請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85716完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳凱儀(Kai-Yi Chen) | |
| dc.contributor.author | Da-Rui Yen | en |
| dc.contributor.author | 閻大瑞 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:22:17Z | - |
| dc.date.copyright | 2022-07-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-15 | |
| dc.identifier.citation | Arthanari M, Dhanapalan S (2019) A survey of tomato blossom and flower drop to the influence of environmental phenomena (Solanum lycopersicum L.). International Journal of Agriculture Environment and Food Sciences 3: 12-15. Aulchenko YS, De Koning DJ, Haley C (2007) Genomewide rapid association using mixed model and regression: a fast and simple method for genome wide pedigree-based quantitative trait loci association analysis. Genetics 177: 577-585. Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Annals of botany 100: 1085-1094. Bauchet G, Grenier S, Samson N, Segura V, Kende A, Beekwilder J, Cankar K, Gallois JL, Gricourt J, Bonnet J, Baxter C, Grivet L, Causse M (2017a) Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. New Phytologist 215: 624-641. Bauchet G, Grenier S, Samson N, Bonnet J, Grivet L, Causse M (2017b) Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theoretical and Applied Genetics 130: 875-889. Bedinger PA, Chetelat RT, McClure B, Moyle LC, Rose JK, Stack SM, Knaap E, Baek YS, Lopez-Casado G, Covey PA, Kumar A, Li W, Nunez R, Cruz-Garcia F, Royer S (2011) Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sexual Plant Reproduction 24:171- 187. Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum× L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147: 861-877. Burgos E, Belen DLM, Diouf I, de Haro LA, Albert E, Sauvage C, Tao ZJ, Bermudez L, Asís R, Nesi AN, Matringe M, Bréhélin C, Guiraud T, Ferrand C, Atienza I, Jorly J, Mauxion JP, Baldet P, Fernie AR, Quadrana L, Rothan C, Causse M, Carrari F (2021) Validated MAGIC and GWAS population mapping reveals the link between vitamin E content and natural variation in chorismate metabolism in tomato. The Plant Journal 105: 907-923. Chen KY, Cong B, Wing R, Vrebalov J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318: 643-645. Chen KY, Tanksley SD (2004) High-resolution mapping and functional analysis of se2. 1: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168: 1563-1573. Cui Y, Zhang F, Zhou Y (2018) The application of multi-locus GWAS for the detection of salt-tolerance loci in rice. Frontiers in Plant Science 9: 1464. Georgiady MS, Whitkus RW, Lord EM (2002) Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics 161: 333-344. Gibson MJ, Moyle LC (2020) Regional differences in the abiotic environment contribute to genomic divergence within a wild tomato species. Molecular Ecology 29: 2204-2217. Goh L, Yap VB (2009) Effects of normalization on quantitative traits in association test. BMC Bioinformatics 10: 1-8. Hurd RG (1973) Long‐day effects on growth and flower initiation of tomato plants in low light. Annals of Applied Biology 73: 221-228. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nature Genetics 42: 348-354. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178: 1709-1723. Klee HJ, Resende Jr MF (2020) Plant domestication: Reconstructing the route to modern tomatoes. Current Biology 30: R359-R361. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9: 1-9. Lin YP, Liu CY, Chen KY (2019) Assessment of genetic differentiation and linkage disequilibrium in Solanum pimpinellifolium using genome-wide high-density SNP markers. G3: Genes, Genomes, Genetics 9: 1497-1505. Lin YP, Lu CY, Lee CR (2020) The climatic association of population divergence and future extinction risk of Solanum pimpinellifolium. AoB Plants 12: plaa012. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D (2011) FaST linear mixed models for genome-wide association studies. Nature Methods 8: 833- 835. Mata-Nicolás E, Montero-Pau J, Gimeno-Paez E, Garcia-Carpintero V, Ziarsolo P, Menda N, Mueller LA, Blanca J, Cañizares, J, van der Knaap E, Díez MJ (2020) Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture Research, 7: 1-14. Pan C, Yang D, Zhao X, Jiao C, Yan Y, Lamin‐Samu AT, Wang Q, Xu X, Fei Z, Lu, G (2019) Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant, Cell & Environment 42: 1205-1221. Pan C, Ye L, Zheng Y, Wang Y, Yang D, Liu X, Chen L, Zhang Y, Fei Z, Lu, G (2017) Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato. BMC Genomics 18: 1-16. Peng B, Robert KY, DeHoff KL, Amos CI (2007) Normalizing a large number of quantitative traits using empirical normal quantile transformation. BMC proceedings BioMed Central 1: 1-5 Peralta IE, Spooner DM (2000) Classification of wild tomatoes: a review. Kurtziana 28: 45-54. Peterson RA, Peterson MRA (2020) Package ‘bestNormalize’. Normalizing Transformation Functions. R package version 1. https://cran.rproject.org/web/ packages/bestNormalize/bestNormalize.pdf Peterson RA (2021) Finding Optimal Normalizing Transformations via bestNormalize. The R Journal. https://journal.r-project.org/archive/2021/RJ-2021-041/RJ-2021-041.pdf Phan NT, Trinh LT, Rho MY, Park TS, Kim OR, Zhao J, Kim HM, Sim SC (2019) Identification of loci associated with fruit traits using genome-wide single nucleotide polymorphisms in a core collection of tomato (Solanum lycopersicum L.). Scientia Horticulturae 243: 567-574. Razifard H, Ramos A, Della Valle AL, Bodary C, Goetz E, Manser EJ, Li X, Zhang L, Visa S, Tieman D, van der Knaap E, Caicedo AL (2020) Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Molecular Biology and Evolution 37: 1118-1132. Riccini A, Picarella ME, De Angelis F, Mazzucato A (2021) Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. Plant Molecular Biology 105: 263-285. Rick CM, Holle M, Thorp RW (1978) Rates of cross-pollination in Lycopersicon pimpinellifolium: impact of genetic variation in floral characters. Plant Systematics and Evolution 129: 31-44. Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution 127: 139-170. Samach A, Lotan H (2007) The transition to flowering in tomato. Plant Biotechnology 24: 71-82. Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature Genetics 44: 825. Shang L, Song J, Yu H, Wang X, Yu C, Wang Y, Li F, Lu Y, Wang T, Ouyang B, Zhang J, Larkin RM, Ye Z, Zhang Y (2021) A mutation in a C2H2-type zinc finger transcription factor contributed to the transition toward self-pollination in cultivated tomato. The Plant Cell 33: 3293-3308. Tanksley SD (1993) Mapping polygenes. Annual Review of Genetics 27: 205-233. Tieman D, Zhu G, Resende MF, Lin T, Nguyen C, Bies D, Rambla JL, Beltran KSO, Taylor M, Zhang B, Ikeda H, Liu Z, Fisher J, Zemach I, Monforte A, Zamir D, Granell A, Kirst M, Huang S, Klee H (2017) A chemical genetic roadmap to improved tomato flavor. Science 355: 391-394. Wang X, Gao L, Jiao C, Stravoravdis S, Hosmani PS, Saha S, Zhang J, Mainiero S, Strickler SR, Catala C, Martin GB, Mueller LA, Vrebalov J, Giovannoni JJ, Wu S , Fei Z (2019) Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nature Communications 11: 1-11. Wang Z, Hong Y, Zhu G, Li Y, Niu Q, Yao J, Hua K, Bai J, Zhu Y, Shi H, Huang S, Zhu JK (2020) Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter. The EMBO Journal 39: e103256. Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics 10: e1004573. Yang Z, Li G, Tieman D, Zhu G (2019) Genomics approaches to domestication studies of horticultural crops. Horticultural Plant Journal 5: 240-246. Ye J, Wang X, Wang W, Yu H, Ai G, Li C, Sun P, Wang X, Li H, Ouyang B, Zhang J, Zhang Y, Han H, Giovannoni JJ, Fei Z, Ye Z (2021) Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. Plant Physiology 186: 2078-2092. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed- model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38: 203-208. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nature Genetics 42: 355-360. Zhao J, Sauvage C, Zhao J, Bitton F, Bauchet G, Liu D, Huang S, Tieman MD, Klee HJ, Causse M (2019) Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nature Communications 10: 1-12. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44: 821. Zuriaga E, Blanca JM, Cordero L, Sifres A, Blas-Cerdán WG, Morales R, Nuez F (2009) Genetic and bioclimatic variation in Solanum pimpinellifolium. Genetic Resources and Crop Evolution 56: 39-51. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85716 | - |
| dc.description.abstract | 柱頭外突性狀影響番茄的交配模式,突出於雄蕊管之柱頭降低自花授粉的機會。現今的番茄栽培種多為自交,不再具有柱頭外突特徵。本研究收集了235個醋栗番茄 (Solanum pimpinellifolium) 種原,調查雄蕊長度、雌蕊長度、柱頭外突長度與雄雌蕊長度比,共四個與柱頭外突相關的性狀。外表型調查結果顯示高達92%的品系雌蕊長於雄蕊,並且柱頭外突平均長度約為1 mm,表示大多數品系具有柱頭外突特徵。由於雄蕊長度與雌蕊長度兩性狀之外表型分布呈雙峰分布,柱頭外突長度分布經Shapiro-Wilk檢定亦不符從常態分布,因此嘗試將資料分布轉換。經Yeo-Johnson轉換法能夠將柱頭外突長度轉換為近似常態分布,此常態分布為遺傳關聯性分析之前提假設。 將來自安地斯山脈的醋栗番茄種原進一步依其採集的地理位置劃分為厄瓜多、北祕魯、南祕魯三個次族群,其中柱頭外突長度最長以及雄雌蕊比例最低的為北祕魯次族群,厄瓜多次族群次之,柱頭外突表現最不明顯的則是南祕魯次族群;至於柱頭外突相關外表型之變異程度,平均而言則是厄瓜多次族群最高,北祕魯次族群以及南祕魯次族群相對較低。此外,我們發現柱頭外突長度與地理位置分布具有一定之關聯性,厄瓜多南部至祕魯北部有最明顯的柱頭外突現象,祕魯中南部次之,厄瓜多北部則是幾乎不具柱頭外突特徵。柱頭外突外表型隨地理位置改變之趨勢與前人所提出的番茄兩階段馴化路徑相似,因此我們推測番茄的柱頭外突性狀或許隨著野生番茄的馴化歷程逐漸演化為不外突。 | zh_TW |
