Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85691
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪士灝(Shih-Hao Hung)
dc.contributor.authorMin-Yu Tsaien
dc.contributor.author蔡旻郁zh_TW
dc.date.accessioned2023-03-19T23:21:39Z-
dc.date.copyright2022-07-26
dc.date.issued2022
dc.date.submitted2022-06-20
dc.identifier.citation[1] S. Agostinelli et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3):250–303, 2003. [2] E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose, S. AnderssonEngels, and L. Lilge. Nextgeneration acceleration and code optimization for light transport in turbid media using gpus. Biomed. Opt. Express, 1(2):658–675, Sep 2010. [3] J. Allison et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci., 53:270, 2006. [4] P. Andreo. Monte carlo simulations in radiotherapy dosimetry. Radiation Oncology, 13:121, 06 2018. [5] A. Badal and A. Badano. Accelerating monte carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit. Medical physics, 36:4878–80, 11 2009. [6] M. Bernal, M. Bordage, J. Brown, M. Davídková, E. Delage, Z. El Bitar, S. Enger, Z. Francis, S. Guatelli, V. Ivanchenko, M. Karamitros, I. Kyriakou, L. Maigne, S. Meylan, K. Murakami, S. Okada, H. Payno, Y. Perrot, I. Petrovic, Q. Pham, A. RisticFira, T. Sasaki, V. Štěpán, H. Tran, C. Villagrasa, and S. Incerti. Track structure modeling in liquid water: A review of the geant4dna very low energy extension of the geant4 monte carlo simulation toolkit. Physica Medica, 31(8):861–874, 2015. [7] M. Bordage, J. Bordes, S. Edel, M. Terrissol, X. Franceries, M. Bardiès, N. Lampe, 83 and S. Incerti. Implementation of new physics models for low energy electrons in liquid water in geant4dna. Medical physics, 32, 2016. [8] J. Cassidy, L. Lilge, and V. Betz. Fast, powerefficient biophotonic simulations for cancer treatment using fpgas. pages 133–140, 05 2014. [9] P. Davalli, T. Mitic, A. Caporali, A. Lauriola, and D. D'Arca. Ros, cell senescence, and novel molecular mechanisms in aging and agerelated diseases. Oxidative Medicine and Cellular Longevity, 2016. [10] M. Dingfelder, D. Hantke, M. Inokuti, and H. Paretzke. Electron inelasticscattering cross sections in liquid water. Radiation Physics and Chemistry, 53:1–18, 1998. [11] S. Edel and M. Terrissol. Modélisation du transport des photons et des électrons dans l’ADN plasmide. Lille thèses. 2006. [12] I. El Naqa, P. Pater, and J. Seuntjens. Monte carlo role in radiobiological modelling of radiotherapy outcomes. Physics in medicine and biology, 57:R75–97, 05 2012. [13] D. Emfietzoglou. Inelastic crosssections for electron transport in liquid water: a comparison of dielectric models. Radiation Physics and Chemistry, 66(6):373–385, 2003. [14] D. Emfietzoglou, G. Papamichael, K. Kostarelos, and M. Moscovitch. A monte carlo track structure code for electrons ( 10 ev10 kev) and protons ( 0.310 mev) in water: Partitioning of energy and collision events. Physics in Medicine and Biology PHYSMED BIOL, 45:3171–3194, 11 2000. [15] G. Estrin. Organization of computer systems: The fixed plus variable structure computer. In Papers Presented at the May 35, 1960, Western Joint IREAIEEACM Computer Conference, IREAIEEACM’60 (Western), page 33–40, New York, NY, USA, 1960. Association for Computing Machinery. [16] W. Friedland, M. Dingfelder, P. Kundrát, and P. Jacob. Track structures, dna targets and radiation effects in the biophysical monte carlo simulation code partrac. Mutation research, 711:28–40, 2011. 