請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85675
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 單偉彌(Vianney Denis) | |
dc.contributor.author | Tsai-Hsuan Hsu | en |
dc.contributor.author | 徐才烜 | zh_TW |
dc.date.accessioned | 2023-03-19T23:21:14Z | - |
dc.date.copyright | 2022-07-07 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-06-21 | |
dc.identifier.citation | Aglieri, G., Baillie, C., Mariani, S., Cattano, C., Calo, A., Turco, G., Spatafora, D., Di Franco, A., Di Lorenzo, M., Guidetti, P., & Milazzo, M. (2021). Environmental DNA effectively captures functional diversity of coastal fish communities. Mol Ecol, 30(13), 3127-3139. https://doi.org/10.1111/mec.15661 Alboukadel Kassambara, & Mundt, F. (2020). factoextra: Extract and visualize the results of multivariate data analyses. In https://CRAN.R-project.org/package=factoextra Anderson, M. J. (2017). Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, 1-15. https://doi.org/10.1002/9781118445112.stat07841 Arbizu, P. M. (2017). pairwiseAdonis: Pairwise multilevel comparison using adonis. Baselga, A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 21(12), 1223-1232. https://doi.org/10.1111/j.1466-8238.2011.00756.x Baselga, A., & Orme, C. D. L. (2012). betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3(5), 808-812. https://doi.org/10.1111/j.2041-210X.2012.00224.x Bejarano, I., & Appeldoorn, R. S. (2013). Seawater turbidity and fish communities on coral reefs of Puerto Rico. Marine Ecology Progress Series, 474, 217-226. https://doi.org/10.3354/meps10051 Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429(6994), 827-833. Bertrand, J. A. M., Borsa, P., & Chen, W. J. (2017). Phylogeography of the sergeants Abudefduf sexfasciatus and A. vaigiensis reveals complex introgression patterns between two widespread and sympatric Indo-West Pacific reef fishes. Mol Ecol, 26(9), 2527-2542. https://doi.org/10.1111/mec.14044 Bessey, C., Jarman, S. N., Berry, O., Olsen, Y. S., Bunce, M., Simpson, T., Power, M., McLaughlin, J., Edgar, G. J., & Keesing, J. (2020). Maximizing fish detection with eDNA metabarcoding. Environmental DNA, 2(4), 493-504. https://doi.org/10.1002/edn3.74 Boettiger, C., Lang, D. T., & Wainwright, P. C. (2012). rfishbase: Exploring, manipulating and visualizing FishBase data from R. J Fish Biol, 81(6), 2030-2039. https://doi.org/10.1111/j.1095-8649.2012.03464.x Boussarie, G., Bakker, J., Wangensteen, O. S., Mariani, S., Bonnin, L., Juhel, J. B., Kiszka, J. J., Kulbicki, M., Manel, S., Robbins, W. D., Vigliola, L., & Mouillot, D. (2018). Environmental DNA illuminates the dark diversity of sharks. Sci Adv, 4(5), eaap9661. https://doi.org/10.1126/sciadv.aap9661 Boyer, S. E., White, J. S., Stier, A. C., & Osenberg, C. W. (2009). Effects of the fish anesthetic, clove oil (eugenol), on coral health and growth. Journal of Experimental Marine Biology and Ecology, 369(1), 53-57. https://doi.org/10.1016/j.jembe.2008.10.020 Brandl, S. J., Casey, J. M., Knowlton, N., & Duffy, J. E. (2017). Marine dock pilings foster diverse, native cryptobenthic fish assemblages across bioregions. Ecol Evol, 7(17), 7069-7079. https://doi.org/10.1002/ece3.3288 Brandl, S. J., Tornabene, L., Goatley, C. H. R., Casey, J. M., Morais, R. A., Côté, I. M., Baldwin, C. C., Parravicini, V., Schiettekatte, N. M. D., & Bellwood, D. R. (2019). Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science, 364(6446), 1189-1192. https://doi.org/10.1126/science.aav3384 Chan, T.-Y., Yang, C.-H., Chen, I.-S., Chang, J.-S., Meng, P.-J., & Yu, H.