing Fluids and Drop Projection Means Therefore,” U.S. Patent: 3,946,398, 1976. [20] J. L. Vaught, F. L. Cloutier, D. K. Donald, J. D. Meyer, C. A. Tacklind, and H. H. Taub, “Thermal Ink-Jet Printer,” U.S. Patent: 4,490,728, 1984. [21] 吳鉉忠,壓電式微液滴噴射數學模擬系統之開發與實驗研究,博士論文,國立成功大學材料科學及工程學系,台南,2004。 [22] Hue P. Le, “Progress and Trends in Ink-jet Printing Technology,” J. Imaging Sci. Technol., vol. 42, pp. 49-62, 1998. [23] 單子睿,壓電式噴墨系統之液滴型態控制研究及其數值模擬,碩士論文,國立成功大學材料科學及工程學系,台南,2003。 [24] R. N. Mills, “ESIJETTM printing technology,” IS&T's Tenth International Congress on Advanced in NonImpact Printing Technologies, pp. 286-290, 1999. [25] S. A. Elrod, B. T. Khuri-Yakub and C. F. Quake, “Stabilization of the free surface of a liquid,” U.S. Patent: 5,629,724, 1997. [26] H. M. P. Chen, S. J. Wu, F. C. Tong, J. A. Cheng, and H. P. D. Shieh, “Rib-free Ink-Jet Printing Fabrication on Heterogeneous Surfaces,” Jpn. J. Appl. Phys., vol. 49, pp. 1-3, 2010. [27] M. Fukuda, M. Ito, K. Tsuruoka, Y. Kuwana, S. Kashiwabara, H. Hirakoso, and O. Tagashira, “Low Temperature Curable Cu Ink and Fine Inkjet-printed Patterning,” SID Symposium Digest of Technical Papers, vol. 44, pp. 458-460, 2013. [28] M. Maiwald, C. Werner, V. Zo¨llmer and M. Busse, “INKtelligent printing for sensorial applications,” Sensor Review, vol. 30, pp. 19-23, 2010. [29] C. C. Huang, Z. K. Kao, and Y. C. Liao, “Flexible Miniaturized Nickel Oxide Thermistor Arrays via Inkjet Printing Technology,” ACS Appl. Mater. Interfaces, vol. 5, pp. 12954-12959, 2013. [30] 黃致翰,氣溶膠噴塗印刷技術應用於顯示器製程之研究,碩士論文,國立交通大學顯示科技研究所,新竹,2013。 [31] G. W. Israel, and S.K. Friedlander, “High-speed beams of small particles,” J. Colloid Interface Sci., vol. 4, pp. 330-337, 1967. [32] F. Mora, and R. Chueca, “Aerodynamic focusing of particles in a carrier gas,” Journal of Fluid Mechanics, vol. 195, pp. 1-21, 1988. [33] M. J. Renn, G. Marquez, B.H. King, Essien, and Miller, “Direct write technologies for rapid prototyping applications,” Academic Press, San Diego, 2002. [34] T. Seifert, E. Sowade, F. Roscher, M. Wiemer, T. Gessner, and R. R. Baumann, “Additive Manufacturing Technologies Compared: Morphology of Deposits of Silver Ink Using Inkjet and Aerosol Jet Printing,” Ind. Eng. Chem. Res., vol. 54, pp. 769-779, 2015. [35] R. (Ross) Salary, J. P. Lombardi, M. S. Tootooni, R. Donovan, P. K. Rao, M. D. Poliks, “In situ sensor-based monitoring and computational fluid dynamics (CFD) modeling of aerosol jet printing (ajp) process,” ASME 2016 11th International Manufacturing Science and Engineering Conference, vol. 2, pp. 1-13, 2016. [36] H. A. Platt, Y. Li, J. P. Novak, Maikel F. A. M. van Hest, “Non-contact printed aluminum for metallization of Si photovoltaics,” Thin Solid Films, vol. 556, pp. 525-528, 2014. [37] C. S. Jones, X. Lu, M. Renn, M. Stroder, W. S. Shih, “Aerosol-jetprinted, high-speed, flexible thin-film transistor made using singlewalled carbon nanotube solution,” Microelectron Eng., vol. 87, pp. 434-437, 2010. [38] F. X. Wang, J. Lin, W. B. Gu, Y. Q. Liu, H. D. Wu, G. B. Pan, “Aerosol-jet printing of nanowire networks of zinc octaethylporphyrin and its application in flexible photodetectors,” ChemComm, vol. 49, pp. 2433-2435, 