Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李明學
dc.contributor.authorCheng-Chung Huangen
dc.contributor.author黃正忠zh_TW
dc.date.accessioned2021-05-20T19:58:32Z-
dc.date.available2015-09-09
dc.date.available2021-05-20T19:58:32Z-
dc.date.copyright2010-09-09
dc.date.issued2010
dc.date.submitted2010-07-15
dc.identifier.citation1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009;59:225-49.
2. Cheung WL, Turner FB, Krishnamoorthy T, Wolner B, Ahn SH, Foley M, Dorsey JA, Peterson CL, Berger SL, Allis CD. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr Biol 2005;15:656-60.
3. Agarwal DK, Costello AJ, Peters J, Sikaris K, Crowe H. Differential response of prostate specific antigen to testosterone surge after luteinizing hormone-releasing hormone analogue in prostate cancer and benign prostatic hyperplasia. BJU Int 2000;85:690-5.
4. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004;10:33-9.
5. Hsieh AC, Small EJ, Ryan CJ. Androgen-response elements in hormone-refractory prostate cancer: implications for treatment development. Lancet Oncol 2007;8:933-9.
6. Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH, Antalis TM. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 2003;22:237-58.
7. Hooper JD, Clements JA, Quigley JP, Antalis TM. Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 2001;276:857-60.
8. Szabo R, Wu Q, Dickson RB, Netzel-Arnett S, Antalis TM, Bugge TH. Type II transmembrane serine proteases. Thromb Haemost 2003;90:185-93.
9. Buzza MS, Netzel-Arnett S, Shea-Donohue T, Zhao A, Lin CY, List K, Szabo R, Fasano A, Bugge TH, Antalis TM. Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci U S A 2010;107:4200-5.
10. Sanders AJ, Parr C, Davies G, Martin TA, Lane J, Mason MD, Jiang WG. Genetic reduction of matriptase-1 expression is associated with a reduction in the aggressive phenotype of prostate cancer cells in vitro and in vivo. J Exp Ther Oncol 2006;6:39-48.
11. Tsui KH, Chang PL, Feng TH, Chung LC, Hsu SY, Juang HH. Down-regulation of matriptase by overexpression of bikunin attenuates cell invasion in prostate carcinoma cells. Anticancer Res 2008;28:1977-83.
12. Szabo R, Bugge TH. Type II transmembrane serine proteases in development and disease. Int J Biochem Cell Biol 2008;40:1297-316.
13. Chen M, Chen LM, Lin CY, Chai KX. The epidermal growth factor receptor (EGFR) is proteolytically modified by the Matriptase-Prostasin serine protease cascade in cultured epithelial cells. Biochim Biophys Acta 2008;1783:896-903.
14. Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, Hood L, Nelson PS. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 1999;59:4180-4.
15. Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 1997;44:309-20.
16. Afar DE, Vivanco I, Hubert RS, Kuo J, Chen E, Saffran DC, Raitano AB, Jakobovits A. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res 2001;61:1686-92.
17. Vaarala MH, Porvari K, Kyllonen A, Lukkarinen O, Vihko P. The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer 2001;94:705-10.
18. Vaarala MH, Porvari KS, Kellokumpu S, Kyllonen AP, Vihko PT. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. J Pathol 2001;193:134-40.
19. Lucas JM, True L, Hawley S, Matsumura M, Morrissey C, Vessella R, Nelson PS. The androgen-regulated type II serine protease TMPRSS2 is differentially expressed and mislocalized in prostate adenocarcinoma. J Pathol 2008;215:118-25.
20. Chen YW, Lee MS, Lucht A, Chou FP, Huang W, Havighurst TC, Kim K, Wang JK, Antalis T, Johnson MD, Lin CY. TMPRSS2, a Serine Protease Expressed in the Prostate on the Apical Surface of Luminal Epithelial Cells and Released into Semen in Prostasomes, Is Misregulated in Prostate Cancer Cells. Am J Pathol 2010.
21. Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S, Demichelis F, Helgeson BE, Laxman B, Morris DS, Cao Q, Cao X, et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 2008;13:519-28.
22. Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B, Shaheduzzaman S, Tan SH, Vaidyanathan G, Whitman E, Hawksworth DJ, Chen Y, et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 2008;27:5348-53.
23. List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T, Burke B, Nielsen BS, Gutkind JS, Bugge TH. Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 2005;19:1934-50.
24. Jin JS, Cheng TF, Tsai WC, Sheu LF, Chiang H, Yu CP. Expression of the serine protease, matriptase, in breast ductal carcinoma of Chinese women: correlation with clinicopathological parameters. Histol Histopathol 2007;22:305-9.
25. Oberst M, Anders J, Xie B, Singh B, Ossandon M, Johnson M, Dickson RB, Lin CY. Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am J Pathol 2001;158:1301-11.
26. Lee SL, Dickson RB, Lin CY. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 2000;275:36720-5.
27. Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 2000;275:26333-42.
28. Netzel-Arnett S, Currie BM, Szabo R, Lin CY, Chen LM, Chai KX, Antalis TM, Bugge TH, List K. Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 2006;281:32941-5.
29. Corps AN, Sowter HM, Smith SK. Hepatocyte growth factor stimulates motility, chemotaxis and mitogenesis in ovarian carcinoma cells expressing high levels of c-met. Int J Cancer 1997;73:151-5.
30. Sowter HM, Corps AN, Smith SK. Hepatocyte growth factor (HGF) in ovarian epithelial tumour fluids stimulates the migration of ovarian carcinoma cells. Int J Cancer 1999;83:476-80.
31. Benaud C, Oberst M, Hobson JP, Spiegel S, Dickson RB, Lin CY. Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase. J Biol Chem 2002;277:10539-46.
32. Hung RJ, Hsu Ia W, Dreiling JL, Lee MJ, Williams CA, Oberst MD, Dickson RB, Lin CY. Assembly of adherens junctions is required for sphingosine 1-phosphate-induced matriptase accumulation and activation at mammary epithelial cell-cell contacts. Am J Physiol Cell Physiol 2004;286:C1159-69.
33. Kiyomiya K, Lee MS, Tseng IC, Zuo H, Barndt RJ, Johnson MD, Dickson RB, Lin CY. Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. Am J Physiol Cell Physiol 2006;291:C40-9.
34. Yu JX, Chao L, Chao J. Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mRNA. J Biol Chem 1995;270:13483-9.
35. Chen LM, Hodge GB, Guarda LA, Welch JL, Greenberg NM, Chai KX. Down-regulation of prostasin serine protease: a potential invasion suppressor in prostate cancer. Prostate 2001;48:93-103.
36. Chen LM, Chai KX. Prostasin serine protease inhibits breast cancer invasiveness and is transcriptionally regulated by promoter DNA methylation. Int J Cancer 2002;97:323-9.
37. Chen LM, Wang C, Chen M, Marcello MR, Chao J, Chao L, Chai KX. Prostasin attenuates inducible nitric oxide synthase expression in lipopolysaccharide-induced urinary bladder inflammation. Am J Physiol Renal Physiol 2006;291:F567-77.
38. Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, Hughey RP, Kleyman TR. Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. J Biol Chem 2007;282:6153-60.
39. Carpenter G. Properties of the receptor for epidermal growth factor. Cell 1984;37:357-8.
40. Schlessinger J. The epidermal growth factor receptor as a multifunctional allosteric protein. Biochemistry 1988;27:3119-23.
41. Lee MS, Igawa T, Yuan TC, Zhang XQ, Lin FF, Lin MF. ErbB-2 signaling is involved in regulating PSA secretion in androgen-independent human prostate cancer LNCaP C-81 cells. Oncogene 2003;22:781-96.