-y. (2021). Marine biological data collection and inventory of marine demonstration area-coastal region of Northern Taiwan (in Chinese) (OAC-NAMR-110-0017). https://www.grb.gov.tw/search/planDetail?id=13717911 Chang, J., Rabosky, D. L., Smith, S. A., & Alfaro, M. E. (2019). An r package and online resource for macroevolutionary studies using the ray-finned fish tree of life. Methods in Ecology and Evolution, 10(7), 1118-1124. https://doi.org/10.1111/2041-210x.13182 Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-67. https://doi.org/10.1890/13-0133.1 Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: An R Package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61(6), 1 - 36. https://doi.org/10.18637/jss.v061.i06 Chen, H. (2018). VennDiagram: Generate high-resolution venn and euler plots. In https://CRAN.R-project.org/package=VennDiagram Chen, J.-P. (2010). Marine fishes of the Ken-ting National Park. Kenting National Park Headquarters. Chen, J.-P. (2011). Fishes of Dongsha Atoll in South China Sea (in Chinese) (1 ed.). Marine National Park Headquarters. Cole, A. J., Pratchett, M. S., & Jones, G. P. (2008). Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish and Fisheries, 9(3), 286-307. https://doi.org/DOI 10.1111/j.1467-2979.2008.00290.x Collins, R. A., Wangensteen, O. S., O'Gorman, E. J., Mariani, S., Sims, D. W., & Genner, M. J. (2018). Persistence of environmental DNA in marine systems. Commun Biol, 1, 185. https://doi.org/10.1038/s42003-018-0192-6 Dai, C. F. (2011). Eco-tourism map of coral reefs in Taiwan (in Chinese) (1 ed.). Commonwealth Publishing Co. Dai, C. F., Jan, R.-Q., Wang, J.-C., Hsu, Y.-F., Ho, K.-S., Wang, S.-W., Chang, J.-S., Chen, C.-S., & Huang, H.-D. (2008). The research of natural resources of the Three Northern Islets (in Chinese). https://www.marine.gov.tw/%E6%94%BF%E5%BA%9C%E8%B3%87%E8%A8%8A%E5%85%AC%E9%96%8B/%E6%94%BF%E5%BA%9C%E8%B3%87%E8%A8%8A%E5%85%AC%E9%96%8B/%E7%A0%94%E7%A9%B6%E5%A0%B1%E5%91%8A?view=article&id=22 Darling, E. S., Graham, N. A. J., Januchowski-Hartley, F. A., Nash, K. L., Pratchett, M. S., & Wilson, S. K. (2017). Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs, 36(2), 561-575. https://doi.org/10.1007/s00338-017-1539-z David Orme, Rob Freckleton, Gavin Thomas, Thomas Petzoldt, Susanne Fritz, Nick Isaac, & Pearse, W. (2018). caper: Comparative analyses of phylogenetics and evolution in R. https://CRAN.R-project.org/package=caper Denis, V., Chen, J. W., Chen, Q., Hsieh, Y. E., Lin, Y. V., Wang, C. W., Wang, H. Y., & Sturaro, N. (2018). Biogeography of functional trait diversity in the Taiwanese reef fish fauna. Ecol Evol, 9(1), 522-532. https://doi.org/10.1002/ece3.4771 Ehrich, S., Adlerstein, S., Brockmann, U., Floeter, J., Garthe, S., Hinz, H., Kröncke, I., Neumann, H., Reiss, H., Sell, A. F., Stein, M., Stelzenmüller, V., Stransky, C., Temming, A., Wegner, G., & Zauke, G.-P. (2007). 20 Years of the German small-scale bottom trawl survey (GSBTS): A review. Senckenbergiana maritima, 37(1), 13-82. https://doi.org/10.1007/bf03043206 English, S. A., Wilkinson, C. R., & Baker, V. (1994). Coral reef fish visual census. In Survey manual for tropical marine resources (pp. 68-80). Australian Institute of Marine Science. Faith, D. P. (1992). Conservation Evaluation and Phylogenetic Diversity. Biological Conservation, 61(1), 1-10. https://doi.org/Doi 10.1016/0006-3207(92)91201-3 Fraija-Fernandez, N., Bouquieaux, M. C., Rey, A., Mendibil, I., Cotano, U., Irigoien, X., Santos, M., & Rodriguez-Ezpeleta, N. (2020). Marine water environmental DNA metabarcoding provides a comprehensive fish diversity assessment and reveals spatial patterns in a large oceanic area. Ecol Evol, 10(14), 7560-7584. https://doi.org/10.1002/ece3.6482 Fritz, S. A., & Purvis, A. (2010). Selectivity in mammalian extinction risk and threat types: A new measure of phylogenetic signal strength in binary traits. Conserv Biol, 24(4), 1042-1051. https://doi.org/10.1111/j.1523-1739.2010.01455.x Froese, R., & Pauly, D. (2021). FishBase www.fishbase.org Goatley, C. H. R., & Brandl, S. J. (2017). Cryptobenthic reef fishes. Curr Biol, 27(11), R452-R454. https://doi.org/10.1016/j.cub.2017.03.051 