請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85711
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭朱杏(Chuhsing Kate Hsiao) | |
dc.contributor.author | Yu-Jyun Huang | en |
dc.contributor.author | 黃煜鈞 | zh_TW |
dc.date.accessioned | 2023-03-19T23:22:10Z | - |
dc.date.copyright | 2022-06-23 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-06-15 | |
dc.identifier.citation | Altenbuchinger, M., Weihs, A., Quackenbush, J., Grabe, H. J., and Zacharias, H. U. (2020). Gaussian and mixed graphical models as (multi-)omics data analysis tools. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1863, 194418. An, Z., Aksoy, O., Zheng, T., Fan, Q.-W., and Weiss, W. A. (2018). Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene, 37, 1561–1575. Atkinson, G. P., Nozell, S. E., and Benveniste, E. N. (2010). NF-κB and STAT3 signaling in glioma: Targets for future therapies. Expert Review of Neurotherapeutics, 10, 575–586. Banerjee, K., Núñez, F. J., Haase, S., McClellan, B. L., Faisal, S. M., et al. (2021). Current approaches for glioma gene therapy and virotherapy. Frontiers in Molecular Neuroscience, 14, 30. Barabási, A.-L., Gulbahce, N., and Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews Genetics, 12, 56–68. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society: Series B (Methodological), 36, 192–225. Besag, J. (1972). Nearest-neighbour systems and the auto-logistic model for binary data. Journal of the Royal Statistical Society: Series B (Methodological), 34, 75–83. Besag, J., and Kooperberg, C. (1995). On conditional and intrinsic autoregression. Biometrika, 82, 733–746. Bhuva, D. D., Cursons, J., Smyth, G. K., and Davis, M. J. (2019). Differential co expression-based detection of conditional relationships in transcriptional data: Comparative analysis and application to breast cancer. Genome Biology, 20, 236. Bien, J., Simon, N., and Tibshirani, R. (2015). Convex hierarchical testing of interactions. The Annals of Applied Statistics, 9, 27–42. Bien, J., Taylor, J., and Tibshirani, R. (2013). A Lasso for hierarchical interactions. The Annals of Statistics, 41, 1111–1141. Bralten, L. B. C., and French, P. J. (2011). Genetic alterations in glioma. Cancers, 3, 1129–1140. Cai, T. T., Li, H., Liu, W., and Xie, J. (2013). Covariate-adjusted precision matrix estimation with an application in genetical genomics. Biometrika, 100, 139–156. Cai, T. T., Liu, W., and Luo, X. (2011). A constrained ℓ1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106, 594–607. Cerami, E., Demir, E., Schultz, N., Taylor, B. S., and Sander, C. (2010). Automated network analysis identifies core pathways in glioblastoma. PLOS ONE, 5, e8918. Chang, H.-C., Chu, C.-P., Lin, S.-J., and Hsiao, C. K. (2020). Network hub-node prioritization of gene regulation with intra-network association. BMC Bioinformatics, 21, 101. Cho, D.-Y., Kim, Y.-A., and Przytycka, T. M. (2012). Chapter 5: Network biology approach to complex diseases. PLOS Computational Biology, 8, e1002820. Cordell, H. J. (2002). Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics, 11, 2463–2468. Creixell, P., Reimand, J., Haider, S., Wu, G., Shibata, T., et al. (2015). Pathway and network analysis of cancer genomes. Nature Methods, 12, 615–621. Dai, J. Y., Kooperberg, C., Leblanc, M., and Prentice, R. L. (2012). Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction. Biometrika, 99, 929–944. Danaher, P., Wang, P., and Witten, D. M. (2014). The joint graphical Lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76, 373–397. de Leeuw, C. A., Neale, B. M., Heskes, T., and Posthuma, D. (2016). The statistical properties of gene-set analysis. Nature Reviews Genetics, 17, 353–364. DeCordova, S., Shastri, A., Tsolaki, A. G., Yasmin, H., Klein, L., et al. (2020). Molecular heterogeneity and immunosuppressive microenvironment in glioblastoma. Frontiers in Immunology, 11. Dempster, A. P. (1972). Covariance selection. Biometrics, 28, 