42. Raymond E, Faivre S, Armand JP. Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs 2000;60 Suppl 1:15-23; discussion 41-2.
43. Wells A. EGF receptor. Int J Biochem Cell Biol 1999;31:637-43.
44. Ahmed SM, Salgia R. Epidermal growth factor receptor mutations and susceptibility to targeted therapy in lung cancer. Respirology 2006;11:687-92.
45. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006;366:2-16.
46. Marks RA, Zhang S, Montironi R, McCarthy RP, MacLennan GT, Lopez-Beltran A, Jiang Z, Zhou H, Zheng S, Davidson DD, Baldridge LA, Cheng L. Epidermal growth factor receptor (EGFR) expression in prostatic adenocarcinoma after hormonal therapy: a fluorescence in situ hybridization and immunohistochemical analysis. Prostate 2008;68:919-23.
47. Gregory CW, Fei X, Ponguta LA, He B, Bill HM, French FS, Wilson EM. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem 2004;279:7119-30.
48. Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L, Kim U, Chai LS, Kakati S, Arya SK, Sandberg AA. The LNCaP cell line--a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 1980;37:115-32.
49. Igawa T, Lin FF, Lee MS, Karan D, Batra SK, Lin MF. Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate 2002;50:222-35.
50. Lin MF, Lee MS, Zhou XW, Andressen JC, Meng TC, Johansson SL, West WW, Taylor RJ, Anderson JR, Lin FF. Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J Urol 2001;166:1943-50.
51. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 1978;21:274-81.
52. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP. LNCaP model of human prostatic carcinoma. Cancer Res 1983;43:1809-18.
53. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 1979;17:16-23.
54. Jacquinet E, Rao NV, Rao GV, Zhengming W, Albertine KH, Hoidal JR. Cloning and characterization of the cDNA and gene for human epitheliasin. Eur J Biochem 2001;268:2687-99.
55. Zhu ML, Kyprianou N. Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB J 2010;24:769-77.
56. Chuan YC, Pang ST, Cedazo-Minguez A, Norstedt G, Pousette A, Flores-Morales A. Androgen induction of prostate cancer cell invasion is mediated by ezrin. J Biol Chem 2006;281:29938-48.
57. Schaeffer EM, Marchionni L, Huang Z, Simons B, Blackman A, Yu W, Parmigiani G, Berman DM. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene 2008;27:7180-91.
58. Chen M, Fu YY, Lin CY, Chen LM, Chai KX. Prostasin induces protease-dependent and independent molecular changes in the human prostate carcinoma cell line PC-3. Biochim Biophys Acta 2007;1773:1133-40.
59. Hakariya T, Shida Y, Sakai H, Kanetake H, Igawa T. EGFR signaling pathway negatively regulates PSA expression and secretion via the PI3K-Akt pathway in LNCaP prostate cancer cells. Biochem Biophys Res Commun 2006;342:92-100.
60. Di Lorenzo G, Tortora G, D'Armiento FP, De Rosa G, Staibano S, Autorino R, D'Armiento M, De Laurentiis M, De Placido S, Catalano G, Bianco AR, Ciardiello F. Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin Cancer Res 2002;8:3438-44.
61. Myers RB, Kudlow JE, Grizzle WE. Expression of transforming growth factor-alpha, epidermal growth factor and the epidermal growth factor receptor in adenocarcinoma of the prostate and benign prostatic hyperplasia. Mod Pathol 1993;6:733-7.
62. Lorenzo GD, Bianco R, Tortora G, Ciardiello F. Involvement of growth factor receptors of the epidermal growth factor receptor family in prostate cancer development and progression to androgen independence. Clin Prostate Cancer 2003;2:50-7.