Grane-Feliu, X., Bennett, S., Hereu, B., Aspillaga, E., & Santana-Garcon, J. (2019). Comparison of diver operated stereo-video and visual census to assess targeted fish species in Mediterranean marine protected areas. Journal of Experimental Marine Biology and Ecology, 520. https://doi.org/ARTN 151205 10.1016/j.jembe.2019.151205 Gray, A. E., Williams, I. D., Stamoulis, K. A., Boland, R. C., Lino, K. C., Hauk, B. B., Leonard, J. C., Rooney, J. J., Asher, J. M., Lopes, K. H., Jr., & Kosaki, R. K. (2016). Comparison of reef fish survey data gathered by open and closed circuit SCUBA divers reveals differences in areas with higher fishing pressure. PLoS One, 11(12), e0167724. https://doi.org/10.1371/journal.pone.0167724 Hanafi-Portier, M., Samadi, S., Corbari, L., Chan, T.-Y., Chen, W.-J., Chen, J.-N., Lee, M.-Y., Mah, C., Saucède, T., Borremans, C., & Olu, K. (2021). When imagery and physical sampling work together: Toward an integrative methodology of deep-sea image-based megafauna identification. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.749078 Harvey, E., Fletcher, D., Shortis, M. R., & Kendrick, G. A. (2004). A comparison of underwater visual distance estimates made by scuba divers and a stereo-video system: Implications for underwater visual census of reef fish abundance. Marine and Freshwater Research, 55(6), 573-580. https://doi.org/10.1071/Mf03130 Hoshino, T., Nakao, R., Doi, H., & Minamoto, T. (2021). Simultaneous absolute quantification and sequencing of fish environmental DNA in a mesocosm by quantitative sequencing technique. Sci Rep, 11(1), 4372. https://doi.org/10.1038/s41598-021-83318-6 Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biom J, 50(3), 346-363. https://doi.org/10.1002/bimj.200810425 Hsiao, W. V., Lin, Y. V., Lin, H. T., & Denis, V. (2021). Learning from differences: Abiotic determinism of benthic communities in Northern Taiwan. Mar Environ Res, 170, 105361. https://doi.org/10.1016/j.marenvres.2021.105361 Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451-1456. https://doi.org/10.1111/2041-210x.12613 Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B. C., Kleypas, J., van de Leemput, I. A., Lough, J. M., Morrison, T. H., Palumbi, S. R., van Nes, E. H., & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546(7656), 82-90. https://doi.org/10.1038/nature22901 Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., McCook, L., Moltschaniwskyj, N., Pratchett, M. S., Steneck, R. S., & Willis, B. (2007). Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol, 17(4), 360-365. https://doi.org/10.1016/j.cub.2006.12.049 Iwasaki, W., Fukunaga, T., Isagozawa, R., Yamada, K., Maeda, Y., Satoh, T. P., Sado, T., Mabuchi, K., Takeshima, H., Miya, M., & Nishida, M. (2013). MitoFish and MitoAnnotator: A mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol, 30(11), 2531-2540. https://doi.org/10.1093/molbev/mst141 Jan, S. (2018). Regional oceanography of Taiwan (2 ed.). National Taiwan University Press. Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs, & Wagner, H. (2019). vegan: Community ecology package. In https://CRAN.R-project.org/package=vegan Jeunen, G. J., Knapp, M., Spencer, H. G., Lamare, M. D., Taylor, H. R., Stat, M., Bunce, M., & Gemmell, N. J. (2019). Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol Ecol Resour, 19(2), 426-438. https://doi.org/10.1111/1755-0998.12982 Jones, J. B. (1992). Environmental-Impact of Trawling on the Seabed - a Review. New Zealand Journal of Marine and Freshwater Research, 26(1), 59-67. https://doi.org/Doi 10.1080/00288330.1992.9516500 Jose Pinheiro, Douglas Bates, Saikat DebRoy, & Sarkar, D. (2021). nlme: Linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme Kassambara, A. (2021). rstatix: Pipe-friendly framework for basic statistical tests. https://CRAN.R-project.org/package=rstatix