| dc.description.abstract | The stigma exsertion trait affects the mating system of tomatoes. Stigma protruding the stamen tube reduces the chance of self-pollination. Most of the modern tomato cultivars are self-pollinated, and no longer have the stigma exsertion feature. In this study, 235 accessions of currant tomato (Solanum pimpinellifolium) were collected to investigate the four traits related to exserted stigma, including stamen length, pistil length, stigma exsertion, and stamen-pistil ratio. Results of the phenotypic investigation showed that up to 92% of the accessions had pistils longer than stamens, and the average length of stigma exsertion was about 1 mm, indicating that most accessions were with the characteristics of exserted stigma. Since the distribution of stamen length and pistil length showed bimodal patterns nor did the distribution of stigma exsertion follow the normal distribution by Shapiro-Wilk test, we tried to transform the data distribution. The Yeo-Johnson transformation method can transform the stigma exsertion into an approximately normal distribution which is the assumption for genetic association analysis. The currant tomato accessions from the Andes were further divided into three subpopulations according to the geographical location: Ecuador, northern Peru, and southern Peru. Among these three subgroups, the subgroup northern Peru had the longest exsertion length and the lowest stamen-pistil ratio, the subgroup Ecuador was second, and the subgroup southern Peru exhibited the least exserted stigma behavior. As for the degree of variation of the traits related to exserted stigma, the variation within the subgroup Ecuador was the highest on average, and the variation within the subgroup northern Peru and the southern Peru was relatively lower. Furthermore, we found that there existed a certain correlation between stigma exsertion and geographical distribution. The most prominent stigma exsertion pattern was from the accessions of southern Ecuador to northern Peru, the second was the accessions of central Peru to southern Peru, and the accessions of north Ecuador showed almost no exserted stigma. For the reason that the tendency of stigma exsertion to change with geographical location is similar to the two-stage domestication route of tomato proposed by previous studies, we speculate that the stigma exsertion of tomato may gradually evolve into non-exsertion along with the domestication of wild tomato. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:22:17Z (GMT). No. of bitstreams: 1 U0001-0706202211532600.pdf: 1836300 bytes, checksum: 6ec07b5cadd2dbf013d661cbeb4fd73c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………... i 誌謝……………………………………………………………………………..……… ii 摘要…………………………………………………………………………….……… iii abstract………………………………………………………………….……………… iv 縮寫表……………………………………………………………………………..…... vi 目錄………………………………………………………………………………….... vii 圖目錄…………………………………………………………………….………….. viii 表目錄………………………………………………….……………………………….ix 第一章 前言 1 第一節 番茄種原 1 第二節 柱頭外突 4 第三節 研究目的 7 第二章 材料與方法 9 第一節 外表型收集 9 第二節 試驗設計 11 第三節 試驗資料分析 13 第三章 結果 16 第一節 柱頭外突外表型 16 第二節 醋栗番茄次族群 24 第四章 討論 32 第一節 柱頭外突 32 第二節 次族群間變異 36 第三節 未來研究方向 39 第五章 結論 44 參考文獻 45 附錄 50 附錄圖 50 附錄表 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 柱頭外突 | zh_TW |
| dc.subject | 種原 | zh_TW |
| dc.subject | 醋栗番茄 | zh_TW |
| dc.subject | Solanum pimpinellifolium | en |
| dc.subject | germplasm | en |
| dc.subject | stigma exsertion | en |
| dc.title | 醋栗番茄柱頭外突性狀變異調查 | zh_TW |
| dc.title | Investigation of Phenotypic Variation on Stigma Exsertion in Currant Tomato | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡凱康(Kae-Kang Hwu),蔡欣甫(Shin-Fu Tsai) | |
| dc.subject.keyword | 種原,醋栗番茄,柱頭外突, | zh_TW |
| dc.subject.keyword | germplasm,Solanum pimpinellifolium,stigma exsertion, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202200878 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-06-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-06-30 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0706202211532600.pdf | 1.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