157–175. Deshpande, S. K., Ročková, V., and George, E. I. (2019). Simultaneous variable and covariance selection with the multivariate spike-and-slab Lasso. Journal of Computational and Graphical Statistics, 28, 921–931. Domingo, J., Baeza-Centurion, P., and Lehner, B. (2019). The causes and consequences of genetic interactions (Epistasis). Annual Review of Genomics and Human Genetics, 20, 433–460. Epskamp, S., and Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23, 617–634. Eskilsson, E., Røsland, G. V., Solecki, G., Wang, Q., Harter, P. N., et al. (2018). EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro-Oncology, 20, 743–752. Fan, J., and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70, 849–911. Fan, J., Feng, Y., and Wu, Y. (2009). Network exploration via the adaptive Lasso and SCAD penalties. The Annals of Applied Statistics, 3, 521–541. Fan, J., Liao, Y., and Liu, H. (2016). An overview of the estimation of large covariance and precision matrices. The Econometrics Journal, 19, C1–C32. Fan, Y., Kong, Y., Li, D., and Zheng, Z. (2015). Innovated interaction screening for high dimensional nonlinear classification. The Annals of Statistics, 43, 1243–1272. Fassl, A., Tagscherer, K. E., Richter, J., Berriel Diaz, M., Alcantara Llaguno, S. R., et al. (2012). Notch1 signaling promotes survival of glioblastoma cells via EGFR-mediated induction of anti-apoptotic Mcl-1. Oncogene, 31, 4698–4708. Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 9, 432–441. Fujita, M., Scheurer, M. E., Decker, S. A., McDonald, H. A., Kohanbash, G., et al. (2010). Role of type 1 IFNS in antiglioma immunosurveillance—using mouse studies to guide examination of novel prognostic markers in humans. Clinical Cancer Research, 16, 3409–3419. Gan, L., Narisetty, N. N., and Liang, F. (2019). Bayesian regularization for graphical models with unequal shrinkage. Journal of the American Statistical Association, 114, 1218–1231. George, E. I., and McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88, 881–889. Gheidari, F., Arefian, E., Adegani, F. J., Kalhori, M. R., Seyedjafari, E., et al. (2021). MiR-424 induces apoptosis in glioblastoma cells and targets AKT1 and RAF1 oncogenes from the ERBB signaling pathway. European Journal of Pharmacology, 906, 174273. Gill, R., Datta, S., and Datta, S. (2010). A statistical framework for differential network analysis from microarray data. BMC Bioinformatics, 11, 95. Ha, M. J., and Sun, W. (2014). Partial correlation matrix estimation using ridge penalty followed by thresholding and re-estimation. Biometrics, 70, 762–770. Ha, M. J., Baladandayuthapani, V., and Do, K.-A. (2015). DINGO: Differential network analysis in genomics. Bioinformatics, 31, 3413–3420. Ha, M. J., Stingo, F. C., and Baladandayuthapani, V. (2021). Bayesian structure learning in multilayered genomic networks. Journal of the American Statistical Association, 116, 605–618. Hammarén, H. M., Virtanen, A. T., Raivola, J., and Silvennoinen, O. (2019). The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine, 118, 48–63. Hanash, S. (2004). Integrated global profiling of cancer. Nature Reviews Cancer, 4, 638 644. Hawe, J. S., Theis, F. J., and Heinig, M. (2019). Inferring interaction networks from multi omics data. Frontiers in Genetics, 10. Heimberger, A. B., Suki, D., Yang, D., Shi, W., and Aldape, K. (2005). The natural history of EGFR and EGFRvIII in glioblastoma patients. Journal of Translational Medicine, 3, 38. Hinne, M., Gronau, Q. F., van den Bergh, D., and Wagenmakers, E.-J. (2020). A conceptual introduction to Bayesian model averaging. Advances in Methods and Practices in Psychological Science, 3, 200–215. Ho, C.-H., Huang, Y.-J., Lai, Y.-J., Mukherjee, R., and Hsiao, C. K. (2022). The misuse of distributional assumptions in functional class scoring gene-set and pathway analysis. G3 Genes|Genomes|Genetics, 12, jkab365. Horvath, S., and Dong, J. (2008). Geometric interpretation of gene co-expression network analysis. PLOS Computational Biology, 4, e1000117. Huang, Y.