Kawato, M., Yoshida, T., Miya, M., Tsuchida, S., Nagano, Y., Nomura, M., Yabuki, A., Fujiwara, Y., & Fujikura, K. (2021). Optimization of environmental DNA extraction and amplification methods for metabarcoding of deep-sea fish. MethodsX, 8, 101238. https://doi.org/10.1016/j.mex.2021.101238 Kelly, R. P., Shelton, A. O., & Gallego, R. (2019). Understanding PCR processes to draw meaningful conclusions from environmental DNA studies. Sci Rep, 9(1), 12133. https://doi.org/10.1038/s41598-019-48546-x Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463-1464. https://doi.org/10.1093/bioinformatics/btq166 Letourneur, Y., Ruitton, S., & Sartoretto, S. (2003). Environmental and benthic habitat factors structuring the spatial distribution of a summer infralittoral fish assemblage in the north-western Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 83(1), 193-204. https://doi.org/DOI 10.1017/S0025315403006970h Lin, Y. V., & Denis, V. (2019). Acknowledging differences: Number, characteristics, and distribution of marine benthic communities along Taiwan coast. Ecosphere, 10(7). https://doi.org/10.1002/ecs2.2803 Lin, Y. V., Hsiao, W. V., Chen, W. J., & Denis, V. (in press). Habitat change and its consequences on reef fish specialization in biogeographic transitional zones. Journal of Biogeography. https://doi.org/https://doi.org/10.1111/jbi.14450 Lindfield, S. J., Harvey, E. S., McIlwain, J. L., & Halford, A. R. (2014). Silent fish surveys: Bubble-free diving highlights inaccuracies associated With SCUBA-Based surveys in heavily fished areas. Methods in Ecology and Evolution, 5(10), 1061-1069. https://doi.org/10.1111/2041-210x.12262 Maclennan, D. N. (1995). Gear Selectivity and the Variation of Yield. ICES Journal of Marine Science, 52(5), 827-836. https://doi.org/DOI 10.1006/jmsc.1995.0097 Minamoto, T., Naka, T., Moji, K., & Maruyama, A. (2015). Techniques for the practical collection of environmental DNA: Filter selection, preservation, and extraction. Limnology, 17(1), 23-32. https://doi.org/10.1007/s10201-015-0457-4 Miya, M. (2022). Environmental DNA metabarcoding: A novel method for biodiversity monitoring of marine fish communities. Ann Rev Mar Sci, 14(1), 161-185. https://doi.org/10.1146/annurev-marine-041421-082251 Miya, M., Gotoh, R. O., & Sado, T. (2020). MiFish metabarcoding: A high-throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples. Fisheries Science, 86(6), 939-970. https://doi.org/10.1007/s12562-020-01461-x Miya, M., Minamoto, T., Yamanaka, H., Oka, S. I., Sato, K., Yamamoto, S., Sado, T., & Doi, H. (2016). Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. J Vis Exp(117). https://doi.org/10.3791/54741 Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., & Iwasaki, W. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R Soc Open Sci, 2(7), 150088. https://doi.org/10.1098/rsos.150088 Miyata, K., Inoue, Y., Amano, Y., Nishioka, T., Yamane, M., Kawaguchi, T., Morita, O., & Honda, H. (2021). Fish environmental RNA enables precise ecological surveys with high positive predictivity. Ecological Indicators, 128. https://doi.org/10.1016/j.ecolind.2021.107796 Möllmann, C., Müller-Karulis, B., Kornilovs, G., & St John, M. A. (2008). Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: Regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES Journal of Marine Science, 65(3), 302-310. https://doi.org/10.1093/icesjms/fsm197 Morais, R. A., & Bellwood, D. R. (2019). pelagic subsidies underpin fish productivity on a degraded coral reef. Curr Biol, 29(9), 1521-1527 e1526. https://doi.org/10.1016/j.cub.2019.03.044 Murphy, H. M., & Jenkins, G. P. (2010). Observational methods used in marine spatial monitoring of fishes and associated habitats: A review. Marine and Freshwater Research, 61(2), 236-252. https://doi.org/10.1071/Mf09068 Nester, G. M., De Brauwer, M., Koziol, A., West, K. M., DiBattista, J. D., White, N. E., Power, M., Heydenrych, M. J., Harvey, E., & Bunce, M. (2020). Development and evaluation of fish eDNA metabarcoding assays facilitate the detection of cryptic seahorse taxa (family: Syngnathidae). Environmental DNA, 2(4), 614-626. https://doi.org/10.1002/edn3.93 Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied linear statistical models (4th ed.). WCB/McGraw-Hill. Nguyen, B. N., Shen, E. W., Seemann, J., Correa, A. M. S., O'Donnell, J. L., Altieri, A. H., Knowlton, N., Crandall, K. A., Egan, S. P., McMillan, W. O., & Leray, M. (2020). Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape. Sci Rep, 10(1), 6729. https://doi.org/10.1038/s41598-020-63565-9 Nichols, R. V., Vollmers, C., Newsom, L. A., Wang, Y., Heintzman, P. D., Leighton, M., Green, R. E., & Shapiro, B. (2018). Minimizing polymerase biases in metabarcoding. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.12895 O'Donnell, J. L., Kelly, R. P., Shelton, A. O., Samhouri, J. F., Lowell, N. C., & Williams, G. D. (2017). Spatial distribution of environmental DNA in a nearshore marine habitat. PeerJ, 5, e3044. https://doi.org/10.7717/peerj.3044 Oka, S. i., Doi, H., Miyamoto, K., Hanahara, N., Sado, T., & Miya, M. (2021). Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation. Environmental DNA, 3, 55-69. https://doi.org/10.1002/edn3.132 Pecuchet, L., Tornroos, A., & Lindegren, M. (2016). Patterns and drivers of fish community assembly in a large marine ecosystem. Marine Ecology Progress Series, 546, 239-248. https://doi.org/10.3354/meps11613 Pelletier, D., Leleu, K., Mou-Tham, G., Guillemot, N., & Chabanet, P. (2011). Comparison of visual census and high definition video transects for monitoring coral reef fish assemblages. Fisheries Research, 107(1-3), 84-93. https://doi.org/10.1016/j.fishres.2010.10.011 Pohlert, T. (2022). PMCMRplus: Calculate pairwise multiple comparisons of mean rank sums extended. https://CRAN.R-project.org/package=PMCMRplus R Core Team. (2021). R: A language and environment for statistical computing. In (Version v4.1.2) R Foundation for Statistical Computing. https://www.R-project.org/ Rabosky, D. L., Chang, J., Title, P. O., Cowman, P. F., Sallan, L., Friedman, M., Kaschner, K., Garilao, C., Near, T. J., Coll, M., & Alfaro, M. E. (2018). An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 559(7714), 392-395. https://doi.org/10.1038/s41586-018-0273-1 Reyier, E. A., Adams, D. H., & Lowers, R. H. (2008). First evidence of a high density nursery ground for the lemon shark, Negaprion brevirostris, near Cape Canaveral, Florida. Florida Scientist, 71(2), 134-148. http://www.jstor.org/stable/24321581 Ribas-Deulofeu, L., Denis, V., De Palmas, S., Kuo, C. Y., Hsieh, H. J., & Chen, C. A. (2016). Structure of benthic communities along the Taiwan latitudinal gradient. PLoS One, 11(8), e0160601. https://doi.org/10.1371/journal.pone.0160601 Roberts, C. M. (1995). Effects of fishing on the ecosystem structure of coral reefs. Conserv Biol, 9(5), 988-995. https://doi.org/10.1046/j.1523-1739.1995.9051332.x-i1 Roel, B. A., Hewitson, J., Kerstan, S., & Hampton, I. (1994). The Role of the Agulhas-Bank in the Life-Cycle of Pelagic Fish. South African Journal of Science, 90(3), 185-196. https://doi.org/doi:10.10520/AJA00382353_4633 Sato, Y., Miya, M., Fukunaga, T., Sado, T., & Iwasaki, W. (2018). MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol Biol Evol, 35(6), 1553-1555. https://doi.org/10.1093/molbev/msy074 Shao, K.-T., & Chen, C.-Y. (2008). Common fishes of Taiwan (more than 700 species) (4 ed.). Yuan-Liou Publishing Co. Shao, K.-T., Chen, J.-P., & Wang, S.