63. Pu FR, Williams RL, Markkula TK, Hunt JA. Monocyte adhesion and adhesion molecule expression on human endothelial cells on plasma-treated PET and PTFE in vitro. J Mater Sci Mater Med 2001;12:971-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8569-
dc.description.abstract攝護腺癌是西方男性最常發生的癌症之一。在台灣,因為生活飲食習慣逐漸地西化,攝護腺癌有逐年上升的趨勢,其死亡率在癌症死亡中排名第七位。目前對於人類攝護腺癌在轉變成為較惡化或具高度轉移的分子機制,尚未十分明瞭。近年來,有相關報告提出細胞表層蛋白分解反應的失調被認為與癌症的侵襲及轉移有直接的相關性。
因此,在本篇研究中,我們想探討可受雄性荷爾蒙調控的嵌膜絲胺酸蛋白酶:第二型膜上絲胺酸蛋白酶II (TMPRSS2),在攝護腺癌細胞演進過程中所扮演的角色。首先我們將可表現此蛋白酶膜外區域的DNA片段建構在一個帶有組胺酸標記的哺乳動物分泌載體內,利用HEK293T細胞株進行蛋白表達並純化此蛋白做為抗原,以製作抗體。與林陳鏞博士合作下,我們成功地獲得一株可專一辨認第二型膜上絲胺酸蛋白酶II的單株抗體。在三株雄性荷爾蒙非依賴型細胞株 (DU145、PC-3 及 LNCaP C-81) 及一株雄性荷爾蒙依賴型細胞株LNCaP C-33中,第二型膜上絲胺酸蛋白酶II主要表現在荷爾蒙依賴型的細胞,其表現量會隨著細胞對雄性賀爾蒙非依賴的程度及高度侵襲能力的上升而下降。當使用核糖核酸干擾技術專一地將第二型膜上絲胺酸蛋白酶II的表現抑制時,會提升細胞生長的能力,但卻會使雄性荷爾蒙接收體以及攝護腺特異性抗原 (PSA) 的表現量減低。同時,我們也發現第二型膜上絲胺酸蛋白酶II對雄性荷爾蒙所調控的間質蛋白酶 (matriptase) 活化、攝護腺特異抗原的產生以及攝護腺癌細胞的生長,都扮演著重要的角色。另一方面,在攝護腺癌細胞演進的過程中,當第二型膜上絲胺酸蛋白酶II表現受到抑制時,會促使上皮細胞生長因子接受體表現上升,進而增強細胞對上皮細胞生長因子的敏感性,易於反應生長刺激。總歸上述,本篇研究結果顯示當減少或失去第二型膜上絲胺酸蛋白酶II的表現時,會促進細胞生長以及對上皮細胞生長因子的敏感度,進而在攝護腺癌細胞演進的過程中扮演一個重要的角色。
關鍵詞: 第二型膜上絲胺酸蛋白酶II;攝護腺癌;雄性荷爾蒙接受體;上皮細胞生長因子接受體;間質蛋白酶;前列腺蛋白酶。
zh_TW
dc.description.abstractProstate cancer is one of the most common cancers among men in the western countries. In Taiwan, the incidence of prostate cancer has been rising to the seventh leading cause of cancer-related death, partly due to westernized life style and diets. Human prostate cancer usually undergoes several alterations to progress to advanced stages with androgen-independence and/or high metastasis. The molecular mechanisms for the progression are still not well understood. Recently, it has been proposed that deregulation of cell surface proteolysis is strongly involved in cancer cell invasion and metastasis.