2013. [39] A. Lesch, D. Momotenko, F. Cortés-Salazar, I. Wirth, U. M. Tefashe, F. Meiners, B. Vaske, H. H. Girault, G. Wittstock, “Fabrication of soft gold microelectrode arrays as probes for scanning electrochemical microscopy,” J. Electroanal. Chem., vol. 666, pp. 52-61, 2012. [40] D. Zhao, T. Liu, J. G. Park, M. Zhang, J. M. Chen, and B. Wang, “Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes,” Microelectronic Engineering, vol. 96, pp. 71-75, 2012. [41] R. Eckstein, G. Hernandez-Sosa, U. Lemmer, N. Mechau, “Aerosol jet printed top grids for organic optoelectronic devices,” Organic Electronics, vol. 15, pp. 2135-2140, 2014. [42] B. Clifford, D. Beynon, C. Phillips, D. Deganello, “Printed-Sensor-on-Chip devices – Aerosol jet deposition of thin film relative humidity sensors onto packaged integrated circuits,” Sens. Actuators B Chem., vol. 255, pp. 1031-1038, 2018. [43] C. Wang, G. Y. Hong, K. M. Li, H. T. Young, “A miniaturized nickel oxide thermistor via aerosol jet technology,” Sensors, vol. 17, 2017. [44] B. King, M. Renn, “Aerosol jet® direct write printing for mil-aero electronic applications,” Optomec, 2014. [45] T. Seiferta, M. Baumb, F. Roscherb, M. Wiemerb, T. Gessnera, “Aerosol Jet printing of nano particle based electrical chip interconnects,” Materials Today: Proceedings, vol. 2, pp. 4262-4271, 2015. [46] S. Tong, E. abari, H. Alemohammad, et al., “Development of non-planar interconnects for double-sided flexible copper substrates using laser assisted maskless microdeposition processes,” Journal of Laser Applications, pp. 993-999, 2011. [47] A. Roshanghias, M. Dreissigacker, C. Scherf, C. Bretthauer, L. Rauter, J. Zikulnig, T. Braun, Karl-F. Becker, S. Rzepka, and M. Schneider-Ramelow, “On the Feasibility of Fan-Out Wafer-Level Packaging of Capacitive Micromachined Ultrasound Transducers (CMUT) by Using Inkjet-Printed Redistribution Layers,” Micromachines, vol. 11, 2020. [48] B. Khorramdel, J. Liljeholm, M. M. Laurila, T. Lammi, G. Mårtensson, T. Ebefors, F. Niklaus, and M. Mäntysalo, “Inkjet printing technology for increasing the I/O density of 3D TSV interposers,” Microsystems & Nanoengineering, vol. 3, 2017. [49] R. Cauchois, M. Saadaoui, J. Legeleux, T. Malia, B. Dubois-Bonvalot, K. Inal, J. C. Fidalgo, “Wire-bonding on inkjet-printed silver pads reinforced by electroless plating for chip on flexible board packages,” HAL EMSE, 2013. [50] Wikipedia, from https://en.wikipedia.org/wiki/aerosol [51] Optomec, from https://www.optomec.com/ [52] I. S. Akhatov, J. M. Hoey, O. F. Swenson, and D. L. Schulz, “Aerosol focusing in micro-capillaries: Theory and experiment,” Aerosol Science, vol. 39, pp. 691-709, 2008. [53] Wikipedia, from https://en.wikipedia.org/wiki/Stokes_flow [54] H. W. Kang, D. Y. Choi, K. H. Lee, and H. J. Sung, “Effects of Sheath gas geometry on aerosol jet patterning and coating,” International Conference on Flexible and Printed Electronics 2009, Jeju Island, Korea, 2009. [55] P. H. Buffat, and J. P. Borel, “Size effect on the melting temperature of gold partlcles,” Phys. Rev. A, vol. 13, pp. 2287-2298, 1976. [56] N. R. Bieri, J. Chung, D. Poulikakos, and C. P. Grigoropoulos, “Manufacturing of Nanoscale Thickness Gold Lines by Laser Curing of A Discretely Deposited