-C. (1997). Biogeography and database of marine fishes in Taiwan waters. Proceedings of the 5th Indo-Pacific Fish Conference, Noumea, Shao, K. T. (2022). Taiwan Fish Database http://fishdb.sinica.edu.tw Shelton, A. O., Kelly, R. P., O'Donnell, J. L., Park, L., Schwenke, P., Greene, C., Henderson, R. A., & Beamer, E. M. (2019). Environmental DNA provides quantitative estimates of a threatened salmon species. Biological Conservation, 237, 383-391. https://doi.org/10.1016/j.biocon.2019.07.003 Socolar, J. B., Gilroy, J. J., Kunin, W. E., & Edwards, D. P. (2016). How should beta-diversity Inform biodiversity conservation? Trends Ecol Evol, 31(1), 67-80. https://doi.org/10.1016/j.tree.2015.11.005 Stat, M., John, J., DiBattista, J. D., Newman, S. J., Bunce, M., & Harvey, E. S. (2019). Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity. Conserv Biol, 33(1), 196-205. https://doi.org/https://doi.org/10.1111/cobi.13183 Stoeckle, M. Y., Soboleva, L., & Charlop-Powers, Z. (2017). Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS One, 12(4), e0175186. https://doi.org/10.1371/journal.pone.0175186 Stuart-Smith, R. D., Bates, A. E., Lefcheck, J. S., Duffy, J. E., Baker, S. C., Thomson, R. J., Stuart-Smith, J. F., Hill, N. A., Kininmonth, S. J., Airoldi, L., Becerro, M. A., Campbell, S. J., Dawson, T. P., Navarrete, S. A., Soler, G. A., Strain, E. M., Willis, T. J., & Edgar, G. J. (2013). Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 501(7468), 539-542. https://doi.org/10.1038/nature12529 Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS One, 7(4), e35868. https://doi.org/10.1371/journal.pone.0035868 Tessier, A., Pastor, J., Francour, P., Saragoni, G., Crec'hriou, R., & Lenfant, P. (2013). Video transects as a complement to underwater visual census to study reserve effect on fish assemblages. Aquatic Biology, 18(3), 229-241. https://doi.org/10.3354/ab00506 Thomsen, P. F., Kielgast, J., Iversen, L. L., Moller, P. R., Rasmussen, M., & Willerslev, E. (2012). Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One, 7(8), e41732. https://doi.org/10.1371/journal.pone.0041732 Tsuji, S., Ushio, M., Sakurai, S., Minamoto, T., & Yamanaka, H. (2017). Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLoS One, 12(4), e0176608. https://doi.org/10.1371/journal.pone.0176608 Ushio, M., Murakami, H., Masuda, R., Sado, T., Miya, M., Sakurai, S., Yamanaka, H., Minamoto, T., & Kondoh, M. (2018). Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcoding and Metagenomics, 2. https://doi.org/10.3897/mbmg.2.23297 Valdivia-Carrillo, T., Rocha-Olivares, A., Reyes-Bonilla, H., Dominguez-Contreras, J. F., & Munguia-Vega, A. (2021). Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot. Mol Ecol Resour, 21(5), 1558-1574. https://doi.org/10.1111/1755-0998.13375 van der Loos, L. M., & Nijland, R. (2021). Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Mol Ecol, 30(13), 3270-3288. https://doi.org/10.1111/mec.15592 Watson, D. L., Harvey, E. S., Anderson, M. J., & Kendrick, G. A. (2005). A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Marine Biology, 148(2), 415-425. https://doi.org/10.1007/s00227-005-0090-6 West, K., Travers, M. J., Stat, M., Harvey, E. S., Richards, Z. T., DiBattista, J. D., Newman, S. J., Harry, A., Skepper, C. L., Heydenrych, M., & Bunce, M. (2021). Large-scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north-western Australia. Diversity and Distributions, 27(10), 1942-1957. https://doi.org/10.1111/ddi.13228 West, K. M., Stat, M., Harvey, E. S., Skepper, C. L., DiBattista, J. D., Richards, Z. T., Travers, M. J., Newman, S. J., & Bunce, M. (2020). eDNA metabarcoding survey reveals fine-scale coral reef community variation across a remote, tropical island ecosystem. Mol Ecol, 29(6), 1069-1086. https://doi.org/10.1111/mec.15382 Wraith, J., Lynch, T., Minchinton, T. E., Broad, A., & Davis, A. R. (2013). Bait type affects fish assemblages and feeding guilds observed at baited remote underwater video stations. Marine Ecology Progress Series, 477, 189-199. https://doi.org/10.3354/meps10137 Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., Minamoto, T., & Miya, M. (2017). Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci Rep, 7, 40368. https://doi.org/10.1038/srep40368 Yamanaka, H., Minamoto, T., Matsuura, J., Sakurai, S., Tsuji, S., Motozawa, H., Hongo, M., Sogo, Y., Kakimi, N., Teramura, I., Sugita, M., Baba, M., & Kondo, A. (2017). A simple method for preserving environmental DNA in water samples at ambient temperature by addition of cationic surfactant. Limnology, 18(2), 233-241. https://doi.org/10.1007/s10201-016-0508-5 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85675 | - |