-J., Lu, T.-P., and Hsiao, C. K. (2020). Application of graphical Lasso in estimating network structure in gene set. Annals of Translational Medicine, 8, 1556–1556. Huang, Y.-J., Mukherjee, R., and Hsiao, C. K. (2022). Probabilistic edge inference of genetic networks with Bayesian Markov random field modelling. Submitted Hung, H., Lin, Y.-T., Chen, P., Wang, C.-C., Huang, S.-Y., et al. (2016). Detection of gene–gene interactions using multistage sparse and low-rank regression. Biometrics, 72, 85–94. Ideker, T., and Krogan, N. J. (2012). Differential network biology. Molecular Systems Biology, 8, 565. Jain, R., Dasgupta, A., Moiyadi, A., and Srivastava, S. (2012). Transcriptional analysis of JAK/STAT signaling in glioblastoma multiforme. Current Pharmacogenomics and Personalized Medicine, 10, 54–69. Khatri, P., Sirota, M., AND Butte, A. J. (2012). ten years of pathway analysis: Current approaches and outstanding challenges. PLOS Computational Biology, 8, e1002375. Kim, J. E., Patel, M., Ruzevick, J., Jackson, C. M., and Lim, M. (2014). STAT3 activation in glioblastoma: biochemical and therapeutic implications. Cancers, 6, 376–395. Kim, M.-K., Moore, J. H., Kim, J.-K., Cho, K.-H., Cho, Y.-W., et al. (2011). Evidence for epistatic interactions in antiepileptic drug resistance. Journal of Human Genetics, 56, 71–76. Lai, Y.-J. (2021). Utilizing gene-gene interaction for construction of differential network. Master Thesis, National Taiwan University, Taiwan. Langfelder, P., and Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559. Langfelder, P., Mischel, P. S., and Horvath, S. (2013). When is hub gene selection better than standard meta-analysis? PLOS ONE, 8, e61505. Lassman, A. B., Dai, C., Fuller, G. N., Vickers, A. J., and Holland, E. C. (2004). Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biology, 1, 157–163. Lauritzen, S. L. (1996). Graphical models. Clarendon Press. Lehner, B. (2011). Molecular mechanisms of epistasis within and between genes. Trends in Genetics, 27, 323–331. Li, Y., and Liu, J. S. (2019). Robust variable and interaction selection for logistic regression and general index models. Journal of the American Statistical Association, 114, 271–286. Lichtblau, Y., Zimmermann, K., Haldemann, B., Lenze, D., Hummel, M., et al. (2017). Comparative assessment of differential network analysis methods. Briefings in Bioinformatics, 18, 837–850. Lin, S.-J., Lu, T.-P., Yu, Q.-Y., and Hsiao, C. K. (2018). Probabilistic prioritization of candidate pathway association with pathway score. BMC Bioinformatics, 19, 391. Liu, H., Han, F., Yuan, M., Lafferty, J., and Wasserman, L. (2012). High-dimensional semiparametric Gaussian copula graphical models. The Annals of Statistics, 40, 2293–2326. Liu, H., Lafferty, J., and Wasserman, L. (2009). The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research, 10, 2295–2328. Liu, K.-W., Feng, H., Bachoo, R., Kazlauskas, A., Smith, E. M., et al. (2011). SHP 2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans. The Journal of Clinical Investigation, 121, 905–917. Liu, L., Lei, J., and Roeder, K. (2015). Network assisted analysis to reveal the genetic basis of autism. The Annals of Applied Statistics, 9, 1571–1600. Liu, L., Lei, J., Sanders, S. J., Willsey, A. J., Kou, Y., et al. (2014). DAWN: A framework to identify autism genes and subnetworks using gene expression and genetics. Molecular Autism, 5, 22. Liu, Z., Liu, Y., Li, L., Xu, Z., Bi, B., et al. (2014). MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumor Biology, 35, 10177–10184. Lohmann, B., Le Rhun, E., Silginer, M., Epskamp, M., and Weller, M. (2020). Interferon‑β sensitizes human glioblastoma cells to the cyclin‑dependent kinase inhibitor, TG02. Oncology Letters, 19, 2649–2656. Lu, T.-P., Tsai, M.-H., Lee, J.-M., Hsu, C.-P., Chen, P.