Nanoparticle Suspension,” Superlattices and Microstructures, vol. 35, pp. 437-444, 2004. [57] J. Perelaer, M. Klokkenburg, and C. E. Hendriks, “Microwave Flash Sintering of Inkjet-Printed Silver Tracks on Polymer Substrates,” Adv. Mater., vol. 21, pp. 4830-4834, 2009. [58] H. J. Hwang, K. H. Oh, and H. S. Kim, “All-photonic drying and sintering process via flash white light combined with deep-UV and near infrared irradiation for highly conductive copper nano-ink,” Scientific Reports, vol. 6, 19696, 2016. [59] F. M. Smits, “Measurement of Sheet Resisitivities with the Four-Point Probe,” The Bell System Technical Journal, vol. 37, pp. 711-718, 1958. [60] ASTM Standard, ASTM D3359-09, “Standard Test Methods for Measuring Adhesion by Tape Test,” ASTM International, 2010. [61] 3M website, from https://www.3m.com.tw/3M/zh_TW/company-tw/ [62] 賴銘悠,IC封裝銲線製程能力分析,碩士論文,國立勤益大學工業工程與管理系碩士班,台中,2010。 [63] 蔡文琪,積體電路封裝銅打線製程成本效益分析,碩士論文,國立臺北科技大學工業工程與管理系碩士班,臺北,2013。 [64] 戴光助,GaN HEMT打線接合構裝技術之研究,碩士論文,國立交通大學工學院半導體材料與製程設備學程,新竹,2012。 [65] Caiyuan Wang, “The Quality Test of Wire Bonding,” Modern Applied Science, vol. 3, pp. 50-56, 2009. [66] Integrated Hybrid Assembly, from http://www.integratedhybridassembly.com/wire-bond-pull-test/ [67] MIL-STD-883E, Method 2011.7, “Bond Strength (Destructive Bond Pull Test),” Department of Defense Test Method Standard Microcircuits, 1997. [68] JEDEC Standard, JESD22-B116A, “Wire Bond Shear Test Method,” Solid State Technology Association, 2009. [69] JEDEC Standard, JESD22-A113D, “Precondition of Nonhermetic Surface Mount Devices Prior to Reliability Testing,” Solid State Technology Association, 2003. [70] IPC/JEDEC, J-STD-020E, “Moisture/Reflow Sensitivity Classification for Nonhermetic Surface Mount Devices,” Solid State Technology Association, 2014. [71] MIL-STD-883E, Method 1010.7, “Temperature Cycling,” Department of Department of Defense Test Method Standard Microcircuits, 1997. [72] JEDEC Standard, JESD22-A103C, “High Temperature Storage Life,” Solid State Technology Association, 2004. [73] JEDEC Standard, JESD22-A110E.01, “Highly Accelerated Temperature and Humidity Stress Test (HAST),” Solid State Technology Association, 2015. [74] JEDEC Standard, JESD22-A102E, “Accelerated Moisture Resistance-Unbiased Autoclave,” Solid State Technology Association, 2010. [75] Ansforce, from https://www.ansforce.com/ [76] J. W. Park, and S. G. Baek, “Thermal behavior of direct-printed lines of silver nanoparticles,” Scripta Materialia, vol. 55, pp. 1139-1142, 2006. [77] 高振裕,軟性電子之印刷式奈米材料與元件研究,博士論文,國立清華大學化學工程研究所,新竹,2010。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85751 | - |
dc.description.abstract | 本研究成功利用氣溶膠噴射列印技術(AJP)取代傳統製程完成多層重新佈線層(Redistribution Layer, RDL)結構封裝體,並證實具有高度技術上可行性。研究中透過溶劑對奈米銀顆粒墨水濃度進行調整,結果顯示比例2:1(Ag:PGME)之銀墨水濃度,具有良好的霧化性與穩定性。再者,藉由適當的鞘氣氣流與霧化氣流參數,可成功列印出品質良好之銀線路,且可依需求將線寬控制於20-30 µm。而銀墨水透過直接溫度燒結法,燒結在180℃以上1小時後,即可具有良好之導電性、傳輸穩定度與附著性,其最小平均電阻率達到2.22×〖10〗^(-6) Ω‧cm,約為塊銀之2倍,而附著性等級則達到5B。此外,亦透過添加高分子墨水強化銀墨水之附著性,具有明顯的效果,可以進一步提升銀墨水之附著性。 本研究藉由上述所獲得之銀墨水列印參數,列印單層RDL與多層RDL結構,並透過不同層數之銀焊墊進行打線接合與推拉力測試驗證。研究結果證實所列印之銀電路與焊墊具有可重複性,其線寬與焊墊尺寸,分別約為25-28 µm與 100-110 µm。而添加了高分子層的多層RDL結構,在僅有一層銀焊墊時,即可達到100%打線良率,並可通過推拉力測試規範的標準值。但是單層RDL結構的銀焊墊則需列印至三層時,才能達到相同的強度,說明打線接合良率與金球受力強度會受到銀焊墊厚度與高分子層影響。此外,本研究中列印800顆含三層銀焊墊的多層RDL結構封裝體,進行放量可靠度測試(RA)。研究結果證實,RDL封裝體在正常溫濕度與高低溫環境中具有良好的可靠度,其溫度循環測試(TCT)與高溫儲存測試(HTSL)的良率可達到100%。但當濕度提高至85%RH以上之高壓高濕的環境測試時,會加速濕氣從結構的缺陷與層與層間滲入,使得封裝體容易有分層與電性失效問題,導致較低的可靠度,高加速溫濕度測試(HAST)的良率下降至96%,而具100%RH之高溫水蒸汽壓力測試(或稱壓力鍋測試, PCT)良率更是下降至76%。 最後,經過綜合評估分析,雖然AJP技術在生產速度上仍不及傳統製程,距離實際量產應用還有許多設備與成本問題需要考量,但由於其具有免光罩直接結構列印、多範圍材料選擇與少化學廢料等優點,且經本研究證明其可成功應用於RDL結構封裝體製造,擁有高度的技術可行性與可靠度。因此,與傳統製程的複雜度與高成本相比下,仍具有一定的優勢與發展潛力,有機會實際應用於業界。 | zh_TW |
