請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85611完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋家驥(Chia-Chi Sung) | |
| dc.contributor.author | Zih-En Tseng | en |
| dc.contributor.author | 曾子恩 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:19:41Z | - |
| dc.date.copyright | 2022-07-06 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-06-29 | |
| dc.identifier.citation | [1] P. L. Tyack, 'Implications for Marine Mammals of Large-Scale Changes in the Marine Acoustic Environment,' Journal of Mammalogy, vol. 89, no. 3, pp. 549-558, 2008, doi: 10.1644/07-mamm-s-307r.1. [2] G. V. Frisk, 'Noiseonomics: the relationship between ambient noise levels in the sea and global economic trends,' (in eng), Sci Rep, vol. 2, pp. 437-437, 2012, doi: 10.1038/srep00437. [3] M. E. Beutel et al., 'Noise Annoyance Is Associated with Depression and Anxiety in the General Population- The Contribution of Aircraft Noise,' (in eng), PLoS One, vol. 11, no. 5, p. e0155357, 2016, doi: 10.1371/journal.pone.0155357. [4] T. Münzel, F. P. Schmidt, S. Steven, J. Herzog, A. Daiber, and M. Sørensen, 'Environmental Noise and the Cardiovascular System,' (in eng), J Am Coll Cardiol, vol. 71, no. 6, pp. 688-697, Feb 13 2018, doi: 10.1016/j.jacc.2017.12.015. [5] A. Mohiuddin, M. Ideres, and S. Hashim, 'Experimental study of noise and back pressure for silencer design characteristics,' Journal of Applied Sciences(Pakistan), vol. 5, no. 7, pp. 1292-1298, 2005. [6] S. Thirumurugaveerakumar, 'Design and optimization of muffler back pressure,' in AIP Conference Proceedings, 2020, vol. 2270, no. 1: AIP Publishing LLC, p. 120001. [7] W. B. Hooper, 'Calculate head loss caused by change in pipe size,' Chemical Engineering, vol. 95, no. 16, p. 89, 1988. [8] R. P. Benedict, 'On the Determination and Combination of Loss Coefficients for Compressible Fluid Flows,' Journal of Engineering for Power, vol. 88, no. 1, pp. 67-72, 1966. [9] W. Li, Z. Yiqi, F. Jianhua, and H. Xiaodong, 'Research on the filtering model of a complicated resistance exhaust muffler with acoustic performance,' in 2009 International Conference on Mechatronics and Automation, 2009: IEEE, pp. 4710-4714. [10] Y. Zhou and Q. Chen, 'Optimization of Muffler of Engines by Computers and Analysis Method,' in 2012 International Conference on Industrial Control and Electronics Engineering, 2012: IEEE, pp. 1870-1873. [11] J. Yin and H. Huang, 'Structure Optimization and Evaluation on Vehicle Muffler Based on Flow Process,' in 2013 International Conference on Computational and Information Sciences, 2013: IEEE, pp. 1118-1121. [12] Y. Jie, 'Numerical analysis of internal flow field of complex muffler,' in 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2019: IEEE, pp. 1758-1762. [13] Z. Jie and W. Shiying, 'Investigation on Aerodynamic Performances of Muffler Combined with Jet and Impedance,' in 2010 International Conference on Digital Manufacturing & Automation, 2010, vol. 1: IEEE, pp. 867-869. [14] Y. A. Çengel, Fluid Mechanics. Tata McGraw Hill Education Private, 2010. [15] Z. Kang, S. Zheng, X. Lian, and Z. Ji, 'Study on the acoustic performance of perforated duct muffler,' in 2010 International Conference on Mechanic Automation and Control Engineering, 2010: IEEE, pp. 2346-2349. [16] K.-T. Han and M.-S. Kim, 'A study on the design and manufacturing process of the muffler for heavy equipments considering environment,' in 2005 4th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 2005: IEEE, pp. 947-950. [17] X. Hu, J. Wang, A. Sun, Y. Zhou, and J. Fang, 'Noise Attenuate Research of Resistance Muffler with Different Discel Rotational Speed,' in 2009 International Conference on Measuring Technology and Mechatronics Automation, 2009, vol. 1: IEEE, pp. 244-248. [18] Z. Ling and T. Minkang, 'Application of impedance complex muffler in noise control of mine ventilation shaft,' in 2011 International Symposium on Water Resource and Environmental Protection, 2011, vol. 4: IEEE, pp. 2455-2458. [19] Y. Shao, 'A study on the aerodynamic performance of exhaust muffler using a mixture of counter-phase counteract,' in 2011 International Conference on Electronics, Communications and Control (ICECC), 2011, pp. 1285-1288, doi: 10.1109/ICECC.2011.6067891. [20] J. Zhang, G. Ya, and S. Wang, 'Investigation on structure parameters and performances of combined muffler,' in 2009 4th IEEE Conference on Industrial Electronics and Applications, 2009: IEEE, pp. 1642-1646. [21] F. Jacobsen, Propagation of sound waves in ducts. Technical University of Denmark, 2000. [22] D. Brkic, 'Determining friction factors in turbulent pipe flow: several approaches are reviewed for calculating fluid-flow friction factors in fluid mechanics problems using the Colebrook equation,' Chemical Engineering, vol. 119, no. 3, pp. 34-40, 2012. [23] D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, 'Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption,' Biomaterials, vol. 22, no. 11, pp. 1241-1251, 2001/06/01/ 2001, doi: https://doi.org/10.1016/S0142-9612(00)00274-X. [24] R. P. Benedict, N. A. Carlucci, and S. D. Swetz, 'Flow Losses in Abrupt Enlargements and Contractions,' Journal of Engineering for Power, vol. 88, no. 1, pp. 73-81, 1966, doi: 10.1115/1.3678482. [25] J. Laufer, 'The structure of turbulence in fully developed pipe flow,' Report 1953. [Online]. Available: https://digital.library.unt.edu/ark:/67531/metadc60553/. [26] B. Brunone, B. W. Karney, M. Mecarelli, and M. Ferrante, 'Velocity profiles and unsteady pipe friction in transient flow,' Journal of water resources planning and management, vol. 126, no. 4, pp. 236-244, 2000. [27] R. P. Benedict and W. G. Steltz, 'A Generalized Approach to One-Dimensional Gas Dynamics,' J. Eng. Power, vol. 84, no. 1, pp. 49-67, 1962. [28] Ames Research Center and United States. National Advisory Committee for Aeronautics, 'Equations, Tables, and Charts for Compressible Flow,' U.S. Government Printing Office, 1954. [Online]. Available: https://books.google.com.tw/books?id=11k2usnNOd8C [29] S. Rodriguez, Applied computational fluid dynamics and turbulence modeling. Springer Cham, 2019. [30] I. G. Currie, Fundamental mechanics of fluids. CRC press, 2016. [31] A. Powell, 'Theory of Vortex Sound,' The Journal of the Acoustical Society of America, vol. 36, no. 1, pp. 177-195, 1964, doi: 10.1121/1.1918931. [32] E.-A. Müller and F. Obermeier, 'Vortex sound,' Fluid Dynamics Research, vol. 3, no. 1-4, pp. 43-51, 1988/09 1988, doi: 10.1016/0169-5983(88)90042-1. [33] Z. Falin, L. Dehua, and Z. Yuping, 'Effects of higher order mode waves on muffler performance,' in 2010 International Conference on Optoelectronics and Image Processing, 2010, vol. 1: IEEE, pp. 468-472. [34] I. Brahma, 'Measurement and Prediction of Discharge Coefficients in Highly Compressible Pulsating Flows to Improve EGR Flow Estimation and Modeling of Engine Flows,' Frontiers in Mechanical Engineering, vol. 5, p. 25, 2019. [35] B. Trettel, 'Estimating turbulent kinetic energy and dissipation with internal flow loss coefficients,' 2018, doi: https://doi.org/10.31224/osf.io/qsfp7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85611 | - |
| dc.description.abstract | 本文旨在討論消音器幾何形狀與背壓之關係,以求消音器幾何之設計策略。時至今日,使用Head Loss做估計仍是造船業界最常使用的簡單方法。然而此研究做出了兩項革新。一是否定了Head Loss當作排氣背壓的做法,雖然大膽,卻是經過縝密的推論,且有不可不為的理由。二是引入氣體之壓縮性,首見利用R. P. Benedict提出之Generalized Compressible Flow Function做連結,對消音器背壓優化問題重新做出詮釋,給出直觀且能消除Head Loss理論隱含之歧異的結果與解釋。 本文分別從流體力學與熱力學角度切入,藉由討論排氣的熱力學性質、氣流流場特徵,檢視消音器內部流場的壓縮條件;在對質量守恆方程式做出推廣以後,得到了消音器的幾何參數與其內部壓力分布的直接關係。物理模擬軟體COMSOL得出的計算結果,與於摩托車上進行的實驗結果,皆支持理論結果。 | zh_TW |
| dc.description.abstract | This thesis focuses mainly on the relationship between the geometry of a muffler and its back pressure, to obtain a strategy for muffler design. Two revolutions were made in this research. First, head loss analysis, which is still the most frequently used rudimentary method for estimating the performance of mufflers, was denied. Yet audacious, it’s reasonable and inevitable. Second, with compressibility taken into account, the Generalized Compressible Flow Function suggested by R. P. Benedict was employed to reinterpret the muffler design problem. More intuitive results were obtained, also, some discrepancies in head loss analysis were eliminated. In both fluid mechanical and thermodynamical points of view, the internal properties of exhaust gas and the characteristics of the flow were discussed. After generalizing the equation for conservation of mass, a direct relationship between a muffler’s shape and the air pressure distribution was obtained. With help of COMSOL, computational and experimental data both support the theory. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:19:41Z (GMT). No. of bitstreams: 1 U0001-2706202214041600.pdf: 23495475 bytes, checksum: 11e5bb04c04255e8c76f2e4ca58bfe65 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii ABSTRACT iv CONTENTS v List of Figures vi List of Tables vii Chapter 1 Introduction & Research Review 1 1.1 Motivation 1 1.2 Research Content 3 1.3 Types of Mufflers 5 1.4 Formulation of Sound Propagation in Ducts 7 Chapter 2 Flows in Tubes 13 2.1 Head Loss Analysis for Pipe Flow 13 2.2 Formulation of One-Dimensional Uniform Flow 16 2.3 Discrepancy of Head Loss Analysis on Compressible Flows 18 2.4 Generalized Compressible Flow Function (GCFF) 22 2.5 Muffler Design Strategy 25 Chapter 3 Numerical Simulation 27 3.1 Settings of Models 27 3.2 Computation Results 30 3.2.1 Example I. Models with straight and curved interlink. 30 3.2.2 Example II. Models with varied sizes of interlink. 33 3.3 Discussion & Advice 39 3.4 Limitation of the Models 40 Chapter 4 Experiment 43 4.1 Experiment System 43 4.1.1 Equipment 43 4.1.2 Principles & Structure 45 4.1.3 Introduction to Tested Models & Measuring Sites 48 4.1.4 Expectations 50 4.1.5 Experiment Procedure 51 4.2 Experiment Results 52 Chapter 5 Conclusion 59 5.1 Research Problems 59 5.2 Summary 61 References 63 | |
| dc.language.iso | en | |
| dc.subject | 消音器 | zh_TW |
| dc.subject | 背壓 | zh_TW |
| dc.subject | 頭壓損失 | zh_TW |
| dc.subject | 消音器設計 | zh_TW |
| dc.subject | 可壓縮流 | zh_TW |
| dc.subject | 背壓 | zh_TW |
| dc.subject | 頭壓損失 | zh_TW |
| dc.subject | 消音器 | zh_TW |
| dc.subject | 消音器設計 | zh_TW |
| dc.subject | 可壓縮流 | zh_TW |
| dc.subject | Head Loss | en |
| dc.subject | Muffler | en |
| dc.subject | Head Loss | en |
| dc.subject | Muffler | en |
| dc.subject | Compressible Flow | en |
| dc.subject | Back Pressure | en |
| dc.subject | Compressible Flow | en |
| dc.subject | Muffler Design | en |
| dc.subject | Muffler Design | en |
| dc.subject | Back Pressure | en |
| dc.title | 可壓縮流壓降分析及消音器設計策略 | zh_TW |
| dc.title | Investigation on Pressure Drop of Compressible Flow and Design Strategies of Mufflers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃心豪(Hsin-Haou Huang),黃維信(Wei-Shien Hwang),王昭男(Chao-Nan Wang) | |
| dc.subject.keyword | 背壓,頭壓損失,消音器,消音器設計,可壓縮流, | zh_TW |
| dc.subject.keyword | Back Pressure,Head Loss,Muffler,Muffler Design,Compressible Flow, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202201141 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-06 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2706202214041600.pdf | 22.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