-C., et al. (2010). Identification of a novel biomarker, SEMA5A, for non–small cell lung carcinoma in nonsmoking women. Cancer Epidemiology, Biomarkers and Prevention, 19, 2590–2597. Maleki, F., Ovens, K., Hogan, D. J., and Kusalik, A. J. (2020). Gene set analysis: challenges, opportunities, and future research. Frontiers in Genetics, 11. Martini, P., Sales, G., Massa, M. S., Chiogna, M., and Romualdi, C. (2013). Along signal paths: An empirical gene set approach exploiting pathway topology. Nucleic Acids Research, 41, e19. McFarland, B. C., Ma, J.-Y., Langford, C. P., Gillespie, G. Y., Yu, H., et al. (2011). Therapeutic potential of AZD1480 for the treatment of human glioblastoma. Molecular Cancer Therapeutics, 10, 2384–2393. McLendon, R., Friedman, A., Bigner, D., Van Meir, E. G., Brat, D. J., et al. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068. Meinshausen, N., and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34, 1436–1462. Mohammadi, A., and Wit, E. C. (2015). Bayesian structure learning in sparse Gaussian graphical models. Bayesian Analysis, 10, 109–138. Mulgrave, J. J., and Ghosal, S. (2020). Bayesian inference in nonparanormal graphical models. Bayesian Analysis, 15, 449–475. Mulgrave, J. J., and Ghosal, S. (2022). Regression-based Bayesian estimation and structure learning for nonparanormal graphical models. Statistical Analysis and Data Mining: The ASA Data Science Journal, 1–19. Murphy, Á. C., Weyhenmeyer, B., Noonan, J., Kilbride, S. M., Schimansky, S., et al. (2014). Modulation of Mcl-1 sensitizes glioblastoma to TRAIL-induced apoptosis. Apoptosis, 19, 629–642. Neph, S., Stergachis, A. B., Reynolds, A., Sandstrom, R., Borenstein, E., et al. (2012). Circuitry and dynamics of human transcription factor regulatory networks. Cell, 150, 1274–1286. Ni, Y., Baladandayuthapani, V., Vannucci, M., and Stingo, F. C. (2021). Bayesian graphical models for modern biological applications. Statistical Methods and Applications. Niu, Y. S., Hao, N., and Zhang, H. H. (2018). Interaction screening by partial correlation. Statistics and Its Interface, 11, 317–325. Osuka, S., and Meir, E. G. V. (2017). Overcoming therapeutic resistance in glioblastoma: The way forward. The Journal of Clinical Investigation, 127, 415–426. Ou, A., Ott, M., Fang, D., and Heimberger, A. B. (2021). The role and therapeutic targeting of JAK/STAT signaling in glioblastoma. Cancers, 13, 437. Panicker, S. P., Raychaudhuri, B., Sharma, P., Tipps, R., Mazumdar, T., et al. (2010). P300- and Myc-mediated regulation of glioblastoma multiforme cell differentiation. Oncotarget, 1, 289–303. Park, A. K., Kim, P., Ballester, L. Y., Esquenazi, Y., and Zhao, Z. (2019). Subtype-specific signaling pathways and genomic aberrations associated with prognosis of glioblastoma. Neuro-Oncology, 21, 59–70. Peng, J., Wang, P., Zhou, N., and Zhu, J. (2009). Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104, 735–746. Peng, J., Zhu, J., Bergamaschi, A., Han, W., Noh, D.-Y., et al. (2010). Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. The Annals of Applied Statistics, 4, 53–77. Peterson, C., Stingo, F. C., and Vannucci, M. (2015). Bayesian inference of multiple Gaussian graphical models. Journal of the American Statistical Association, 110, 159–174. Peterson, C., Vannucci, M., Karakas, C., Choi, W., Ma, L., et al. (2013). Inferring metabolic networks using the Bayesian adaptive graphical Lasso with informative priors. Statistics and Its Interface, 6, 547–558. Preusser, M., de Ribaupierre, S., Wöhrer, A., Erridge, S. C., Hegi, M., et al. (2011). Current concepts and management of glioblastoma. Annals of Neurology, 70, 9–21. Quan, Y., Liu, M.-Y., Liu, Y.-M., Zhu, L.-D., Wu, Y.