dc.description.abstract | In this study, Aerosol Jet printing (AJP) was successfully used to replace the traditional process to complete the multi-layer RDL structure package, and it was proved to be feasible. This study utilizes solvent to adjust the concentration of nanoparticles silver ink, and the result proves that the ink has good atomization and stability when the ratio of silver ink and solvent is 2:1 (Ag: PGME). The high-quality silver lines can be successfully printed with the proper parameters of sheath gas and atomizing gas flow rate, and the line width can be controlled at 20-30 µm according to requirements. The silver ink has good electrical conductivity, transmission stability and adhesion after sintering at a temperature above 180℃ for 1 hour by direct temperature sintering method. The minimum average resistivity reaches 2.22×〖10〗^(-6) Ω‧cm, about 2 times that of bulk silver, and the adhesion grade reaches 5B. In addition, the adhesion of silver ink was also enhanced by adding polymer ink, which has obvious effect and can further improve the adhesion of silver ink. This study utilizes the silver ink printing parameters obtained above to print single-layer RDL and multi-layer RDL structures, and conduct wire bonding and shear-pull test verification through different layers of silver pads. The results demonstrate that the printed silver circuits and bond pads are repeatable, with line widths and pad sizes of approximately 25-28 µm and 100-110 µm, respectively. The multi-layer RDL structure with added polymer layer can achieve 100% wire bonding yield rate when has only one silver bond pad, and can pass the standard value of the shear-pull test specification. However, the silver bond pads of the single-layer RDL structure need to be printed to three layers to achieve the same strength. It shows that the wire bonding yield rate and the force strength of the gold ball are affected by the thickness of the silver bond pad and the polymer layer. Furthermore, we printed 800 multi-layer RDL structure packages with three-layer silver bond pads for Reliability testing (RA). The study results show that the RDL package has good reliability in normal temperature and humidity and high-low temperature environments, and the yield rate of the Temperature cycle test (TCT) and High temperature storage test (HTSL) can reach 100%. However, when the humidity is increased to above 85%RH, the reliability of the RDL package is reduced due to the pores and defects between the layers. The yield rate of Highly accelerated stress test (HAST) dropped to 96%, and the yield rate of Pressure cook test (PCT) with 100% RH dropped to 76%. Finally, after a comprehensive evaluation and analysis, although the production speed of AJP technology is still lower