dc.description.abstract | 與其他方法相比,環境DNA複合分子條碼(eDNA metabarcoding) 的問世大大增加了魚類相調查的力度。然而概括地以eDNA取代傳統方法(如視覺調查或實體採樣)尚有爭議,因此有必要事先了解eDNA的調查空間尺度。我的研究旨在使用三種調查方法── eDNA、水下視覺辨識(underwater visual census, UVC)、潛水員錄製影片(diver-operated videos, DOV),比較北台灣21個樣點(包含6個離島樣點)中三種空間尺度下魚類多樣性的差異。具體而言,本研究調查區域中的物種庫(γ多樣性)、分析魚類群聚的空間分布情形(β多樣性)、釐清魚類群聚及底棲組成之間的交互作用(α多樣性)。 三種方法一共記錄到438種魚類,當中有5種可能為台灣新紀錄種。在γ多樣性中,eDNA記錄到最高的物種豐富度(383種),而UVC及DOV分別記錄到111種及83種。雖然eDNA額外找到312種魚,但其未能偵測約43%在UVC及DOV下記錄到的魚種(55/127)。在UVC及DOV下記錄到的皆為礁區相關魚種,其中大於90%為大洋底棲性魚種,其他皆屬於底棲性魚種。相較之下,eDNA除了調查到礁區相關魚種(包含62%的大洋底棲性及26%的底棲性魚種),亦記錄到12%的大洋性及4%的深海魚種。eDNA所調查到的魚類群聚與UVC及DOV所調查到的有顯著性的差異,但三種方法皆觀察到顯著的區域內變異,亦即離島與北部海岸樣點之間的魚類群聚差異。β多樣性的空間分布情形在三種方法中甚為相似,皆由替代(turnover)造成(~98%)。曼特爾檢驗(Mantel test)更進一步顯示成對替代(pairwise turnover)與地理距離之間有顯著的相關性,而最大相關性出現在UVC中,其次為DOV及eDNA。在α多樣性中,eDNA的樣點平均物種豐富度(69 ± 19.5)顯著性地高於UVC(20 ± 4.8)及DOV(15 ± 4.8)。然而從基於距離的冗餘分析(distance-based redundancy analysis, dbRDA)的結果來看,UVC調查之魚類群聚中的變異量最能夠被底棲組成所解釋,且此解釋變異量高於DOV及eDNA。此外,即使將UVC及DOV的豐度(abundance)或生物量(biomass)資料加入dbRDA分析,所解釋的變異量並未增加。 在γ多樣性中,,若有充足的樣本重複,eDNA在調查區域中的物種庫方面有極佳的表現,且為UVC及DOV所望塵莫及的。在β多樣性的層級下,所有方法皆成功地揭示相同的β多樣性空間分布,以及觀察到魚類群聚相似度隨著距離衰減的情形。在α多樣性的層級下,沒有任何一種方法能完整調查棲息在當地的魚類相,但UVC及DOV適合用來釐清魚類群聚及底棲組成之間的交互作用。我建議要根據欲探究的生態問題來選擇相應的調查方法,而非一味地綜合eDNA與其他傳統調查方法。綜上所述,採用同樣的一採樣單位使本研究能夠實際比較各種方法在探究不同層級魚類多樣性的差異。 | zh_TW |
dc.description.abstract | The environmental DNA (eDNA) metabarcoding emerges as a powerful method, allowing a more exhaustive investigation of fish fauna than any other methods. Yet, a generalization of eDNA’s use in replacing traditional methods such as visual surveys or physical sampling remains debatable. Therefore, a prior understanding of eDNA’s spatial resolution is necessary. My study aimed to compare the assessments of fish diversity at three spatial scales by eDNA, underwater visual census (UVC), and diver-operated videos (DOV) surveys across 21 reef sites in northern Taiwan of which six were located in offshore islands. The specific objectives were to explore the regional species pool (γ-diversity), reveal spatial patterns of fish assemblages (β-diversity), and disentangle the relationships between fish assemblages and benthic composition (α-diversity). A total of 438 marine fish species were detected across methods (γ-diversity), among which five are new to Taiwan. The eDNA detected the highest number of species (n = 383), followed by UVC (n = 111) and DOV (n = 83). Although eDNA uncovered 312 unique species, it failed to detect ~43% of the species observed in UVC and DOV surveys (55/127). All fishes identified in UVC and DOV surveys were reef-associated, of which >94% were bentho-pelagic species, and the remainings were benthic species. The eDNA detected not only reef-associated fishes including bentho-pelagic (62%) and benthic species (26%), but also some pelagic (12%) and deep-sea fishes (4%). Fish assemblages delineated by eDNA significantly differed from those assessed by UVC and DOV. Still, all methods captured an intra-regional variation isolating offshore islands from the sites along the northern coast of Taiwan. The spatial patterns of β-diversity were similar among survey methods and mainly driven by turnover (~98%). Mantel tests further revealed significant correlations between pairwise turnover and geographic distance among sites with the