In this study, we are interested in addressing the role of an androgen-regulated, membrane-anchored serine protease TMPRSS2 in the progression of prostate cancer cells, since a decreased expression of TMPRSS2 was shown in advanced prostate cancer. To explore the role of TMPRSS2 in prostate cancer, a monoclonal antibody (AL-20) against the protease was successfully generated by constructing the cDNA fragment encoding the extracellular region of TMPRSS2 inserted into a mammalian secretory vector with a His tag and purifying the fusion proteins as an antigen. With three androgen-independent prostate cancer cells (DU145, PC-3 and LNCaP C-81 cells) and an androgen-sensitive LNCaP C-33 cell, our data showed that the protein levels of TMPRSS2 were decreased in those cells with androgen-independence and highly invasive potentials. Moreover, a reduction of TMPRSS2 expression by shRNA approaches increased prostate cancer cell proliferation, but decreased the expression of androgen receptor (AR) and prostate-specific antigen (PSA). Furthermore, our data showed that TMPRSS2 was important for Dihydrotestosterone (DHT) -induced matriptase activation, PSA production and prostate cancer cell growth. On the other hand, down regulation of TMPRSS2 during the progression of prostate cancer cells decreased matriptase activation and increased the protein level of EGFR, leading to enhancement of EGF sensitivity for growth stimulation. Taken together, this study indicates that a decrease/loss of TMPRSS2 expression may play a role in the progression of prostate cancer cells, at least in part via increasing cell growth and EGF sensitivity.
Key words: TMPRSS2; prostate cancer; androgen receptor; EGFR; matriptase; prostasin.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T19:58:32Z (GMT). No. of bitstreams: 1
ntu-99-R97442008-1.pdf: 1706494 bytes, checksum: e9066c0e8e4ef22469d58d52666b657b (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要 i
ABSTRACT iii
Chapter 1 Introduction 1
1.2 Type II transmembrane serine protease. 3
1.3 Type II transmembrane protease, serine 2 (TMPRSS2) 3
1.4 Matriptase 5
1.5 Prostasin (PRSS8) 7
1.6 Epidermal growth factor receptor (EGFR) 7
1.7 The purpose for this study 8
Chapter 2 Material & Methods 10
2.1 Materials 11
2.2. Methods 15
Chapter 3 Results 23
3.1 To generate a TMPRSS2 monoclonal antibody and detect the expression of TMPRSS2 in human prostate cancer cells. 24
3.2 Cell migration and invasion of different human prostate cancer LNCaP cells and the expression levels of TMPRSS2 in these two cells. 25
3.3 Role of TMPRSS2 in prostate cancer cell growth. 26
3.4 Effect of TMPRSS2 knockdown on prostate cancer cell migration. 27
3.5 Effect of DHT on TMPRSS2 expression. 28
3.6 Role of TMPRSS2 in AR transcriptional activity and protein stability. 29
3.7 Role of TMPRSS2 in DHT-induced prostate cancer cell growth. 30
3.8 Role of TMPRSS2 in activation of matriptase and matriptase/prostasin cascade. 31
3.9 Effect of TMPRSS2 knockdown on EGFR in prostate cancer cells. 32
3.10 Role of TMPRSS2 as a mediator between the signal pathways of androgens and EGF in prostate cancer cells. 33
Chapter 4 Discussion 35
4.1 TMPRSS2 in androgen sensitivity and cell migration. 36
4.2 TMPRSS2 in androgens-induced matriptase activation and EGFR processing. 37
4.3 TMPRSS2 in the EGF sensitivity of prostate cancer cells and in the cancer progression. 39
4.4 TMPRSS2 as a mediator between androgen signaling and EGFR pathway. 40
Chapter 5 Figures 42
Chapter 6 References 59
dc.language.isoen
dc.title第二型膜上絲胺酸蛋白酶II在攝護腺癌細胞扮演的角色zh_TW
dc.titleRole of TMPRSS2 in the progression of prostate cancer cellsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林榮耀,張震東,柯逢春,黃娟娟
dc.subject.keyword第二型膜上絲胺酸蛋白&#37238,II,攝護腺癌,雄性荷爾蒙接受體,上皮細胞生長因子接受體,間質蛋白&#37238,前列腺蛋白&#37238,zh_TW
dc.subject.keywordTMPRSS2,prostate cancer,androgen receptor,EGFR,matriptase,prostasin,en
dc.relation.page65
dc.rights.note同意授權(全球公開)
dc.date.accepted2010-07-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf1.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved