請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85629
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 柯彥廷(Justin Yen-Ting Ko) | |
dc.contributor.author | Chia-Li Yen | en |
dc.contributor.author | 顏家莉 | zh_TW |
dc.date.accessioned | 2023-03-19T23:20:05Z | - |
dc.date.copyright | 2022-09-30 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-26 | |
dc.identifier.citation | Aki, K. (1972). Scaling law of earthquake source time-function. Geophysical Journal of the Royal Astronomical Society, 31(1-3), 3-25. https://doi.org/10.1111/j.1365-246X.1972.tb02356.x Anderson, D. L., & Given, J. W. (1982). Absorption band Q model for the Earth. Journal of Geophysical Research: Solid Earth, 87(B5), 3893-3904. https://doi:10.1029/JB087iB05p03893 Brune, J. N. (1970). Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes. Journal of Geophysical Research, 75(26), 4997-5009. https://doi.org/10.1029/JB075i026p04997 Carcolé, E., & Sato, H. (2009). Spatial distribution of scattering loss and intrinsic absorption of short-period S waves in the lithosphere of Japan on the basis of the Multiple Lapse Time Window Analysis of Hi-net data. Geophysical Journal International, 180, 268-290. https://doi.org/10.1111/j.1365-246X.2009.04394.x Clouser, R. H., & Langston, C. A. (1991). QP-QS relations in a sedimentary basin using converted phases. Bulletin of the Seismological Society of America, 81(3), 733-750. https://doi.org/10.1785/BSSA0810030733 Chen, K.-C., Chiu, J.-M., & Yang, Y.-T. (1994). QP-QS relations in the sedimentary basin of the upper Mississippi Embayment using converted phases. Bulletin of the Seismological Society of America, 84(6), 1861-1868. https://doi.org/10.1785/BSSA0840061861 Chen, T., & Clayton, R. W. (2009). Seismic attenuation structure in central Mexico: Image of a focused high-attenuation zone in the mantle wedge, Journal of Geophysical Research: Solid Earth, 114, B07304. https://doi:10.1029/2008JB005964 Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(1226), 376-396. https://doi.org/10.1098/rspa.1957.0133 Fujie, G., Kodaira, S., Sato, T., & Takahashi, T. (2016). Along-trench variations in the seismic structure of the incoming Pacific plate at the outer rise of the northern Japan Trench. Geophysical Research Letters, 43, 666-673. https://doi:10.1002/2015GL06736 Furumura, T., & Kennett, B. (2005). Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan. Journal of Geophysical Research, 110, B10302. https://doi:10.1029/2004JB003486 Geospace. (n. d.). OMNI-2400. Retrieved September 20, 2022, from https://www.geospace.com/wp-content/uploads/OMNI-2400-Geophone-Brochure.pdf?fbclid=IwAR0HS5am3c7LSnG0g3Yiutw0L4VojLDCTEJ-7t957M0B6sST_D13yfpikj4 Grotzinger, J. P., & Jordan, T. H. (Eds.). (2010). Understanding Earth. New York: W.H. Freeman. Hua, Y., Zhao, D., Xu, Y., & Wanmg, Z. (2019). Arc-arc collision caused the 2018 Eastern Iburi earthquake (M 6.7) in Hokkaido, Japan. Scientific Reports, 9, 13914. https://doi.org/10.1038/s41598-019-50305-x Huang, H.-H., Xu, Z. J., Wu, Y.-M., Song, X., Huang, B.-S., & Nguyen, L. M. (2013). First Local Seismic Tomography for Red River Shear Zone, northern Vietnam: Stepwise inversion employing crustal P and Pn waves. Tectonophysics, 584, 230-239. https://doi.org/10.1016/j.tecto.2012.03.030 Ichihara, H., Mogi, T., Tanimoto, K., Yamaya, Y., Hashimoto, T., Uyeshima, M., & Ogawa, Y. (2016). Crustal structure and fluid distribution beneath the southern part of the Hidaka collision zone revealed by 3-D electrical resistivity modeling. Geochemistry, Geophysics, Geosystems, 17, 1480-1491. https://doi:10.1002/2015GC0062 Iritani, R., Takeuchi, N., & Kawakatsu, H. (2014). Intricate heterogeneous structures of the top 300 km of the Earth's inner core inferred from global array data: II. Frequency dependence of inner core attenuation and its implication. Earth and Planetary Science Letters, 405, 231-243. https://doi.org/10.1016/j.epsl.2014.08.038 Ivandic, M., Grevemeyer, I., Berhorst, A., Flueh, E. R., & McIntosh, K. (2008). Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua. Journal of Geophysical Research: Solid Earth, 113, B05410. https://doi:10.1029/2007JB005291 Jackson, D. D., & Anderson, D. L. (1970). Physical mechanisms of seismic-wave attenuation. Reviews of Geophysics and Space Physics, 8(1), 1-63. https://doi:10.1029/RG008i001p00001 Jackson, I., Faul, U. H., Fitz Gerald, J. D., & Tan, B. H. (2004). Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication and mechanical testing. Journal of Geophysical Research: Solid Earth, 109, B06201. https://doi:10.1029/2003JB002406 Jackson, I., Fitz Gerald, J. D., Faul, U. H., & Tan, B. H. (2002). Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. Journal of Geophysical Research, 107(B12), 2360. https://doi:10.1029/2001JB001225 Jia, N., & Li, Z. (2021). Porosity Estimation of a Porous Goaf Area Based on Seismic Wave Attenuation. Pure and Applied Geophysics, 178, 1845-1858. https://doi.org/10.1007/s00024-021-02723-0 Karato, S. (2003). Mapping water content in the upper mantle, in Inside the Subduction Factory, Geophysical Monograph, 138, edited by J. M. Eiler, (pp. 135-152). AGU, Washington, D. C. https://doi.org/10.1029/138GM08 Kimura, G. (1996). Collision orogeny at arc-arc junctions in the Japanese Islands. Island Arc, 5, 262-275. https://doi.org/10.1111/j.1440-1738.1996.tb00031.x Kita, S., & Ferrand, T.P. (2018). Physical mechanisms of oceanic mantle earthquakes: Comparison of natural and experimental events. Scientific Reports, 8, 17049. https://doi.org/10.1038/s41598-018-35290-x Kita, S., Nakajima, J., Hasegawa, A., Okada, T., Katsumata, K., Asano, Y., & Kimura, T. (2014). Detailed seismic attenuation structure beneath Hokkaido, northeastern Japan: Arc-arc collision process, arc magmatism, and seismotectonics. Journal of Geophysical Research: Solid Earth, 119, 6486-6511. https://doi:10.1002/2014JB011099 Kita, S., Okada, T., Hasegawa, A., Nakajima, J., & Matsuzawa, T. (2010). Anomalous deepening of a seismic belt in the upper-plane of the double seismic zone in the Pacific slab beneath the Hokkaido corner: Possible evidence for thermal shielding caused by subducted forearc crust materials. Earth and Planetary Science Letters, 290(3-4), 415-426. https://doi.org/10.1016/j.epsl.2009.12.038 Ko, Y.-T., Kuo, B.-Y., & Hung, S.-H. (2012). Robust determination of earthquake source parameters and mantle attenuation. Journal of Geophysical Research: Solid Earth, 117, B04304. https://doi:10.1029/2011JB008759 Koketsu, K., & Sekine, S. (1998). Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities. Geophysical Journal International, 132(2), 339-346. https://doi.org/10.1046/j.1365-246x.1998.00427.x Kuritani, T., & Nakagawa, M. (2016). Origin of ultra rear-arc magmatism at Rishiri Volcano, Kuril Arc. Geochemistry, Geophysics, Geosystems, 17, 4032-4050. https://doi:10.1002/2016GC006594 Kuritani, T., Tanaka, M. Yokoyama, T., Nakagawa, M., & Matsumoto, A. (2016). Intensive Hydration of the Wedge Mantle at the Kuril Arc-NE Japan Arc Junction: Implications from Mafic Lavas from Usu Volcano, Northern Japan. Journal of Petrology, 57(6), 1223-1240. https://doi.org/10.1093/petrology/egw038 Lin, Y.-P., & Jordan, T. H. (2018). Frequency-dependent attenuation of P and S waves in Southern California. Journal of Geophysical Research: Solid Earth, 123, 5814-5830. https://doi:10.1029/2018JB015448 Liu, X., Zhao, D., & Li, S. (2013). Seismic heterogeneity and anisotropy of the southern Kuril arc: insight into megathrust earthquakes. Geophysical Journal International, 194(2), 1069-1090. https://doi.org/10.1093/gji/ggt150 Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639-666. https://doi.org/10.1785/BSSA0660030639 Maeda, T., & Sasatani, T. (2004, August 1-6). Upper Mantle Attenuation Structure beneath the Eastern Hokkaido, Japan and its effects on Strong Ground Motions [Paper presentation]. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada. https://www.iitk.ac.in/nicee/wcee/article/13_914.pdf Maeda, T., Sasatani, T. (2006). Two-layer Qs structure of the slab near the southern Kurile trench. Earth, Planets and Space, 58, 543-553. https://doi.org/10.1186/BF03351952 Matsubara, M., Sato, H., Uehira, K., Mochizuki, M., Kanazawa, T., Takahashi, N., et al. (2019). Seismic Velocity Structure in and around the Japanese Island Arc Derived from Seismic Tomography Including NIED MOWLAS Hi-net and S-net data. In M. Kanao, & G. Toyokuni (Eds.), Seismic Waves - Probing Earth System, IntechOpen, 1-19. https://doi.org/10.5772/intechopen.86936 Matsumoto, S., & Hasegawa, A. (1989). Two-dimensional coda Q structure beneath Tohoku, NE Japan. Geophysical Journal International, 99(1), 101-108. https://doi.org/10.1111/j.1365-246X.1989.tb02018.x Mitchell, B. J. (1995). Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation. Reviews of Geophysics, 33(4), 441-462. https://doi:10.1029/95RG02074 Nakajima, J., Hada, S., Hayami, E., Uchida, N., Hasegawa, A., Yoshioka, S., Matsuzawa, T., & Umino, N. (2013). Seismic attenuation beneath northeastern Japan: Constraints on mantle dynamics and arc magmatism. Journal of Geophysical Research: Solid Earth, 118, 5838-5855. https://doi:10.1002/2013JB010388 Nakajima, J., Hirose, F., & Hasegawa, A. (2009). Seismotectonics beneath the Tokyo metropolitan area, Japan: Effect of slab-slab contact and overlap on seismicity. Journal of Geophysical Research: Solid Earth, 114, B08309. https://doi:10.1029/2008JB006101 National Research Institute for Earth Science and Disaster Resilience. (2019). NIED F-net. National Research Institute for Earth Science and Disaster Resilience. https://doi:10.17598/NIED.0005 National Research Institute for Earth Science and Disaster Resilience. (2019). NIED Hi-net. National Research Institute for Earth Science and Disaster Resilience. https://doi:10.17598/NIED.0003 National Research Institute for Earth Science and Disaster Resilience. (2019). NIED S-net. National Research Institute for Earth Science and Disaster Resilience. https://doi:10.17598/NIED.0007 National Research Institute for Earth Science and Disaster Resilience. (n. d.). Response of Observation Equipment. Retrieved September 20, 2022, from https://hinetwww11.bosai.go.jp/auth/seed/?LANG=en Olsen, K. B., Day, S. M., & Bradley, C. R. (2003). Estimation of Q for Long-Period (>2 sec) Waves in the Los Angeles Basin. Bulletin of the Seismological Society of America, 93(2), 627-638. https://doi.org/10.1785/0120020135 Plesch, A., Shaw, J. H., Song, X. & Jordan, T. H. (2014). Stochastics descriptions of fine-scale basin velocity structure from well logs and the SCEC Community Velocity Model (CVMH). Proceedings of the 2014 SSA Annual Meeting, Anchorage, AK, 30 April–2 May 2014. Richards, P. G., & Menke, W. (1983). The apparent attenuation of a scattering medium. Bulletin of the Seismological Society of America, 73(4), 1005-1021. https://doi.org/10.1785/BSSA0730041005 Sano, Y., & Nakajima, J. (2008). Geographical distribution of 3He/4He ratios and seismic tomography in Japan. Geochemical Journal, 42, 51-60. https://doi:10.2343/geochemj.42.51 Sato, H., & Fehler, M. C. (2009). Seismic wave propagation and scattering in the heterogeneous Earth (corrected printing), (pp. 1-308). Berlin & Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-540-89623-4 Savran, W., & Olsen, K. (2016). Model for small-scale crustal heterogeneity in Los Angeles basin based on inversion of sonic log data. Geophysical Journal International, 205(2), 856-863. https://doi.org/10.1093/gji/ggw050 Schurr, B., Asch, G., Rietbrock, A., Trumbull, R., & Haberland, C. (2003). Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth and Planetary Science Letters, 215(1-2), 105-119. https://doi.org/10.1016/S0012-821X(03)00441-2 Singh, S., & Herrmann, R. B. (1983). Regionalization of crustal coda Q in the continental United States. Journal of Geophysical Research, 88(B1), 527-538. https://doi:10.1029/JB088iB01p00527 Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 1012. https://doi:10.1029/2001RG000108 Süss, M. P., & Shaw, J. H. (2003). P-wave seismic velocity structure derived from sonic logs and industry reaction data in the Los Angeles basin, California. Journal of Geophysical Research, 108(3), 2170. https://doi.org/10.1029/2001JB001628 Takagi, R., Uchida, N., Nakayama, T., Azuma, R., Ishigami, A., Okada, T., Nakamura, T., & Shiomi, K. (2019). Estimation of the Orientations of the S-net Cabled Ocean-Bottom Sensors. Seismological Research Letters, 90(6), 2175-2187. https://doi:10.1785/0220190093 Tanaka, A., Yamano, M., Yano, Y., & Sasada, M. (2004). Geothermal gradient and heat flow data in and around Japan (I): Appraisal of heat flow from geothermal gradient data. Earth, Planets and Space, 56, 1191-1194. https://doi.org/10.1186/BF03353339 Tittmann, B. R., Clark, V. A., Richardson, J. M., & Spencer, T. W. (1980). Possible mechanism for seismic attenuation in rocks containing small amounts of volatiles. Journal of Geophysical Research: Solid Earth, 85(B10), 5199-5208. https://doi:10.1029/JB085iB10p05199 Ueda, H. (2005). Accretion and exhumation structures formed by deeply subducted seamounts in the Kamuikotan high-pressure/temperature zone, Hokkaido, Japan. Tectonics, 24, TC2007. https://doi:10.1029/2004TC001690 Wang, Z., Jin, Z., & Lin, J. (2022). Slab melting and arc magmatism behind the Japan Trench: Evidence from seismic and thermal structure imaging. Tectonophysics, 833, 229340. https://doi.org/10.1016/j.tecto.2022.229340 Wang, Z., & Zhao, D. (2019). Updated attenuation tomography of Japan subduction zone, Geophysical Journal International, 219(3), 1679-1697. https://doi.org/10.1093/gji/ggz339 Wei, S. S., & Wiens, D. A. (2018). P-wave attenuation structure of the Lau back-arc basin and implications for mantle wedge processes. Earth and Planetary Science Letters, 502, 187-199. https://doi.org/10.1016/j.epsl.2018.09.005 Winkler, K., & Nur, A. (1982). Seismic attenuation: Effects of pore fluids and frictional-sliding. Geophysics, 47, 1-15. https://doi.org/10.1190/1.1441276 Winkler, K., Nur, A., & Gladwin, M. (1979). Friction and seismic attenuation in rocks. Nature, 277, 528-531. https://doi.org/10.1038/277528a0 Yamamoto, K., & Ida, Y. (1997). Significant P wave attenuation for a specific frequency range beneath Kirishima Volcano, Japan. Geophysical Research Letters, 24(10), 0094-8276. https://doi.org/10.1029/97GL01157 Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multi-layered media. Geophysical Journal International, 148(3), 619-627. https://doi:10.1046/j.1365-246X.2002.01610.x Zhu, Z., Bezada, M. J., Byrnes, J. S., & Ford, H. A. (2021). Evidence for stress localization caused by lithospheric heterogeneity from seismic attenuation. Geochemistry, Geophysics, Geosystems, 22, e2021GC009987. https://doi.org/10.1029/2021GC009987 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85629 | - |
dc.description.abstract | 本研究計算位於千島-日本島弧交界上的東北日本隱沒帶之二維非頻率相依與一維頻率相依地震波衰減模型以了解此區域之地幔動力學與流體移遷移行為。我們蒐集陸域(Hi-net和F-net)與近年來新架設的海域(S-net)地震觀測網之地震波資料,並校正電纜式海底地震儀(S-net)波形方向以利後續準確量測P、S波振幅頻譜。我們將波形資料使用小波轉換(wavelet transform)得到平滑的振幅頻譜,並計算合成理論地震波形以扣除已知的初始模型路徑效應、幾何擴散與部分震源效應。我們以傳統單站頻譜擬合測量t*得到二維非頻率相依衰減模型,以獲取區域構造上之初步解析。另一方面,我們同時將觀測與合成振幅頻譜之殘差進行反演,得到一維頻率相依衰減模型(QP, QS, QP/QS)並計算其頻率相依性。根據非頻率相依衰減模型結果顯示,東北日本之弧前和隱沒板塊分布區域大致上呈現較弱的衰減,在弧後、火山地區與弧弧碰撞帶則呈現較強的衰減。本研究將一維頻率相依之衰減模型分為三個區塊討論:位於島弧交界隱沒帶之北區、位於典型隱沒帶之西區與靠近海溝涵括大部分弧前地區與隱沒板塊之東區。北區相較西區有較強的地震波衰減與較低的QP/QS,可能因弧弧碰撞之一系列作用導致在北區存在較大量的流體。此外,在東區較弱的地震波衰減反映海洋地殼高密度與弧前地區低溫的性質;較強的頻率相依性則可能反映東區有較強的異質性。東區淺部構造的低QP/QS異常則可能由高水含量的弧前地區與充填了含水礦物的海洋板塊正斷層所致。 | zh_TW |
dc.description.abstract | We investigate the 2-D frequency-independent and 1-D frequency-dependent seismic attenuation characteristics beneath the northeastern Japan to better understand the detailed mantle dynamics and fluid migrations. We collect seismic data from inland (Hi-net and F-net) and recently deployed offshore (S-net) observatories. For the offshore data, we correct the rotation angles of S-net sensors to ensure precise spectra amplitudes of P and S waves. We measure the spectra amplitudes in multiple frequencies using wavelet transforms. All measurements are referencing to the 1-D synthetics to eliminate the path effect of reference model, geometrical spreading, and part of the source effect. We fit the spectrum from each event-station pair individually to obtain a 2-D frequency-independent attenuation model. Furthermore, we invert the residuals of observed and synthetic spectra amplitudes for 1-D frequency-dependent attenuation models (QP, QS, QP/QS). The 2-D frequency-independent models suggest stronger attenuation in the volcanic area and the collision region of the Kuril and Japan arcs. On the other hand, the raypaths passing through the subducting slab are characterized by low attenuation. To analyze the results of our 1-D model more specifically, we divide our research region into 3 zones which include arc-arc junction in the subduction zone (north zone), typical subduction zone (west zone), fore-arc region and oceanic plate (east zone). The north zone is characterized by stronger attenuation and lower QP/QS compares to the west zone. This observation may be caused by the anomalously abundant fluid generated by a series of processes owing to the arc-arc collision. By contrast, the weak attenuation of east zone reflects the dense oceanic crust and the low-temperature fore-arc region; and the strong frequency dependency suggests high heterogeneity in the east zone. Low-QP/QS anomaly is observed at the shallow depths of the east zone, suggesting rich fluid content, which may be contributed by the hydrous fore-arc with the aqueous mineral filled in the oceanic plate. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:20:05Z (GMT). No. of bitstreams: 1 U0001-2209202211333900.pdf: 9483767 bytes, checksum: 47f522a9e07f1ceb28c0f2bb6b6db4d2 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii ABSTRACT iv 目錄 vi 圖目錄 viii 第一章 緒論 1 1.1 研究動機 1 1.2 研究區域之地質背景 5 1.3 地震波能量衰減 7 1.3.1 地震波衰減之頻率相依性 11 第二章 研究方法 15 2.1 一維初始模型建立 16 2.2 地震目錄與觀測網 17 2.3 地震資料處理 18 2.3.1 S-net方向校正 18 2.3.2 去除儀器響應 20 2.3.3 分量旋轉與波相挑選 22 2.3.4 理論波線軌跡計算 22 2.4 時序分析 23 2.5 F-K合成理論波形 26 2.6 非頻率相依衰減構造 28 2.7 頻率相依衰減構造 31 2.7.1 頻率相依性 39 第三章 結果與討論 40 3.1 非頻率相依衰減構造 40 3.1.1 弧前、弧後衰減特徵差異 48 3.1.2 火山分佈與地震衰減之關係 49 3.1.3 北海道轉角 50 3.1.4 日高碰撞帶 52 3.2 頻率相依衰減構造 53 3.2.1 QP/QS 56 3.2.2 頻率相依性 61 第四章 結論 64 參考文獻 66 | |
dc.language.iso | zh-TW | |
dc.title | 東北日本下方的地震衰減構造及其頻率相依性 | zh_TW |
dc.title | Frequency-dependent Seismic Attenuation Structure beneath the Northeastern Japan | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林侑頻(Yu-Pin Lin) | |
dc.contributor.oralexamcommittee | 郭本垣(Ban-Yuan Kuo),洪淑蕙(Shu-Huei Hung),黃信樺(Hsin-Hua Huang) | |
dc.subject.keyword | 東北日本,地震衰減,隱沒帶,弧弧碰撞, | zh_TW |
dc.subject.keyword | northeastern Japan,seismic attenuation,subduction zone,arc-arc collision, | en |
dc.relation.page | 75 | |
dc.identifier.doi | 10.6342/NTU202203799 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
dc.date.embargo-lift | 2022-09-30 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2209202211333900.pdf | 9.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。