highest correlation in UVC, followed by DOV and eDNA. At the α level, species richness per site was the highest in eDNA (69 ± 19.5 species), followed by UVC (20 ± 4.8 species) and DOV (15 ± 4.8 species). However, distance-based redundancy analysis (dbRDA) demonstrated that variation among fish assemblages constrained by benthic composition was the greatest in UVC, followed by DOV and eDNA. Interestingly, the use of information on abundance or biomass in dbRDA did not raise the constrained variations in DOV and UVC. At the γ-diversity level, eDNA exhibits an extraordinary power to explore the regional species pool given sufficient replication, which is unachievable by DOV and UVC. At the β-diversity level, all the methods successfully apprehend the spatial patterns of β-diversity and the distance decay of similarity in fish assemblages. At the α-diversity level, none of the methods is capable of investigating the entire resident fish fauna, but visual surveys are more suitable for scrutinizing interactions between fish and benthos. Instead of undiscriminatingly recommending a combination of eDNA with traditional survey methods, I suggest implementing specific surveys according to the ecological questions of interest. Overall, the adoption of the same one sampling unit in each method allows us to realistically compare the different scales of fish diversity. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:21:14Z (GMT). No. of bitstreams: 1 U0001-0706202214000100.pdf: 34858989 bytes, checksum: 0f746bdf6cfa2eb7ec04fad57fbde889 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 序言 ii 摘要 iii Abstract v 1. Introduction 1 2. Material and methods 7 2.1 Study sites and sampling unit 7 2.2 Fish survey: visual approach 8 2.2.1 UVC 8 2.2.2 DOV 8 2.3 Fish survey: molecular approach 9 2.3.1 Sampling and filtration 9 2.3.2 Extraction and purification 10 2.3.3 Library preparation 10 2.3.4 Bioinformatics 12 2.4 Benthic survey 12 2.5 Data analysis 13 2.5.1 γ-diversity analysis 14 2.5.2 β-diversity analysis 15 2.5.3 α-diversity analysis 16 3. Results 18 3.1 γ-diversity analysis 18 3.1.1 Regional species pool 18 3.1.2 Regional species composition 18 3.1.3 Regional phylogenetic diversity 19 3.2 β-diversity analysis 20 3.2.1 Multivariate patterns of fish assemblages across sites 20 3.2.2 Beta diversity 21 3.2.3 Mantel correlation 21 3.3 α-diversity analysis 21 3.3.1 Species richness at each site 21 3.3.2 Linkage between fish and benthic composition 22 4. Discussion 23 4.1 Regional species pool 24 4.2 Fish assemblages 28 4.3 Site scale 30 4.4 Conclusion 32 5. Figures 34 6. Tables 46 7. References 55 | |
dc.language.iso | en | |
dc.title | 以環境DNA及視覺調查探究亞熱帶近岸魚類群聚中不同層級的多樣性 | zh_TW |
dc.title | Navigating among the scales of diversity in subtropical and coastal fish assemblages ascertained by eDNA and visual surveys | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.author-orcid | 0000-0002-9362-9769 | |
dc.contributor.advisor-orcid | 單偉彌(0000-0002-0914-5586) | |
dc.contributor.coadvisor | 陳韋仁(Wei-Jen Chen) | |
dc.contributor.coadvisor-orcid | 陳韋仁(0000-0003-4751-7632) | |
dc.contributor.oralexamcommittee | 王慧瑜(Hui-Yu Wang),邵廣昭(Kwang-Tsao Shao),町田龍二(Ryuji Machida) | |
dc.contributor.oralexamcommittee-orcid | 王慧瑜(0000-0002-9100-321X),邵廣昭(0000-0002-4807-7539),町田龍二(0000-0003-1687-4709) | |
dc.subject.keyword | 空間替代,複合分子條碼,12S rRNA,海洋魚類,魚類-底棲交互作用,CoralNet, | zh_TW |
dc.subject.keyword | spatial turnover,metabarcoding,12S rRNA,marine fish,fish-benthic interaction,CoralNet, | en |
dc.relation.page | 65 | |
dc.identifier.doi | 10.6342/NTU202200882 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-06-23 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
dc.date.embargo-lift | 2023-06-30 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0706202214000100.pdf | 34.04 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。