84 [17] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. H. Phillips, Y. Zhang, and V. Volkov. Parallel computing experiences with CUDA. IEEE Micro, 28(4):13–27, 2008. [18] C. M. Goh, R. Subramaniam, N. M. Saad, S. A. Ali, and F. Meriaudeau. Subcutaneous veins depth measurement using diffuse reflectance images. Opt. Express, 25(21):25741–25759, Oct 2017. [19] Z. Guo, W. Najjar, F. Vahid, and K. Vissers. A quantitative analysis of the speedup factors of fpgas over processors. In Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays, FPGA ’04, page 162– 170, New York, NY, USA, 2004. Association for Computing Machinery. [20] I. Hajj, J. GómezLuna, C. Li, L.W. Chang, D. Milojicic, and W.m. Hwu. Klap: Kernel launch aggregation and promotion for optimizing dynamic parallelism. IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pages 1–12, 2016. [21] E. Hall and A. Giaccia. Radiobiology for the radiologist: Seventh edition. 03 2012. [22] T. D. Han and T. S. Abdelrahman. Reducing branch divergence in gpu programs. In Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Processing Units, GPGPU4, New York, NY, USA, 2011. Association for Computing Machinery. [23] S. Hissoiny, B. Ozell, H. Bouchard, and P. Després. Gpumcd: A new gpuoriented monte carlo dose calculation platform. Medical physics, 38(2):754—764, February 2011. [24] J. Hoberock and N. Bell. Thrust: A parallel template library. Computing Gems, Jade Edition, 2011. [25] S.H. Hung, M.Y. Tsai, B.Y. Huang, and C.H. Tu. A platformoblivious approach for heterogeneous computing: A case study with monte carlobased simulation for medical applications. In Proceedings of the 2016 ACM/SIGDA International Symposium on FieldProgrammable Gate Arrays, FPGA ’16, page 42–47, New York, NY, USA, 2016. Association for Computing Machinery. [26] E. Huttel, W. Arnold, H. Baumgart, and G. Clausnitzer. Screening corrections to the rutherford cross section. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 12(2):193–199, 1985. [27] S. Incerti, G. Baldacchino, M. Bernal, R. Capra, C. Champion, Z. Francis, P. GuÈYe, A. Mantero, B. Mascialino, P. Moretto, P. Nieminen, C. Villagrasa, and C. Zacharatou. The geant4dna project. International Journal of Modeling, Simulation, and Scientific Computing, 01:157–178, 2010. [28] S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. Tran, B. Mascialino, C. Champion, V. N Ivanchenko, M. Bernal, Z. Francis, C. Villagrasa, G. Baldacchino, P. Gueye, R. Capra, P. Nieminen, and C. Zacharatou. Comparison of geant4 very low energy cross section models with experimental data in water. Medical physics, 37:4692–708, 2010. [29] D. J Brenner and M. Zaider. A computationally convenient parameterisation of experimental angular distributions of low energy electrons elastically scattered off water vapour. Physics in Medicine and Biology, 29:443, 1984. [30] L. Jahnke, J. Fleckenstein, F. Wenz, and J. Hesser. GMC: a GPU implementation of a monte carlo dose calculation based on geant4. 57(5):1217–1229, feb 2012. [31] X. Jia, X. Gu, J. Sempau, D. Choi, A. Majumdar, and S. B. Jiang. Development of a gpubased monte carlo dose calculation code for coupled electron–photon transport. Physics in Medicine and Biology, 55(11):3077–3086, May 2010. [32] X. Jia, J. Schümann, H. Paganetti, and S. B. Jiang. Gpubased fast monte carlo dose calculation for proton therapy. Physics in medicine and biology, 57:7783–7797, 2012. [33] X. Jia, H. Yan, X. Gu, and S. B. Jiang. Fast monte carlo simulation for patientspecific CT/CBCT imaging dose calculation. Physics in Medicine and Biology, 57(3):577–590, jan 2012. [34] X. Jia, P. Ziegenhein, and S. B. Jiang. GPUbased highperformance computing for radiation therapy. Physics in Medicine and Biology, 59(4):R151–R182, feb 