than the traditional process, there are still many equipment and cost issues to be considered before the actual mass production application. However, due to its advantages of mask-free direct structure printing, wide range of material selection and less chemical waste, and this study has proved that it has technical feasibility and reliability, it can be successfully applied to the manufacture of RDL structure packages. Therefore, compared with the complexity and high cost of the traditional process, AJP still has certain advantages and development potential, and has the opportunity to be practically applied in the industry. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:23:17Z (GMT). No. of bitstreams: 1 U0001-2009202214512500.pdf: 10836316 bytes, checksum: 18002190d9ddbb0f221edfe14671f5a3 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii ABSTRACT v 圖目錄 xi 表目錄 xv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.5 論文架構 5 第二章 文獻回顧 6 2.1 重新佈線層製程概述 6 2.2 直接寫入技術回顧 10 2.2.1 噴墨列印技術(Inkjet Printing, IJP) 11 2.2.2 氣溶膠噴射列印技術(Aerosol Jet Printing, AJP) 14 2.3 直接寫入技術於封裝製程之相關研究 19 第三章 研究方法 24 3.1 研究簡介 24 3.2 氣溶膠噴射列印技術 24 3.2.1 墨水霧化原理 25 3.2.2 氣溶膠流體聚焦 27 3.3 奈米金屬顆粒燒結處理 30 3.4 電性量測分析方法 31 3.4.1 電阻率定義 31 3.4.2 四點探針量測原理 32 3.5 薄膜附著力測試方法 33 3.5.1 ASTM D3359-09膠帶試驗法 34 3.6 打線接合技術與測試 36 3.6.1 打線接合方法 37 3.6.2 推拉力測試驗證標準 39 3.6.2.1 拉力測試(Pull Test) 40 3.6.2.2 推力測試(Ball Shear Test) 42 3.7 可靠度測試方法(Reliability test, RA) 45 3.8 製程與量測分析設備 51 3.8.1 氣溶膠噴射列印機 51 3.8.2 熱烘箱固化設備 54 3.8.3 雷射共軛焦顯微鏡 55 3.8.4 場發射掃描式電子顯微鏡 57 3.8.5 X-Ray繞射分析儀 57 3.8.6 雙束型聚焦離子束顯微鏡 58 3.8.7 四點探針量測儀 60 第四章 實驗規劃與流程 62 4.1 簡介 62 4.2 基板準備 63 4.2.1 矽晶圓基板 63 4.2.2 未封裝之裸晶 63 4.2.3 驗證用印刷電路板 64 4.2.4 導線架 65 4.2.5 基板清洗 66 4.3 墨水製備 67 4.4 奈米銀墨水濃度與列印參數測試實驗 69 4.5 墨水燒結性質分析實驗 70 4.5.1 薄膜試片列印 70 4.5.2 燒結條件對薄膜性質之探討 71 4.5.3 銀線路導電穩定性分析測試 72 4.6 重新佈線層(RDL)結構列印與打線接合實驗 73 4.6.1 RDL結構設計列印與實驗參數 73 4.6.2 打線接合測試 75 4.6.3 金球推拉力測試 77 4.7 可靠度測試實驗(RA) 78 第五章 結果與討論 79 5.1 銀墨水濃度與列印參數測試結果分析 79 5.1.1 銀墨水濃度對列印線路之影響 79 5.1.2列印參數調控 84 5.2 墨水燒結性質分析實驗結果討論 88 5.2.1導電性分析結果討論 88 5.2.1.1 電阻率量測結果分析 89 5.2.1.2 SEM微結構分析 91 5.2.1.3 燒結條件影響性分析 96 5.2.1.4 XRD與EDS分析 97 5.2.2 銀墨水附著性分析 104 5.2.3 銀線路導電穩定性分析 111 5.3 重新佈線層(RDL)列印與打線接合實驗結果探討 115 5.3.1 RDL銀導電層形貌與厚度分析討論 117 5.3.2 RDL結構打線接合實驗結果分析討論 120 5.3.3 金球推拉力測試結果分析討論 127 5.4 RDL打線封裝放量可靠度測試結果探討 134 5.5 RDL列印製程可行性綜合分析 137 第六章 結論與未來展望 140 6.1 結論 140 6.2 未來展望 143 參考文獻 144 | |
dc.language.iso | zh-TW | |
dc.title | 氣溶膠噴射列印技術應用於重新佈線層與打線接合焊墊之可行性研究 | zh_TW |
dc.title | Feasibility Study of Aerosol Jet Printing Technique for Redistribution Layer and Wire Bonding Pad | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 李貫銘(Kuan-Ming Li) | |
dc.contributor.oralexamcommittee | 廖英志(Ying-Chih Liao),莊賀喬(Ho-Chiao Chuang),林傳傑(Chuan-Chieh Lin) | |
dc.subject.keyword | 氣溶膠噴射列印技術,重新佈線層,奈米銀顆粒墨水,燒結溫度,打線接合焊墊,可靠度測試, | zh_TW |
dc.subject.keyword | Aerosol Jet printing technology,redistribution layer,nanoparticles silver ink,sintering temperature,wire bonding pad,reliability test, | en |
dc.relation.page | 151 | |
dc.identifier.doi | 10.6342/NTU202203647 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-30 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2009202214512500.pdf | 10.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。