-S., et al. (2018). Facilitating anti-cancer combinatorial drug discovery by targeting epistatic disease genes. Molecules, 23, 736. Qureshy, Z., Johnson, D. E., and Grandis, J. R. (2020). Targeting the JAK/STAT pathway in solid tumors. Journal of Cancer Metastasis and Treatment, 6, 27. Ramanan, V. K., Shen, L., Moore, J. H., and Saykin, A. J. (2012). Pathway analysis of genomic data: Concepts, methods, and prospects for future development. Trends in Genetics, 28, 323–332. Ročková, V., and George, E. I. (2018). The Spike-and-Slab Lasso. Journal of the American Statistical Association, 113, 431–444. Schaid, D. J., Chen, W., and Larson, N. B. (2018). From genome-wide associations to candidate causal variants by statistical fine-mapping. Nature Reviews Genetics, 19, 491–504. Shen, R., Mo, Q., Schultz, N., Seshan, V. E., Olshen, A. B., et al. (2012). Integrative subtype discovery in glioblastoma using iCluster. PLOS ONE, 7, e35236. Shergalis, A., Bankhead, A., Luesakul, U., Muangsin, N., and Neamati, N. (2018). Current challenges and opportunities in treating glioblastoma. Pharmacological Reviews, 70, 412–445. Shojaie, A. (2021). Differential network analysis: A statistical perspective. WIREs Computational Statistics, 13, e1508. Silginer, M., Nagy, S., Happold, C., Schneider, H., Weller, M., et al. (2017). Autocrine activation of the IFN signaling pathway may promote immune escape in glioblastoma. Neuro-Oncology, 19, 1338–1349. Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine, 352, 987–996. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102, 15545–15550. Tan, A. C., Ashley, D. M., López, G. Y., Malinzak, M., Friedman, H. S., et al. (2020). Management of glioblastoma: State of the art and future directions. CA: A Cancer Journal for Clinicians, 70, 299–312. Teo, W.-Y., Sekar, K., Seshachalam, P., Shen, J., Chow, W.-Y., et al. (2019). Relevance of a TCGA-derived glioblastoma subtype gene-classifier among patient populations. Scientific Reports, 9, 7442. The Cancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068. Tian, D., Gu, Q., and Ma, J. (2016). Identifying gene regulatory network rewiring using latent differential graphical models. Nucleic Acids Research, 44, e140. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58, 267–288. Tu, J.-J., Ou-Yang, L., Zhu, Y., Yan, H., Qin, H., et al. (2021). Differential network analysis by simultaneously considering changes in gene interactions and gene expression. Bioinformatics, 37, 4414–4423. van Dam, S., Võsa, U., van der Graaf, A., Franke, L., and de Magalhães, J. P. (2018). Gene co-expression analysis for functional classification and gene–disease predictions. Briefings in Bioinformatics, 19, 575–592. Vidal, M., Cusick, M. E., and Barabási, A.-L. (2011). Interactome networks and human disease. Cell, 144, 986–998. Vogelstein, B., and Kinzler, K. W. (2004). Cancer genes and the pathways they control. Nature Medicine, 10, 789–799. Wang, G., Sarkar, A., Carbonetto, P., and Stephens, M. (2020). A simple new approach to variable selection in regression, with application to genetic fine mapping. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82, 1273–1300. Wang, H. (2012). Bayesian graphical Lasso models and efficient posterior computation. Bayesian Analysis, 7, 867–886. Wang, H., and Li, S. Z. (2012). Efficient Gaussian graphical model determination under G-Wishart prior distributions. Electronic Journal of Statistics, 6, 168–198. Wang, J., Wang, H., Li, Z., Wu, Q., Lathia, J. D., et al. (2008). C-Myc is required for maintenance of glioma cancer stem cells. PLOS ONE, 3, e3769. Wang, J.-H., and Chen, Y.-H. (2020). Interaction screening by Kendall’s partial correlation for ultrahigh-dimensional data with survival trait. Bioinformatics, 36, 2763–2769. Wang, P., Cai, H., Zhang, C., Li, Y.-M., Liu, X., et al. (2018). Molecular and clinical characterization of PTPN2 expression from RNA-seq data of 996 brain gliomas. Journal of Neuroinflammation, 15, 145. Wang, Q., Hu, B., Hu, X., Kim, H., Squatrito, M., et al. (2017). Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell, 32, 42-56.e6. Wang, T., Xue, Y., Wang, M., and Sun, Q. (2012). Silencing of the hTERT gene through RNA interference induces apoptosis via bax/bcl-2 in human glioma cells. Oncology Reports, 28, 1153–1158. Wang, Y. X. R., Li, L., Li, J. J., and Huang, H. (2021). Network modeling in biology: statistical methods for gene and brain networks. Statistical Science, 36, 89–108. Wang, Z., Baladandayuthapani, V., Kaseb, A. O., Amin, H. M., Hassan, M. M., et al. (2021). Bayesian edge regression in undirected graphical models to characterize interpatient heterogeneity in cancer. Journal of the American Statistical Association, 1–14. Westphal, M., Maire, C. L., and Lamszus, K. (2017). EGFR as a target for glioblastoma treatment: an unfulfilled promise. CNS Drugs, 31, 723–735. Witten, D. M., Friedman, J. H., and Simon, N. (2011). New insights and faster computations for the graphical Lasso. Journal of Computational and Graphical Statistics, 20, 892–900. Witthayanuwat, S., Pesee, M., Supaadirek, C., Supakalin, N., Thamronganantasakul, K., et al. (2018). Survival analysis of glioblastoma multiforme. Asian Pacific Journal of Cancer Prevention: APJCP, 19, 2613–2617. Xia, Y., Cai, T., and Cai, T. T. (2015). Testing differential networks with applications to the detection of gene-gene interactions. Biometrika, 102, 247–266. Xu, D., and Qu, C.-K. (2008). Protein tyrosine phosphatases in the JAK/STAT pathway. Frontiers in Bioscience: A Journal and Virtual Library, 13, 4925–4932. Yang, E., Ravikumar, P., Allen, G. I., and Liu, Z. (2015). Graphical models via univariate exponential family distributions. Journal of Machine Learning Research, 16, 3813–3847. Yang, H., Jin, L., and Sun, X. (2019). A thirteen‑gene set efficiently predicts the prognosis of glioblastoma. Molecular Medicine Reports, 19, 1613–1621. Yin, J., and Li, H. (2011). A sparse conditional Gaussian graphical model for analysis of genetical genomics data. The Annals of Applied Statistics, 5, 2630–2650. Yu, Q.-Y., Lu, T.-P., Hsiao, T.-H., Lin, C.-H., Wu, C.-Y., et al. (2021). An integrative co localization (INCO) analysis for SNV and CNV genomic features with an application to Taiwan biobank data. Frontiers in Genetics, 12. Yuan, H., Xi, R., Chen, C., and Deng, M. (2017). Differential network analysis via Lasso penalized D-trace loss. Biometrika, 104, 755–770. Yuan, M., and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika, 94, 19–35. Zhang, C.-H., and Huang, J. (2008). The sparsity and bias of the Lasso selection in high dimensional linear regression. The Annals of Statistics, 36, 1567–1594. Zhang, C.-H., and Zhang, S. S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76, 217–242. Zhang, T., and Zou, H. (2014). Sparse precision matrix estimation via Lasso penalized D trace loss. Biometrika, 101, 103–120. Zhang, X.-F., Ou-Yang, L., abd Yan, H. (2017). Incorporating prior information into differential network analysis using non-paranormal graphical models. Bioinformatics, 33, 2436–2445. Zhang, X.-F., Ou-Yang, L., Yang, S., Hu, X., and Yan, H. (2018). DiffGraph: An R package for identifying gene network rewiring using differential graphical models. Bioinformatics, 34, 1571–1573. Zhang, Y., Dube, C., Gibert, M., Cruickshanks, N., Wang, B., et al. (2018). The p53 pathway in glioblastoma. Cancers, 10, 297. Zhao, P., and Yu, B. (2006). On model selection consistency of Lasso. Journal of Machine Learning Research, 7, 2541–2563. Zhao, S. D., Cai, T. T., and Li, H. (2014). Direct estimation of differential networks. Biometrika, 101, 253–268. Zhao, T., Liu, H., Roeder, K., Lafferty, J., and Wasserman, L. (2012). The huge package for high-dimensional undirected graph estimation in R. Journal of Machine Learning Research, 13, 1059–1062. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85711 | - |