2014. [35] G. Kalantzis and H. Tachibana. Accelerated eventbyevent monte carlo microdosimetric calculations of electrons and protons tracks on a multicore cpu and a cudaenabled gpu. Computer methods and programs in biomedicine, 113(1):116—125, 2014. [36] Y. Kawai and T. Iwai. Hybrid miemcml monte carlo simulation of light propagation in skin layers. In International Conference on Optical Particle Characterization (OPC 2014), volume 9232, page 923206. International Society for Optics and Photonics, 2014. [37] Khronos OpenCL Working Group. The OpenCL Specification, Version 1.1, 2011. [38] Y.K. Kim and M. E. Rudd. Binaryencounterdipole model for electronimpact ionization. Phys. Rev. A, 50:3954–3967, Nov 1994. [39] Y.K. Kim, J. P. Santos, and F. Parente. Extension of the binaryencounterdipole model to relativistic incident electrons. Phys. Rev. A, 62:052710, 2020. [40] M. Kreipl, W. Friedland, and H. Paretzke. Timeand spaceresolved monte carlo study of water radiolysis for photon, electron and ion irradiation. Radiation and environmental biophysics, 48:11–20, 2008. [41] W. C. Y. Lo, T. D. Han, J. Rose, and L. Lilge. Gpuaccelerated monte carlo simulation for photodynamic therapy treatment planning. In Therapeutic Laser Applications and LaserTissue Interactions IV, pages 7373–13. Optical Society of America, 2009. [42] W. C. Y. Lo, K. Redmond, J. Luu, P. Chow, J. Rose, and L. D. Lilge. Hardware acceleration of a Monte Carlo simulation for photodynamic treatment planning. Journal of Biomedical Optics, 14(1):1 – 11, 2009. [43] J. Ma, C. Beltran, H. Tseung, and M. Herman. A gpuaccelerated and monte carlobased intensity modulated proton therapy optimization system. Medical physics, 41:121707, 12 2014. [44] I. MartínezRovira, J. Sempau, and Y. Prezado. Monte carlobased treatment planning system calculation engine for microbeam radiation therapy. Medical Physics, 39(5):2829–2838, 2012. [45] C. E. Melton. Principles of mass spectrometry and negative ions. 1971. [46] V. Michalik, M. Davidkova, and E. A. Bigildeev. Computeraided stochastic modeling of the radiolysis of liquid water. Radiation research, 149:224–36, 1998. [47] M. Michaud, A. Wen, and L. Sanche. Cross sections for lowenergy (1100 ev) electron elastic and inelastic scattering in amorphous ice. Radiation Research, 159(1):3– 22, 2003. [48] G. Moliere. Theorie der streuung schneller geladener teilchen ii mehrfachund vielfachstreuung. Zeitschrift für Naturforschung A, 3(2):78–97, 1948. [49] N. F. Mott and H. S. W. Massey. The theory of atomic collisions. 1949. [50] N. Nethercote, R. Walsh, and J. Fitzhardinge. Building workload characterization tools with valgrind. In IEEE International Symposium on Workload Characterization, pages 2–2. IEEE, 2006. [51] NVIDIA. Cuda dynamic parallelism programming guide. 2014. [52] NVIDIA. Cuda math api v10.2.89. 2019. [53] NVIDIA Corporation. NVIDIA CUDA C++ programming guide, 2021. Version 11.2.2. [54] S. Okada, K. Murakami, K. Amako, T. Sasaki, S. Incerti, M. Karamitros, N. Henderson, M. Gerritsen, M. Asai, and A. Dotti. Gpu acceleration of monte carlo simulation at the cellular and dna levels. Innovation in Medicine and Healthcare 2015, 45:323–332, 2016. [55] J. Olivero, R. Stagat, and A. Green. Electron deposition in water vapor, with atmospheric applications. Journal of Geophysical Research, 77, 1972. [56] T. H. Osiecki, M. yu Tsai, A. E. Gattiker, D. A. Jamsek, S. R. Nassif, W. E. Speight, and C. C. Sze. Hardware acceleration of an efficient and accurate proton therapy monte carlo. Procedia Computer Science, 18:2241–2250, 2013. 