請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85725完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 澤大衛(David Zelený) | |
| dc.contributor.author | Kuan-Fu Lin | en |
| dc.contributor.author | 林冠甫 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:22:32Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-07 | |
| dc.identifier.citation | Burt, R. (Ed). 2004. Soil Survey Laboratory Manual, Soil Survey Investigations Report, No.42, version 4.0. Washington DC. Natural Resources Conservation Service, US. Department of Agriculture. Cáceres, M.D., Legendre, P., Valencia, R., Cao, M., Chang, L.-W., Chuyong, G., Condit, R., Hao, Z., Hsieh, C.-F., Hubbell, S., Kenfack, D., Ma, K., Mi, X., Noor, M. N. S., Kassim, A. R., Ren, H., Su, S.-H., Sun, I-F., Thomas, D., Ye, W. and He, F. 2012. The variation of tree beta diversity across a global network of forest plots. Global Ecology and Biogeography, 21, 1191-1202. Chećko, E., Jaroszewicz, B., Olejniczak, K. and Kwiatkowska-Falińska, A. J. 2015. The importance of coarse woody debris for vascular plants in temperate mixed deciduous forests. Canadian Journal of Forest Research, 45, 1154-1163. Chudomelová, M., Zelený, D. and Li, C.-F. 2017. Contrasting patterns of fine-scale herb layer species composition in temperate forests. Acta Oecologica, 80, 24-31. Cohen, J. 1988. Statistical power analysis for the behavioral sciences (2nd ed.). New York: Academic Press. Condit, R. 1998. Tropical Forest Census Plots: Methods and results from Barro Colorado Island, Panama, and a comparison with other plots. Berlin: Springer. Davies et al. 2021. ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 253, 108907. De Frenne, P., Rodríguez-Sánchez, F., De Schrijver, A., Coomes, D. A., Hermy, M., Vangansbeke, P. and Verheyen, K. 2015. Light accelerates plant responses to warming. Nature Plants, 1, 15110. Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N. and Wagner, H.H. 2021. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-14. https://CRAN.R-project.org/package=adespatial Foster, P. 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55, 73-106 Frelich, L. E., Machado. J.-L. and Reich, P. B. 2003. Fine-scale environmental variation and structure of understorey plant communities in two old-growth pine forests. Journal of Ecology, 91, 283-293. Frazer, G. W., Canham, C. D., and Lertzman, K. P. 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users’ manual and program documentation. Copyright © 1999: Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York. Fukasawa, Y., Katsumata, S., Mori, A. S., Osono, T. and Takeda, H. 2014. Accumulation and decay dynamics of coarse woody debris in a Japanese old-growth subalpine coniferous forest. Ecological Research, 29, 257-269. Gazol, A. and Ibáñez, R. 2010. Plant species composition in a temperate forest: Multi-scale patterns and determinants. Acta Oecologica, 36, 634-644. Gilliam, F. S. and Roberts, M. R. 2003. Interactions between the herbaceous layer and overstory canopy of eastern forests: A mechanism for linkage. Pages 198–223 in Gilliam F. S. and Roberts M. R. (Ed). The Herbaceous Layer in Forests of Eastern North America. New York: Oxford University Press. Gilliam, F. S. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience, 57, 845-858. Hill, M. O. 1979. TWINSPAN—A Fortran Program for Arranging Multivariate Data in an Ordered Two-way Table by Classification of The Individuals and Attributes. Ecology and Systematics, Cornell University, Ithaca, NY. Hill, M. O. and Gauch, H. G. (1980). Detrended correspondence analysis: An improved ordination technique. Vegetatio, 42, 47-58. Hobbie, S. E., Reich, P. B., Oleksyn, J., Ogdahl, M., Zytkowiak, R., Hale, C. and Karolewski, P. 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 87, 2288-2297. Holm, S. 1979. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6, 65-70. Horsley, S. B. 1993. Mechanisms of interference between hay-scented fern and black cherry. Canadian Journal of Forest Research, 23, 2059-2069. Kassambara, A. 2021. Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.0. https://CRAN.R-project.org/package=rstatix Lee, P. and Sturgess, K. 2001. The effects of logs, stumps, and root throws on understory communities within 28-year-old aspen-dominated boreal forests. Canadian Journal of Botany, 79, 905-916. Lenoir, J., Gégout, J. C., Dupouey, J. L., Bert, D. and Svenning, J.-C. 2010. Forest plant community changes during 1989-2007 in response to climate warming in the Jura Mountains (France and Switzerland). Journal of Vegetation Science, 21, 949-964. Leuschner, C. and Lendzion, J. 2009. Air humidity, soil moisture and soil chemistry as determinants of the herb layer composition in European beech forest. Journal of Vegetation Science, 20, 288-298. Li, C.-F., Chytrý, M., Zelený, D., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., Hsia, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L. and Wang, J.-C. 2013. Classification of Taiwan forest vegetation. Applied Vegetation Science, 16, 698-719. Li, C.-F., Zelený, D., Chytrý, M., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., Hsia, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L., Wang, J.-C., Yu, C.-F., Lai, Y.-J., Guo, K. and Hsieh, C.-F. 2015. Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecological Research, 30, 771-791. Lu, X. T., Yin, J. X. and Tang, J. W. 2010. Structure, tree species diversity and composition of tropical seasonal rainforests in Xishuangbanna, south-west China. Journal of Tropical Forest Science, 22, 260-270. Lu, X. T., Yin, J. X. and Tang, J. W. 2011. Diversity and composition of understory vegetation in the tropical seasonal rain forest of Xishuangbanna, SW China. Revista de Biología Tropical, 59, 455-463. Márialigeti, S., Tinya, F., Bidló, A. and Ódor, P. 2016. Environmental drivers of the composition and diversity of the herb layer in mixed temperate forests in Hungary. Plant Ecology, 217, 549-563. McCune, B. and Keon, D. 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science, 13, 603-606. Muller, R. N. 2003. Nutrient relations of the herbaceous layer in deciduous forest ecosystems. Pages 15–37 in Gilliam F. S. and Roberts M. R., eds. The Herbaceous Layer in Forests of Eastern North America. New York: Oxford University Press. Okada, M., Hirao, T., Kaji, M. and Goto, S. 2019. Role of fallen logs in maintaining the species diversity of understory vascular plants in a mixed coniferous and broad-leaved forest in Hokkaido, northern Japan. Forest Ecology and Management, 448, 249-255. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. and Wagner, H. 2020. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan Rao, C. R. 1964. The use and interpretation of principal component analysis in applied research. Sankhyaá, Ser. A, 26, 329-358. R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ Rodríguez-Calcerrada, J., Nanos, N., del Ray, M. C., Lopez de Heredia, U., Escribano, R. and Gil, L. 2011. Small-scale variation of vegetation in a mixed forest understorey is partly controlled by the effect of overstory composition on litter accumulation. Journal of Forest Research, 16, 473-483. Roleček, J., Tichý, L., Zelený, D. and Chytrý, M. 2009. Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. Journal of Vegetation Science, 20, 596-602. Santiago, L. S. 2000. Use of Coarse Woody Debris by the Plant Community of a Hawaiian Montane Cloud Forest. Biotropica, 32, 633-641. Satti, P., Mazzarino, M. J., Gobbi, M., Funes, F., Roselli, L. and Fernandez, H. 2003. Soil N dynamics in relation to leaf litter quality and soil fertility in north-western Patagonian forests. Journal of Ecology, 91, 173-181. Small, C. J. and McCarthy, B. C. 2005. Relationship of understory diversity to soil nitrogen, topographic variation, and stand age in an eastern oak forest, USA. Forest Ecology and Management, 217, 229-243. Šmilauer, P. and Lepš, J. 2014. Multivariate Analysis of Ecological Data using Canoco 5. Second Edition. Cambridge University Press, Cambridge, UK. Tichý, L. 2002. JUICE, software for vegetation classification. Journal of Vegetation Science, 13, 451-453. Su, S.-H., Hsieh, C.-F., Chang-Yang, C.-H., Lu, C.-L. and Guan, B.T. 2010. Micro-topographic Differentiation of the Tree Species Composition in a Subtropical Submontane Rainforest in Northeastern Rainforest. Taiwan Journal of Forest Science, 25, 63-80. Turner, I. M., Tan, H. T. W. and Chua, K. S. 1996. Relationships between herb layer and canopy composition in a tropical rain forest successional mosaic in Singapore. Journal of Tropical Ecology, 12, 843-851. Umaña, M. N., Zhang, C., Cao, M., Lin, L. and Swenson, N. G. 2015. Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters, 18, 1329-1337. Valencia, R., Foster, R. B., Villa, G., Condit, R., Svenning, J. -C., Hernández, C., Romolerous, K., Losos, E., Magård, E. and Balslev, H. 2004. Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214–229. Ward Jr, J. H. 1963. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236-244. Wang, B., Zhang, G. and Duan, J. 2015. Relationship between topography and the distribution of understory vegetation in a Pinus massoniana forest in Southern China. International Soil and Water Conservation Research, 3, 291-304. Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F. 2002. Ecological responses to recent climate change. Nature, 416, 389-395. Westhoff, V. and van der Maarel, E. 1978. The Braun-Blanquet approach. In: Whittaker, R.H. 1978. (Ed.), Classification of Plant Communities, 289-399. W. Junk, The Hague, NL. Wickham, H. 2021. tidyr: Tidy Messy Data. R package version 1.1.3. https://CRAN.R-project.org/package=tidyr Zelený, D. 2021. twinspanR: TWo-way INdicator SPecies ANalysis (and its modified version) in R. R package version 0.22. 施璐璐, 駱爭榮, 夏家天, 趙文娟, 吳友貴, 丁炳揚. 亞熱帶中山常綠闊葉林木本植物幼苗數量動態及其與生境的相關性. 生態學報, 34, 6510-6518. 張勵婉, 黃正良, 羅士福, 李沛軒. 2015. 台灣中部低海拔蓮華池森林動態樣區之地被植物種類、組成及與環境之關係. 台灣林業科學, 30, 245-257. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85725 | - |
| dc.description.abstract | 在亞熱帶森林動態樣區中,針對林下物種組成 (草本、藤本及木本植物) 與環境因子之間關係的研究較少。本研究探討亞熱帶山地雲霧林中環境因子與林下物種組成的關係。為此,我們在拉拉山和塔曼山間的鞍部附近 (北緯 24.2236°、東經 121.4415°) 建立了一個 1 公頃的森林動態樣區,並將其劃分為 100 個 10 m × 10 m 的子樣區。在每個 10 m × 10 m 子樣區的中心,設置 2 m × 2 m 的小樣區,並使用Braun-Blanquet 記錄草本、藤本及胸高直徑小於 1 公分的木本植物的覆蓋度。而環境變量的部分,分為地形 (海拔、凹凸度、坡度、迎風程度及東北向程度)、光照因子 (使用魚眼照片量測)、土壤參數 (土壤 pH 值、土壤深度及土壤含石率) 和小樣區中的地表類型覆蓋度 (土壤、倒木、半倒木及立木)。我們在每一個10 m × 10 m 子樣區裡記錄了樹冠層木本植物 (胸高直徑大於1公分) 物種組成的資料,用以分析它與林下物種組成的關係。對於林下物種組成的分析,使用雙向指示物種分析 (TWINSPAN) 將小樣區分為不同的植群型,判別每種植群型的鑑別種、恆存種與優勢種並比較植群型間的環境差異。我們對地形、光照、土壤參數及棲地覆蓋率這四類環境因子使用了冗餘分析、向前選取法及變異劃分去找出物種組成與環境因子之間的關係。 在小樣區中共記錄到106個物種,包含52種草本植物 (30 種蕨類, 9 種附生植物)、47種木本植物及7種藤本植物。此外,根據 TWINSPAN的結果,林下物種的組成分為兩種不同的植群型:第一種為凸型 (包括66個小樣區),凸型的小樣區地面具有更高的立木覆蓋度、較低的林下光度;第二種為凹型 (包括34個小樣區),凹型的小樣區具有較低的立木棲息地覆蓋率、較高的林下光度。另外,凸型的小樣區裡多數的鑑別種為木本植物小苗,而凹型的小樣區裡多數的鑑別種為草本植物。 而環境因子與物種組成的關聯性,根據變異劃分的結果,地形因子中的凹凸度與海拔及棲息地覆蓋度可以解釋較多的總體變量及部分變量。雖然樹冠層物種組成對於林下物種組成有重要的影響,但進一步分析結果發現環境因子與樹冠層物種組成的影響有高度的相關性,因此不能將其從環境因子的影響中獨立出來。對於地形因子的重要性推測為微地形、光照條件、土壤營養成分及微棲地的綜合影響。對於棲息地覆蓋度,分析結果顯示瞭解樣區中微棲地的相對比例的影響對於小尺度的植群研究 (特別是研究林下物種組成) 是很重要的。 | zh_TW |
| dc.description.abstract | Although there are many studies about species composition in subtropical forest dynamics plots, only a few of them focus on the relationship between the species composition in the understory (herbs, lianas, and seedlings of woody species) and environmental variables. In this study, we aimed to explore the relationship between environmental factors and understory vegetation in a subtropical montane cloud forest in Taiwan. We established a 1-ha forest dynamics plot near the saddle between Lalashan and Tamanshan in Northern Taiwan (N 24.2236°, E 121.4415°), divided it into 100 10 m × 10 m subplots, and set 2 m × 2 m quadrat in the center of each subplot. We used Braun-Blanquet scale to record visually estimated coverage of all herbs, lianas, and woody species (with a diameter at breast height less than 1 cm) in each central quadrat. From environmental variables, for 10 m × 10 m subplot we recorded topography (convexity, elevation, northeasterness, slope, and windwardness), light conditions (calculated from photographs taken by fish-eye camera) and soil parameters (rock soil ratio, soil depth and soil pH), and only in each 2 m × 2 m quadrat we also estimated microhabitat type coverage (bare soil type, decayed wood type, half-decayed wood type, and living wood type). In each 10 m × 10 m subplot, we also recorded the overstory woody species composition (DBH ≥ 1 cm), to explore how it influences understory species composition. For understory species composition, we used two-way indicator species analysis (TWINSPAN) to classify the vegetation into types, identified diagnostic, constant, and dominant species of each vegetation type, and quantified environmental differences between them. To find out the relationship between species composition of understory and environmental factors, we used redundancy analysis, forward selection, and variation partitioning among four categories of environmental variables (topography, light, soil variables, and coverage of microhabitat types). To quantify the relationship of understory to overstory, we used ordination axes from detrended correspondence analysis on species composition of overstory as explanatory variables in redundancy analysis on understory species composition. In total, we recorded 106 species, including 52 herbs (30 pteridophytes, 9 epiphyte), 47 woody species, and 7 lianas. According to the TWINSPAN result, the understory species composition was classified into two vegetation types: Type 1 (“Convex”, including 66 quadrats), which has higher coverage of living wood habitat and lower light availability, and Type 2 (“Concave”, including 34 quadrats), which has lower coverage of living wood habitat and higher light availability. Besides, most of the diagnostic species of Convex type are seedling of woody species, whereas, most of diagnostic species of Concave type are herb species. For the species-environment relationship, the result of variation partitioning showed that topographical variables (convexity and elevation) and habitat type coverage can explain more total and partial variance among the four sets of environmental factors. Even though species composition of overstory is thought to be important to understory species composition, according to our results, we couldn’t conclude that overstory vegetation affect the understory vegetation separately because the effect of overstory vegetation was highly correlated with environmental factors. We suggest that the effect of topographical variables combines effects of light conditions, soil nutrients, overstory vegetation, and microhabitat types. Moreover, we also showed that understanding the effect of the relative proportion of microhabitat types in the quadrats is important to fine-scale study, especially studying the understory species composition. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:22:32Z (GMT). No. of bitstreams: 1 U0001-0706202210434000.pdf: 2034604 bytes, checksum: 12c6bff316c6ada26ece1fa8ca084233 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgement I 中文摘要 II Abstract IV Contents VII List of Figures VIII List of Tables IX Introduction 1 Material and methods 6 Study site 6 Sampling design 8 Species composition 9 Environmental factors 10 Topographical factors 10 Light passing through the canopy 11 Soil variables 11 Ground coverage 12 Data analyses 13 Pretreatment of data 13 Vegetation classification 13 Species-environment relationship 14 Results 17 Species composition 17 The pattern of environmental factors 17 Vegetation classification 18 Species-environment relationship 24 Discussion 32 Conclusions 36 Authors’ contribution 37 References 38 Appendices 45 Appendix 1: Species names 45 Appendix 2: Complete synoptic table 48 Appendix 3: Correlation between environmental variables 51 Appendix 4: Supplementary ordination diagram 52 Appendix 5: Environmental variables 53 Appendix 6: Effect size for each t-test 58 Appendix 7: R code 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 亞熱帶森林動態樣區 | zh_TW |
| dc.subject | 小尺度研究 | zh_TW |
| dc.subject | 山地雲霧林 | zh_TW |
| dc.subject | 物種-環境關係 | zh_TW |
| dc.subject | TWINSPAN | zh_TW |
| dc.subject | 林下物種組成 | zh_TW |
| dc.subject | understory | en |
| dc.subject | TWINSPAN | en |
| dc.subject | fine-scale | en |
| dc.subject | species-environment relationship | en |
| dc.subject | forest dynamics plot | en |
| dc.subject | subtropical montane cloud forest | en |
| dc.title | 拉拉山森林動態樣區中林下物種組成與環境的關聯性 | zh_TW |
| dc.title | The relationship between understory species composition and environmental factors in the Lalashan Forest Dynamics Plot | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高文媛(Wen-Yuan Kao),柯柏如(Po-Ju Ke) | |
| dc.subject.keyword | 小尺度研究,亞熱帶森林動態樣區,山地雲霧林,物種-環境關係,TWINSPAN,林下物種組成, | zh_TW |
| dc.subject.keyword | fine-scale,forest dynamics plot,subtropical montane cloud forest,species-environment relationship,TWINSPAN,understory, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU202200877 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-06-08 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0706202210434000.pdf | 1.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