dc.description.abstract | 在過去的基因與疾病相關性研究中,不少研究指出,導致複雜疾病的成因,可能與一群參與在特定生物途徑 (pathway) 內的基因,對複雜且重要之生物功能的調控機制出現問題有關。因此,了解一群基因是如何相互運作進而使得生物功能可以正常的運轉,是一個重要的研究議題;另一方面,釐清導致非正常的生物功能之主因,藉此找出可能誘發複雜疾病的重要生物標記 (biomarker),亦是在生物統計與生物資訊相關領域的重要研究標的之一。 研究者可以利用基因表達量 (gene expression) 資料所建構出來的基因調控網路 (gene regulatory network),更加清楚地了解一群基因在分子層級的運作模式,也可以比較容易描述與解釋複雜生物功能的機轉。在過去的幾年間,基於高斯圖模型 (Gaussian graphical model) 來建立與估計基因網絡結構的方法已被大量的應用於相關領域,並且也已被證實此類方法估計網路結構之表現相當優異。然而,這些方法多數著重於變數挑選 (variable selection) 的問題,如:某一條連線在網路中是否存在,這種處理方式通常無法對於連線的可能性與線的強度進行估計。在實務分析中,若可以藉由提供機率性的估計,研究者即可利用機率的強度對於結果進行排序,這樣的資訊可以幫助研究者在所有找到的可能證據中,更進一步標示出不同重要性的結果,而這些發現,或許就可以提供比較高的可能性,讓後續的研究或是生物實驗進一步證實。 由以上的動機,本研究將利用貝氏統計方法,提出一套模式來進行機率性的網路結構分析。更精確的來說,本研究有兩個研究目標:(1) 利用基因表達量資料來建構機率性的基因網路;(2) 利用機率性的差異網路分析 (differential network analysis) 來找出不同組別之間的網路結構差異。在第一個研究中,我們提出以貝氏馬可夫隨機場 (Bayesian Markov random field) 估計基因網路結構,藉由結合了條件自迴歸 (conditional autoregressive) 模型與貝氏方法中常用於進行機率性變數挑選的技巧,本方法不只可以對於每一條網絡中的連線估計其存在的機率,同時還可以透過描述條件相關性係數的後驗分佈 (posterior distribution),對於線的相對強度進行機率性的推論。由模擬測試的驗證,研究提出的方法可以具備相當穩定的估計網路結構表現。在膠質母細胞瘤 (glioblastoma) 的研究中也發現,本方法可以藉由機率估計的排序,找出具有生物意義的生物標記。 基於上述成果,在第二個目標中,我們將估計差異網路結構 (differential network) 的議題,並利用相關性研究 (association study) 中偵測交互作項 (interaction) 是否顯著的問題來回答。不僅如此,本研究提出一個貝氏模型,結合了以資料決策 (data-driven) 的技巧進行交互作用項之篩選 (screening),再加上機率性的變數挑選方式,來對於可能的差異網路線 (differential edges) 提供機率性的估計與推論。在模擬測試中,本研究提出的方法可以具備相當突出的估計差異網路之表現。而在利用膠質母細胞瘤研究中的癌症亞型 (tumor subtype) 以進行差異網路的分析中,本方法可以找出在生物學上具有解釋意義的發現,也可以利用機率性的推論以標示出重要的基因,以當作後續生物實驗的候選研究目標。 | zh_TW |
dc.description.abstract | It is known that complex diseases are associated with the dysregulated mechanism of some essential biological functions and processes. These irregular biological activities are often triggered by a group of functionally related genes instead of a single gene. In order to elucidate how a group of genes regulate the underlying biological mechanism, it is vital to find out a way to estimate and visualize the complex interactions within the cellular system. The Gaussian graphical model-based approach has been widely used to estimate the structure of genetic networks. However, most of these approaches can only provide information on the binary decision, such as whether an edge exists or not. In addition, the strength of interacted pattern between two genes in a pathway is usually under-examined. To fill in these gaps, this research proposes a framework that can infer with probabilities the uncertainty of any specific edge in a network. With the probabilistic estimation, we can prioritize the results and highlight the importance of the findings, which may provide a better chance for further biological experiments to reproduce the discoveries. In this dissertation, we propose Bayesian approaches to conduct probabilistic network analysis. We further dive into two parts of research to answer specific scientific questions. In the first part of this dissertation, we propose a Bayesian Markov random field approach, combining the idea from the conditional autoregressive model and the Spike-and-Slab Lasso prior, to conducting the probabilistic network edge analysis. The novelties of the proposed model are two folds. Firstly, we can estimate the existence probability for each edge in the network. Secondly, with the Bayesian approach, we can conduct probabilistic inference about the relative strength of any specific interactions. The simulation studies and glioblastoma study will be carried out to demonstrate the stable estimation performance as well as the targeting of some biologically meaningful biomarkers associated with glioblastoma progression. On the other hand, it is also important to identify the pattern of network structure when comparing different cellular conditions. Therefore, we focus on the question of undertaking differential network analysis in the second part. We begin by showing that the identification of differential edges can be translated into the study of detecting interaction terms in an association study. We further proposed a Bayesian approach with an efficient screening strategy to estimate the probability of each possible differential edge. To the best of our knowledge, this is the first research to measure the uncertainty of differential edges. This approach will be demonstrated in simulation studies. In the end, we will use the tumor subtype data from the TCGA glioblastoma study to demonstrate that the proposed methods can identify biologically meaningful findings, highlight the hub nodes, and prioritize results in a probabilistic sense. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:22:10Z (GMT). No. of bitstreams: 1 U0001-1506202212512400.pdf: 4539421 bytes, checksum: e1fd6a4e030195be71919e91421b61e4 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 論文口試委員審定書 i 致謝 ii 中文摘要 iv Abstract vii Chapter 1 Introduction 1 Section 1.1 Scientific questions of interest 1 Section 1.2 Connecting scientific questions to statistics questions 4 Section 1.3 The estimation of genetic networks 5 Section 1.3.1 Utilizing Graphical models to estimate genetic networks 7 Section 1.3.2 Existing methods for estimating network structure 8 Section 1.4 Goals of BMRF 12 Section 1.5 Introduction of D-Net analysis 13 Section 1.6 Probabilistic interactions for differential edges 16 Section 1.7 Dissertation outline 18 Chapter 2 Probabilistic edge inference of gene networks with Bayesian Markov random field modelling 20 Section 2.1 BMRF: Combining CAR model with SSL prior 20 Section 2.1.1 Estimating network edge through CAR model 20 Section 2.1.2 Ideas of coming up with the Spike-and-Slab Lasso prior 22 Section 2.1.3 Model specification of BMRF 24 Section 2.1.4 Leveraging data-driven information to incorporate prior information 26 Section 2.2 Simulation Studies 28 Section 2.2.1 Simulation settings, competing methods, measurements criterion 28 Section 2.2.2 Simulation results 32 Section 2.3 TCGA glioblastoma studies 46 Section 2.3.1 Biological motivations 46 Section 2.3.2 TCGA GBM dataset 47 Section 2.3.3 Summarize identified edges 47 Section 2.3.4 Biological findings and interpretations 56 Chapter 3 Bayesian Probabilistic Interactions for Detecting Differential Edges 59 Section 3.1 Bayesian approach to probabilistic differential network edge analysis 59 Section 3.1.1 The rationale of estimating differential edges by gene-gene interactions 60 Section 3.1.2 PRIDE 62 Section 3.1.3 Screening strategy 64 Section 3.1.4 Implementation of PRIDE 68 Section 3.2 Simulation study 68 Section 3.2.1 Comparing methods 69 Section 3.2.2 Simulation settings 70 Section 3.2.3 Simulation results 76 Section 3.3 Differential network analysis to GBM tumor subtypes 80 Section 3.3.1. Results of PRIDE 82 Section 3.3.2 Biological role of the identified hubs 85 Section 3.3.3 Comparing with other methods 86 Section 3.4 Classification of Breast cancer subtype 90 Chapter 4 Summary and Future works 94 Section 4.1 Summary 94 Section 4.2 Discussion and future works for BMRF 96 Section 4.3 Discussion and future works for PRIDE 99 Bibliography 102 Appendix A: Supporting information for BMRF studies 122 Appendix B: Supporting information for PRIDE research 126 Appendix B-1: Supplementary materials for the additional simulation studies 135 Appendix B-2: Supplementary materials for the classification of TCGA breast cancer dataset 140 | |
dc.language.iso | en | |
dc.title | 以貝氏統計方法建構機率性基因網路 | zh_TW |
dc.title | Bayesian Approaches to Probabilistic Genetic Networks | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 洪弘(Hung Hung),盧子彬(Tzu-Pin Lu),黃冠華(Guan-Hua Huang),楊欣洲(Hsin-Chou Yang) | |
dc.subject.keyword | 基因調控網路,差異網路分析,機率性網路分析,機率推論,估計連線存在機率,重要性排序, | zh_TW |
dc.subject.keyword | gene regulatory network,differential network analysis,probabilistic network analysis,probabilistic inference,existence probability,prioritize findings, | en |
dc.relation.page | 141 | |
dc.identifier.doi | 10.6342/NTU202200957 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-06-16 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
dc.date.embargo-lift | 2025-06-30 | - |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1506202212512400.pdf 此日期後於網路公開 2025-06-30 | 4.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。