2013 International Conference on Computational Science. [57] I. Plante. A montecarlo stepbystep simulation code of the nonhomogeneous chemistry of the radiolysis of water and aqueous solutions. part i: theoretical framework and implementation. Radiat Environ Biophys., 50:389–403, 2011. [58] J. P. Santos, F. Parente, and Y. K. Kim. Cross sections for kshell ionization of atoms by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 36:4211, 2003. [59] H. Shen and G. Wang. A study on tetrahedronbased inhomogeneous monte carlo optical simulation. Biomed. Opt. Express, 2(1):44–57, Jan 2011. [60] H. Simon, A. HajYehia, and F. LeviSchaffer. Role of reactive oxygen species (ros) in apoptosis induction. Apoptosis, 5:415–8, 2000. [61] M. Stabin, R. Hamm, J. Turner, and W. Bolch. Track structure simulation and determination of product yields in the electron radiolysis of water containing various solutes. Radiation Protection Dosimetry, 52, 1994. [62] M. Terrissol and A. Beaudré. Simulation of space and time evolution of radiolytic species induced by electrons in water. Radiation Protection Dosimetry, 31:175–177, 1990. [63] Z. Tian, S. Jiang, and X. Jia. Accelerated monte carlo simulation on the chemical stage in water radiolysis using gpu. Physics in Medicine and Biology, 62:3081–3096, 2017. [64] Z. Tian, F. Shi, M. Folkerts, N. Qin, S. B. Jiang, and X. Jia. A GPU OpenCL based crossplatform monte carlo dose calculation engine (goMC). Physics in Medicine and Biology, 60(19):7419–7435, sep 2015. [65] M. Tsai and S. Hung. Hardware acceleration for proton beam monte carlo simulation. Proceedings of the 2013 Research in Adaptive and Convergent Systems, pages 495–496, 2013. [66] M. Tsai, X. Jia, and N. Qin. Seamless integration of a gpubased monte carlo treatment plan optimization engine for carbon ion therapy with varian eclipse system: Suigpdt117. Medical Physics, 44(6), 2017. [67] M. Tsai, Z. Tian, N. Qin, C. Yan, Y. Lai, S. Hung, Y. Chi, and X. Jia. A new opensource gpu‐based microscopic monte carlo simulation tool for the calculations of dna damages caused by ionizing radiation‐‐‐part i: Core algorithm and validation. Medical physics, 47, 2020. [68] M.Y. Tsai, Y. Lai, Y. Chi, X. Jia, and S.H. Hung. Performance evaluation of a gpubased monte carlo simulation package for water radiolysis with submev electrons. In Proceedings of the International Conference on Research in Adaptive and Convergent Systems, RACS ’20, page 226–233, New York, NY, USA, 2020. Association for Computing Machinery. [69] V. V. Tuchin. Light scattering study of tissues. PhysicsUspekhi, 40(5):495–515, may 1997. [70] K. Underwood. Fpgas vs. cpus: Trends in peak floatingpoint performance. In Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays, FPGA ’04, page 171–180, New York, NY, USA, 2004. Association for Computing Machinery. [71] L. Wang, S. Jacques, and L. Zheng. Mcml–monte carlo modeling of light transport in multilayered tissues. Computer methods and programs in biomedicine, 47(2):131—146, July 1995. [72] J. Weidendorfer. Sequential performance analysis with callgrind and kcachegrind. In Tools for High Performance Computing, pages 93–113. Springer Berlin Heidelberg, 2008. [73] J. Williamson and D. Mihailidis. Fundamentals of ionizing radiation dosimetry. Medical Physics, 45, 09 2018. [74] R. R. Wilson. Radiological use of fast protons. Radiology, 47:487–491, 1946. [75] D. Ziech, R. Franco, A. Pappa, and M. Panayiotidis. Reactive oxygen species (ros)–induced genetic and epigenetic alterations in human carcinogenesis. Mutation research, 711:167–173, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85691-
dc.description.abstract輻射劑量學是一門研究如何測量以及計算輻射劑量的科學,在醫學物理的研究上佔有相當重要的地位。輻射劑量的研究主要可分為兩個領域 – 巨觀劑量計算及微觀劑量計算。巨量劑量法與吸收劑量有關,吸收劑量率定義為忽略所得隨機波動的統計平均值,廣泛用於癌症放射治療中以模擬癌症治療所需的信息,例如輻射強度,照射時間和入射方向。微觀劑量法是對被輻照物質內之微觀結構中吸收能量的時空分佈下所作的系統研究,例如通過電離輻射產生的自由基分佈到人體內,進而破壞DNA並導致癌症的形成。 蒙地卡羅法為現今公認最為準確的模擬方法,此法採用一步一步計算粒子的行進過程進行計算。為了取得所希望的統計準確性,必須一次模擬大量粒子,這使得劑量計算需涉及模擬大量粒子行進及物理、化學作用,而耗費非常長的計算時間。 為了有效率的計算,往往需要建置龐大電腦運算資源。今日各醫學臨床及研究機構多使用叢集電腦實現平行劑量計算以減少運算時間。但一般研究人員要取得叢集電腦系統並不容易,因此阻礙了許多先進的輻射劑量學相關研究。然而近年來GPU的出現,對於平行運算提供了另一種高效能且成本低廉的選擇。 在本論文中,通過GPU的並行計算,成功實現了電子,光子及質子等多種放射治療劑量計算的加速。我們也成功結合商用軟體與碳離子劑量計算模擬器,期望為致力於基於GPU架構進行劑量學研究的研究人員和臨床醫生提供一個友好界面。對於微觀劑量法,我們開發出 gMicroMC,這是一種基於GPU架構的水輻解微觀蒙地卡羅模擬工具。據我們了解,這也是首度於GPU架構上,實現水輻解化學階段的蒙地卡羅模擬器。我們最終完成的GPU架構gMicroMC模擬器,完整實現物理,物理化學和化學三個階段,並進一步對其進行性能評估研究,得到整體模擬效能可獲得高於千倍於單一CPU執行緒的加速成果。 為了使整個開發過程更具通用性,我們提出了基於蒙地卡羅和GPU加速的輻射劑量學聯合程式設計模型(Joint programming model)。藉由歸納不同粒子類型的劑量計算研究,將其整理到一個通用的實現流程中,通過分析每個蒙地卡羅步驟中的行為,最後提出了有利於GPU架構的最佳化實現方法。zh_TW
dc.description.abstractRadiation dosimetry is a science that studies how to measure and calculate radiation doses. It plays an important role in the research of medical physics. Existing MC dosimetry methods for radiation therapy could be broadly divided into two domains of macrodosimetry and microdosimetry. Macrodosimetry is concerned with absorbed dose and absorbed dose rate are defined as statistical averages that disregard the resulting random fluctuations and widely used in cancer radiotherapy to simulate the information needed for cancer treatment, such as radiation intensity, exposure time, and incident direction. Microdosimetry regards the systematic study of the spatial and temporal distribution of the absorbed energy in microscopic structures within the irradiated matter, such as the distribution of free radicals generated by ionizing radiation into the human body, damaging DNA and leading to the formation of cancer. Monte Carlo method is currently recognized as the most accurate simulation method. This method uses a step-by-step calculation of the particle travel process. In order to obtain the desired statistical accuracy, a large number of particles need to be simulated at one time. This makes the dose calculation involve a large number of particle travel and simulation of physical and chemical effects, which consumes very long calculation time. Huge computer computing resources need to be utilized to perform efficient Monte Carlo calculations. Today, various medical clinical and research institutions use cluster computers to achieve parallel dose calculations to reduce computing time. However, it is not easy for general researchers to build a cluster computer system, which hinders advanced radiation dosimetry research. The emergence of GPUs in recent years has provided another high-performance and low-cost option for parallel computing. In this dissertation, we have successfully achieved the acceleration of various radiation therapy dose calculations, for example, electron, photon and proton through the parallel computing of GPU. We have also successfully combined commercial software with a carbon ion dose calculation simulator, expecting to make a friendly interface for researchers and clinicians devoted to GPU-based dosimetry research. For the microdosimetry, gMicroMC, a GPU‐based microscopic Monte Carlo simulation tool for water radiolysis has been developed which is the first Monte Carlo method based on GPU to implement the water radiolysis chemical stage simulator to our knowledge. We finally realized all three stages-physics, physical chemistry and chemical stages based on the complete GPU-based gMicroMC simulator. The experimental results of evaluation on gMicroMC show up to three orders of magnitude performance gain. With the aim of making the entire development process more versatile, a joint programming model based on Monte Carlo with GPU acceleration for radiation dosimetry is proposed. We organized our studies on the dose calculation of different particle types into a generic implementation flow, optimized the performances by analyzing the behaviors in each Monte Carlo step, we present implementation methods that are conducive to the GPU architecture.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:21:39Z (GMT). No. of bitstreams: 1
U0001-1202202206021700.pdf: 4513970 bytes, checksum: 6d257ae98912dfc73d0cebb02d7a3a35 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i 致謝 iii 摘要 v Abstract vii Contents ix List of Figures xiii List of Tables xvii Chapter 1 Introduction 1 Chapter 2 Background and Related Work 5 2.1 Monte Carlo Method and Radiation Dosimetry . . . . . . . . . . . . 5 2.2 Light Transport and MCML . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Proton Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Water Radiolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Geant4 and Geant4­DNA . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Graphics Processing Unit (GPU) . . . . . . . . . . . . . . . . . . . . 9 2.7 Reconfigurable Computing and FPGA . . . . . . . . . . . . . . . . . 10 Chapter 3 Build a Faster Simulator Hardware Acceleration for Proton Cancer Treatment Planning and Monte Carlo Simulation 11 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.2 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.3 Reconfigurable Computing and FPGA . . . . . . . . . . . . . . . . 13 3.2 Accelerated Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Monte Carlo on GPU . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.2 Monte Carlo on FPGA . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 4 Performance Optimization ­ A Platform­oblivious Approach for Heterogeneous Computing 23 4.1 MCML Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 Batch Parallel Execution Model . . . . . . . . . . . . . . . . . . . 24 4.1.2 Buffering Photon Records . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.3 Reducing Branch Divergence . . . . . . . . . . . . . . . . . . . . . 25 4.1.4 Caching Data with Constant Memory . . . . . . . . . . . . . . . . . 26 4.1.5 Sectioning the Thread Execution . . . . . . . . . . . . . . . . . . . 26 4.1.6 Fast Relaxed Math . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 Overall Performance Results . . . . . . . . . . . . . . . . . . . . . 29 4.2.2 Performance and Energy Efficiency . . . . . . . . . . . . . . . . . 29 4.2.3 Platform­Oblivious vs. Platform­Specific Approaches . . . . . . . . 31 4.2.3.1 OpenCL vs. CUDA . . . . . . . . . . . . . . . . . . . 31 4.2.3.2 OpenCL vs. Verilog . . . . . . . . . . . . . . . . . . . 33 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter 5 Clinical User Friendly Interface ­ Seamless Integration of a GPU­Based Monte Carlo Treatment Plan Optimization Engine for Carbon Ion Therapy with Varian Eclipse System 35 5.1 Innovation and Impact . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 6 gMicroMC ­ A GPU‐based Microscopic Monte Carlo Simulation Tool for Water Radiolysis 41 6.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.1.1 Physical Stage (< 10^−15s) . . . . . . . . . . . . . . . . . . . . . . 41 6.1.2 Physicochemical Stage (∼ 10^−15s − 10^−12s) . . . . . . . . . . . . . 43 6.1.3 Chemical Stage (∼ 10^−12s − 10^−6s) . . . . . . . . . . . . . . . . . 44 6.2 GPU Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2.1 Simulation in Physics Stages . . . . . . . . . . . . . . . . . . . . . 44 6.2.2 Simulation in Physicochemical Stages . . . . . . . . . . . . . . . . 45 6.2.3 Simulations in Chemical Stages . . . . . . . . . . . . . . . . . . . . 45 6.3 Validation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.4.1 Physical Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.4.2 Physicochemical and Chemical Stages . . . . . . . . . . . . . . . . 48 6.4.3 Computational Speed . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Chapter 7 Performance Evaluation of a GPU­based Monte Carlo Simulation Package for Water Radiolysis with sub­MeV Electrons 55 7.1 Performance Profiling Tools . . . . . . . . . . . . . . . . . . . . . . 56 7.2 GPU Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.2.1 Physical Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.2.1.1 CUDA Dynamic Parallelism (CDP) . . . . . . . . . . . 58 7.2.2 Physico­chemical Stage . . . . . . . . . . . . . . . . . . . . . . . . 59 7.2.3 Chemical Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.2.3.1 Time Step Selection Strategy . . . . . . . . . . . . . . 60 7.2.3.2 Build Grid Data and Setup LUT . . . . . . . . . . . . . 60 7.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.3.2 Radical Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.3.3 Profiling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.3.3.1 Physical Stage . . . . . . . . . . . . . . . . . . . . . . 64 7.3.4 Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.3.4.1 Physical Stage Performance . . . . . . . . . . . . . . . 65 7.3.4.2 Time Step Selection. . . . . . . . . . . . . . . . . . . . 67 7.3.4.3 gMicroMC Performance . . . . . . . . . . . . . . . . . 67 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter 8 A Joint Programming Model for Monte Carlo Based Radiation Dosimetry 71 8.1 Monte Carlo Simulation Models . . . . . . . . . . . . . . . . . . . . 72 8.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 8.2.1 Recommendation of MC Optimization Strategies on GPUs . . . . . 73 8.2.2 Potential Points for Performance Improvement . . . . . . . . . . . . 74 8.2.2.1 Data Preparing . . . . . . . . . . . . . . . . . . . . . . 75 8.2.2.2 Start Simulation . . . . . . . . . . . . . . . . . . . . . 76 8.2.2.3 Particle Transport Kernel . . . . . . . . . . . . . . . . 76 8.2.2.4 Process Control . . . . . . . . . . . . . . . . . . . . . 77 8.2.2.5 Diffusion/Mutual Reaction Kernel . . . . . . . . . . . 79 8.2.3 Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . 80 8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter 9 Conclusion and Future Work 83 References 85 Publication List 95
dc.language.isoen
dc.subject高性能運算zh_TW
dc.subject蒙地卡羅法zh_TW
dc.subject圖形處理器zh_TW
dc.subject輻射劑量學zh_TW
dc.subjectGPUen
dc.subjectMonte Carlo Methoden
dc.subjectRadiation Dosimetryen
dc.subjectHigh Performance Computingen
dc.title利用圖形處理器加速基於蒙地卡羅演算法之輻射劑量計算模擬之研究 - 從巨觀劑量到微觀劑量zh_TW
dc.titleGPU Acceleration on Monte Carlo-based Radiation Dosimetry Simulation - from Macrodosimetry to Microdosimetryen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭大維(Tei-Wei Kuo),施吉昇(Chi-Sheng Shih),李宗其(Chung-Chi Lee),趙自強(Tsi-Chian Chao)
dc.subject.keyword輻射劑量學,蒙地卡羅法,圖形處理器,高性能運算,zh_TW
dc.subject.keywordRadiation Dosimetry,Monte Carlo Method,GPU,High Performance Computing,en
dc.relation.page93
dc.identifier.doi10.6342/NTU202200574
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-06-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2022-07-26-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-1202202206021700.pdf4.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved