請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85596
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁照棣(Chau-Ti Ting) | |
dc.contributor.author | Jia-Syuan Chen | en |
dc.contributor.author | 陳家宣 | zh_TW |
dc.date.accessioned | 2023-03-19T23:19:22Z | - |
dc.date.copyright | 2022-09-27 | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-09-26 | |
dc.identifier.citation | Adair KL, Wilson M, Bost A, Douglas AE. 2018. Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J 12:959–972. Adeva-Andany MM, González-Lucán M, Donapetry-García C, Fernández-Fernández C, Ameneiros-Rodríguez E. 2016. Glycogen metabolism in humans. BBA Clin. 5:85–100. Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S. 2002. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32:402–407. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925. Anagnostou C, Dorsch M, Rohlfs M. 2010. Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl 136:1–11. Andrade López JM, Lanno SM, Auerbach JM, Moskowitz EC, Sligar LA. 2017. Genetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine-mapped region. Mol Ecol 26:1148–1160. Ashburner M, Golic KG, Hawley RS. 2005. The Family Drosophilidae, p 1123–1130. In Ashburner M (ed), Drosophila: a laboratory handbook (Second edition). Cold Spring Harbor Laboratory, New York, NY, USA. Asif HM, Akram M, Saeed T, Khan MI, Akhtar N, Rehman RU, Ali Shah SM, Ahmed K, Shaheen G. 2011. Carbohydrates. Int J Bioinform Res Appl 1:001–005. Atkinson W, Shorrocks B. 1977. Breeding site specificity in the domestic species of Drosophila. Oecologia 29:223–232. Bing X, Gerlach J, Loeb G, Buchon N. 2018. Nutrient-dependent impact of microbes on Drosophila suzukii development. mBio 9:e02199-17. Bjursell MK, Martens EC, Gordon JI. 2006. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 281:36269–36279. Baniel A, Amato KR, Beehner JC, Bergman TJ, Mercer A, Perlman RF, Petrullo L, Reitsema L, Sams S, Lu A, Snyder-Mackler N. 2021. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome 26. Bakula MA. 1967. The ecogenetics of a Drosophila - Bacteria Association. PhD thesis. The City University of New York. Bakula M. 1969. The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J Invertebr Pathol 14:365–74. Blum JE, Fischer CN, Miles J, Handelsman J. 2013. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio 4:e00860-13. Bost A, Martinson VG, Franzenburg S, Adair K, Albasi A, Wells MT, Douglas AE. 2018. Functional variation in the gut microbiome of wild Drosophila populations. Mol Ecol 27:2834–2845. Boman HG, Nilsson I, Rasmuson B. 1972. Inducible antibacterial defence system in Drosophila. Nature 237:232–235. Bray JR, Curtis JT. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349. Broderick NA, Lemaitre B. 2012. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:307–21. Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. 2017. Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLoS Biol 15:e1002587. Brown SD, Massingill JL, Hodgkins JE. 1968. Cactus alkaloids. Phytochemistry 7:2031–2036. Brummel T, Ching A, Seroude L, Simon AF, Benzer S. 2004. Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci U S A 101:12974–12979. Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL. 2015. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618. Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. 2011. Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet 7:e1002272. Coluccio EA, Rodriguez K, Kernan JM. 2008. The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS One 3:e2873. Corby-Harris V, Pontaroli AC, Shimkets LJ, Bennetzen JL, Habel KE, Promislow DE. 2007. Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl Environ Microbiol 73:3470-3479. Cox CR, Gilmore MS. 2007. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75:1565–1576. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696. Dearing MD, Weinstein SB. 2022. Metabolic Enabling and Detoxification by Mammalian Gut Microbes. Annu Rev Microbiol. Delcourt, A. and Guyenot, E. 1910. The Possibility of Studying Certain Diptera in a Defined Environment. Comptes rendus hebdomadaires des séances de l'Académie des sciences 151:255–257. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. Do MH, Lee E, Oh MJ, Kim Y, Park HY. 2018. High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 10:761. Dworkin I, Jones CD. 2009. Genetic changes accompanying the evolution of host specialization in Drosophila sechellia. Genetics 181: 721–736. Durando CM, Baker RH, Etges WJ, Heed WB, Wasserman M, DeSalle R. 2000. Phylogenetic analysis of the repleta species group of the genus Drosophila using multiple sources of characters. Mol Phylogenet Evol 16:296–307. Engel P, Martinson VG, Moran NA. 2012. Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109:11002–11007. Englyst KN, Englyst HN, Hudson GJ, Cole TJ, Cummings JH. 1999. Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response. Am J Clin Nutr 69:448–454. Fang H, Kang J, Zhang D. 2017. Microbial production of vitamin B12: A review and future perspectives. Microb Cell Fact 16:15. Farine, JP, Legal L, Moreteau B, LeQuere JL. 1996. Volatile components of ripe fruits of Morinda citrifolia and their effects on Drosophila. Phytochemistry 41:433–438. Finet C, Kassner VA, Carvalho AB, Chung H, Day JP, Day S, Delaney EK, De Ré FC, Dufour HD, Dupim E, Izumitani HF, Gautério TB, Justen J, Katoh T, Kopp A, Koshikawa S, Longdon B, Loreto EL, Nunes MDS, Raja KKB, Rebeiz M, Ritchie MG, Saakyan G, Sneddon T, Teramoto M, Tyukmaeva V, Vanderlinde T, Wey EE, Werner T, Williams TM, Robe LJ, Toda MJ, Marlétaz F. 2021. DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics. Genome Biol Evol 13:evab179. Fischer CN, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick NA. 2017. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. ELife 6:e18855. Flint HJ, Duncan SH. 2014. Bacteroides and Prevotella, p. 203–208. In Batt CA, Tortorello, ML (eds), Encyclopedia of Food Microbiology (Second Edition). Academic, Oxford, UK. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306. Flint HJ, Scott KP, Louis P, Duncan SH. 2012. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589. Fox MG, French JC. 1988. Systematic occurrence of sterols in latex of Araceae: Subfamily Colocasioideae. Am J Bot 75:132–137. Fukunaga T, Sasaki M, Araki Y, Okamoto T, Yasuoka T, Tsujikawa T, Fujiyama Y, Bamba T. 2003. Effects of the soluble fibre pectin on intestinal cell proliferation, fecal short chain fatty acid production and microbial population. Digestion 67:42–49. Ganter PF. 1988. The vectoring of cactophilic yeasts by Drosophila. Oecologia 75:400–404. Gibernau M. 2003. Pollinators and visitors of aroid inflorescences. Aroideana 26:73–91. Gilbert DG. 1980. Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia 46:135–137. Gower JC. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325. Greeshma AA, Sridhar KR, Pavithra M. 2018. Nutritional perspectives of an ectomycorrhizal edible mushroom Amanita of the southwestern India. Environ Appl Mycol 8:54–68. Hamady M, Knight R. 2009. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res 19:1141–1152. Hammerbacher A, Schmidt A, Wadke N, Wright LP, Schneider B, Bohlmann J. 2013. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. Plant Physiol 162:1324–1336. Heed WB. 1978. Ecology and genetics of Sonoran Desert Drosophila, p 109–126. In Brussard PF (ed), Ecological Genetics: The Interface. Springer, New York, NY, USA. Heys C, Fisher AM, Dewhurst AD, Lewis Z, Lizé A. 2021. Exposure to foreign gut microbiota can facilitate rapid dietary shifts. Sci Rep 11:16791. Higa I, Fuyama Y. 1993. Genetics of food preference in Drosophila sechellia. Genetica 88:129–136. Hungate RE. 1957. Microorganisms in the rumen of cattle fed a constant ration. Can J Microbiol 3:289–311. Hungate E. 2013. Fine mapping factors involved in octanoic acid tolerance in Drosophila sechellia and reproductive isolation in D. melanogaster. Unpublished PhD’s dissertation. The University of Chicago. Husseneder C, Berestecky JM, Grace JK. 2009. Changes in composition of culturable bacteria community in the gut of the formosan subterranean termite depending on rearing conditions of the host. Ann Entomol Soc Am 102:498–507. Itoh H, Tago K, Hayatsu M, Kikuchi Y. 2018. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 35:434–454. Jaccard P. 1912. The distribution of the flora in the alpine zone.1. New Phytologist 11:37–50. Jaenike J, Grimaldi D. 1983. α-amanitin tolerance in mycophagous Drosophila. Science. 221:165–167. Kim G, Huang JH, McMullen JG 2nd, Newell PD, Douglas AE. 2018. Physiological responses of insects to microbial fermentation products: Insights from the interactions between Drosophila and acetic acid. J Insect Physiol 106:13–19. Kircher HW, Al-Azawi B. 1985. Longevity of seven species of cactophilic Drosophila and D. melanogaster on carbohydrates. J Insect Physiol 31:165–169. Kennelly MM, Cazorla FM, de Vicente A, Ramos C, Sundin GW. Pseudomonas syringae diseases of fruit trees: progress toward understanding and control. Plant Dis 91:4–17. Koerte S, Keesey IW, Easson MLAE, Gershenzon J, Hansson BS, Knaden M. 2020. Variable dependency on associated yeast communities influences host range in Drosophila species. Oikos 129:964–982. Kohl KD, Weiss RB, Cox J, Dale C, Dearing MD. 2014. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett 17:1238–1246. Kolodny O, Schulenburg H. 2020. Microbiome-mediated plasticity directs host evolution along several distinct time scales. Phil Trans R Soc B 375:20190589. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120.' Kruskal JB. 1964. Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika 29:1–27. Kruskal JB. 1964. Non-metric multidimensional scaling: a numerical method. Psychometrika 29:115–119. Kurtzman RH. 1997. Nutrition from mushrooms, understanding and reconciling available data. Mycoscience 38:247–253. La Reau AJ, Meier-Kolthoff JP, Suen G. 2016. Sequence-based analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association. Microb Genom 2:e000099. Lacy RC. 1984. Predictability, toxicity, and trophic niche breadth in fungus-feeding Drosophilidae (Diptera). Ecol Entomol 9:43–54. Langille M, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. Lanno SM, Gregory SM, Shimshak SJ, Alverson MK, Chiu K, Feil AL, Findley MG, Forman TE, Gordon JT, Ho J, Krupp JL, Lam I, Lane J, Linde SC, Morse AE, Rusk S, Ryan R, Saniee A, Sheth RB, Siranosian JJ, Sirichantaropart L, Sternlieb SR, Zaccardi CM, Coolon JD. 2017. Transcriptomic Analysis of Octanoic Acid Response in Drosophila sechellia Using RNA-Sequencing. G3 (Bethesda) 7:3867–3873. Lanno SM, Coolon JD. 2019. Derived esterase activity in Drosophila sechellia contributes to evolved octanoic acid resistance. Insect Mol Biol 28:798–806. Lanno SM, Linde SC, Peyser RD, Shimshak SJ, Coolon JD. 2019. Investigating the role of Osiris genes in Drosophila sechellia larval resistance to a host plant toxin. Ecol Evol 9:1922–1933. Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B. 2019. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun 10:2043. Legal L, Chappe B, Jallon JM. 1994. Molecular basis of Morinda citrifolia (L.): Toxicity on drosophila. J Chem Ecol 20:1931–1943. Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, Elias AP, Itskov PM, Piper MDW, Ribeiro C. 2017. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 15:e2000862. Leschine SB. 1995. Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI. 2008. Evolution of mammals and their gut microbes. Science 320:1647–1651. Li P, Gu Q, Wang Y, Yu Y, Yang L, Chen JV. 2017. Novel vitamin B12-producing Enterococcus spp. and preliminary in vitro evaluation of probiotic potentials. Appl Microbiol Biotechnol 101:6155–6164. Liang BL, Fuyama Y. 2000. Can D. simulans breed on Morinda citrifolia, the host plant of D. sechella. Drosophila information service 83:10-13. Lim SJ, Bordenstein SR. 2020. An introduction to phylosymbiosis. Proc Biol Sci 287:20192900. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–35. Louis J, David JR. 1986. Ecological specialization in the Drosophila-Melanogaster species subgroup: a case-study of Drosophila-Sechellia. Acta Oecologica-Oecologia Generalis 7:215–229. Magnacca KN, Foote D, O’grady PM. 2008. A review of the endemic Hawaiian Drosophilidae and their host plants. Zootaxa 1728:1–58. Mamlouk D, Gullo M. 2013. Acetic acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 53:377–384. Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI. 2011. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 9:e1001221. Martinez-Sãnudo I, Simonato M, Squartini A, Mori N, Marri L, Mazzon L. 2018. Metagenomic analysis reveals changes of the Drosophila suzukii microbiota in the newly colonized regions. Insect Sci 25:833–846. Martinson VG, Carpinteyro-Ponce J, Moran NA, Markow TA. 2017a. A distinctive and host-restricted gut microbiota in populations of a cactophilic Drosophila species. Appl Environ Microbiol 83:e01551-17. Martinson VG, Douglas AE, Jaenike J. 2017b. Community structure of the gut microbiota in sympatric species of wild Drosophila. Ecol Lett 20:629–639. Matute DR, Ayroles JF. 2014. Hybridization occurs between Drosophila simulans and D. sechellia in the Seychelles archipelago. J Evol Biol 27:1057–1068. Matzkin LM, Johnson S, Paight C, Bozinovic G, Markow TA. 2011. Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J Nutr 141:1127–1133. Maurice C, Knowles CL, Ladau J, Pollard KS, Fenton A, Pedersen AB, Turnbaugh PJ. 2015. Marked seasonal variation in the wild mouse gut microbiota. ISME J 9:2423–2434. McFall-Ngai MJ. Unseen forces: the influence of bacteria on animal development. 2002. Dev Biol 242:1–14. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ. Animals in a bacterial world, a new imperative for the life sciences. 2013. Proc Natl Acad Sci U S A 110:3229–36. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA. 2008. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386. Miller MW, Phaff, HJ, Snyder HE. 1962. On the occurrence of various species of yeast in nature. Mycopathologia et Mycologia Applicata 16:1–18. Moran, NA, Munson MA, Baumann P, Ishikawa H. 1993. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B 253:167–171. Moran NA, Ochman H, Hammer TJ. 2019. Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst 50:451–475. Nazario-Yepiz NO, Loustalot-Laclette MR, Carpinteyro-Ponce J, Abreu-Goodger C, Markow TA. 2017. Transcriptional responses of ecologically diverse Drosophila species to larval diets differing in relative sugar and protein ratios. PLoS One 12:e0183007. Newell PD, Douglas AE. 2014. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microbiol 80:788–796. Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T. 2011. Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3:702–714. O’Donnell MP, Fox BW, Chao PH, Schroeder FC, Sengupta P. 2020. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 583:415–420. Ohkuma M, Brune A. 2010. Diversity, structure, and evolution of the termite gut microbial community, p 413–438. In Bignell D, Roisin Y, Lo N (eds). Biology of Termites: A Modern Synthesis, Springer, Dordrecht. Okada T. 1980. Synhospitalic evolution of the genus Drosophila Duda (Diptera, Drosophilidae), with description of a new species from Okinawa and Taiwan. Kontyû 48:218–225. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHM, Szoecs E, Wagner H. 2016. Vegan: community ecology package. R package version 2.4-1. Olcott MH, Henkels MD, Rosen KL, Walker FL, Sneh B, Loper JE, Taylor BJ. 2010. Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 5:e12504. Ottman N, Smidt H, de Vos W, Belzer C. 2012. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol 2:104. Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. 2021. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res 95:35–53. Qiao H, Keesey IW, Hansson BS, Knaden M. 2019. Gut microbiota affects development and olfactory behavior in Drosophila melanogaster. J Exp Biol 222:jeb192500. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–596. Peyser RD, Lanno SM, Shimshak SJ, Coolon JD. 2017. Analysis of cytochrome P450 contribution to evolved plant toxin resistance in Drosophila sechellia. Insect Mol Biol 26:715–720. Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kieliszek M, Ścibisz I. 2018. Propionibacterium spp.-source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl Microbiol Biotechnol 102:515–538. R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. Rajilić-Stojanović M, de Vos WM. 2014. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047. Ranjbariyan A, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal activity of a soil isolate of Pseudomonas chlororaphis against medically important dermatophytes and identification of a phenazine-like compound as its bioactive metabolite. 2014. J Mycol Med 24:e57-64. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. Román-Palacios C, Scholl JP, Wiens JJ. 2019. Evolution of diet across the animal tree of life. Evol Lett 3:339–347. Roulston TH, Cane JH. 2000. Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187–209.' RStudio Team. 2016. RStudio: integrated development for R. RStudio: Boston. Ruffner B, Péchy-Tarr M, Ryffel F, Hoegger P, Obrist C, Rindlisbacher A. 2013. Oral insecticidal activity of plant-associated pseudomonads. Environ Microbiol 15:751–763. Sanders J, Beichman A, Roman J, Scott JJ, Emerson D, McCarthy JJ, Girguis PR. 2015. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun 6:8285. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. Schretter CE, Vielmetter J, Bartos I, Marka Z, Marka S, Argade S, Mazmanian SK. 2018. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 563:402–406. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. Seymour RS, Gibernau M, Ito K. 2003. Thermo- genesis and respiration of inflorescences of the dead horse arum Helicodiceros muscivorus, a pseudo-ther- moregulatory aroid associated with fly pollination. Funct Ecol 17:886–894. Shanbhag S, Tripathi S. 2009. Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731–1744. Shannon CE. 1948. A mathematical theory of communication. Bell Syst Tech J 27:379–423. Shiffman ME, Soo RM, Dennis PG, Morrison M, Tyson GW, Hugenholtz P. 2017. Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for Eucalyptus digestion. PeerJ 5:e4075. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. 2000. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86. Sokal RR, Michener CD. 1958. A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438. Soldano A, Alpizar YA, Boonen B, Franco L, López-Requena A, Liu G, Mora N, Yaksi E, Voets T, Vennekens R, Hassan BA, Talavera K. 2016. Gustatory-mediated avoidance of bacterial lipopolysaccharides via TRPA1 activation in Drosophila. Elife 5:e13133. Solomon GM, Dodangoda H, McCarthy-Walker T, Ntim-Gyakari R, Newell PD. 2019. The microbiota of Drosophila suzukii influences the larval development of Drosophila melanogaster. PeerJ 7:e8097. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J. 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:1955–1959. Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA. 2013. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS One 8:e70749. Stoltz DA, Ozer EA, Taft PJ, Barry M, Liu L, Kiss PJ, Moninger TO, Parsek MR, Zabner J. 2008. Drosophila are protected from Pseudomonas aeruginosa lethality by transgenic expression of paraoxonase-1. J Clin Invest 118:3123–31. Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M, Daniel C, Matos R, Leulier F. 2018. Drosophila perpetuates nutritional mutualism by promoting the fitness of its intestinal symbiont Lactobacillus plantarum. Cell Metab 27:362–377. Sultana F, Hu YG, Toda MJ, Takenaka K, Yafuso M. 2006. Phylogeny and classification of Colocasiomyia (Diptera, Drosophilidae), and its evolution of pollination mutualism with aroid plants. Syst Entomol 31:684–702. Sutton BG, Ting IP, Sutton R. 1981. Carbohydrate metabolism of cactus in a desert environment. Plant Physiol 68:784–787. Toda MJ and Lakim MB. 2011. Genus Colocasiomyia (Drosophilidae: Diptera) in Sabah, Bornean Malaysia: High species diversity and use of host aroid inflorescences. Entomol Sci 14262-270. Tsiropoulos GJ. 1983. Microflora associated with wild and laboratory reared adult olive fruit flies, Dacus oleae (Gmel.). Zeitschrift für Angewandte Entomologie 96:337–340. Utami YD, Kuwahara H, Igai K, Murakami T, Sugaya K, Morikawa T, Nagura Y, Yuki M, Deevong P, Inoue T, Kihara K, Lo N, Yamada A, Ohkuma M, Hongoh Y. 2018. Genome analyses of uncultured TG2/ZB3 bacteria in 'Margulisbacteria' specifically attached to ectosymbiotic spirochetes of protists in the termite gut. ISME J 13:455–467. Vilanova C, Baixeras J, Latorre A, Porcar M. 2016. The generalist inside the specialist: gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front Microbiol 7:1005. Waidele L, Korb J, Voolstra CR, Franck D, Fabian S. 2019. Ecological specificity of the metagenome in a set of lower termite species supports contribution of the microbiome to adaptation of the host. Anim Microbiome 1:13. Wall MM, Miller S, Siderhurst MS. 2018. Volatile changes in Hawaiian noni fruit, Morinda citrifolia L., during ripening and fermentation. J Sci Food Agric 98:3391–3399. Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, Walton VM, O’Neal SD, Zalom FG. 2011. Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:1–7. Wang H, Liu C, Liu Z, Wang Y, Ma L, Xu B. 2020. The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiol 20:61. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. Watada M, Hayashi Y, Watanabe K, Mizutani S, Mure A, Hattori Y, Uemura T. 2020. Divergence of Drosophila species: Longevity and reproduction under different nutrient balances. Genes Cells 25: 626– 636. Watanabe F, Yabuta Y, Bito T, Teng F. 2014. Vitamin B12-containing plant food sources for vegetarians. Nutrients 6:1861–1873. Watanabe K, Kanaoka Y, Mizutani S, Uchiyama H, Yajima S, Watada M, Uemura T, Hattori Y. 2019. Interspecies comparative analyses reveal distinct carbohydrate-responsive systems among Drosophila species. Cell Reports 28:2594–2607. White BA, Lamed R, Bayer EA, Flint HJ. 2014. Biomass utilization by gut microbiomes. Annu Rev Microbiol 68:279-296. Wong AC, Chaston JM, Douglas AE. 2013. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7:1922–1932. Wong CN, Ng P, Douglas AE. 2011. Low-diversity bacterial community in the gut of the fruit fly Drosophila melanogaster. Environ Microbiol 3:1889–1900. Wong AC, Wang QP, Morimoto J, Senior AM, Lihoreau M, Neely GG, Simpson SJ, Ponton F. 2017. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr Biol 27:2397-2404. Wu L, Tang Z, Chen H, Ren Z, Ding Q, Liang K, Sun Z. 2021. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health. Anim Nutr 7:11–16. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI. 2003. A genomic view of the human-bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076.' Yafuso M. 1993. Thermogenesis of Alocasia odora (Araceae) and the role of Colocasiomyia flies (Diptera: Drosophilidae) as cross-pollinators. Enviro Entomol 22:601–606. Yafuso M. & Okada, T. 1990. Complicated routes of thc synhospitalic pairs of the genus Colocasiomvia Java. with descriptions of two new specics (Diptcra, Drosophilidae). Esakia Spccial Issue No. 1:137-150. Yamada R, Deshpande SA, Bruce KD, Mak EM, Ja WW. 2015. Microbes promote amino acid harvest to rescue undernutrition in Drosophila. Cell Rep 10:865-872. Yang J, Afaisen SJ, Gadi R. 2016. Antimicrobial activity of noni fruit essential oil on Escherichia coli O157:H7 and Salmonella enteritidis. Micronesica 5:1-10. Yassin A, Debat V, Bastide H, Gidaszewski N, David JR, Pool JE. 2016. Recurrent specialization on a toxic fruit in an island Drosophila population. Proc Natl Acad Sci U S A 113:4771–4776. Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, Ley RE, Farnleitner AH. 2019. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun 10:2200. Yue JC, Clayton MK. 2005. A similarity measure based on species proportions. Commun Stat - Theory Methods 34:2123–2131. Yun J, Roh SW, Whon TW, Jung M, Kim MS, Park D, Yoon C, Nam Y, Kim Y, Choi J, Kim J, Shin N, Kim S, Lee W, Bae J. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264. Ze X, Duncan SH, Louis P, Flint HJ. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:1535–1543. Zheng H, Nishida A, Kwong WK, Koch H, Engel P, Steele MI, Moran NA. 2016. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. mBio 7:e01326-16. Zhu L, Yang Z, Yao R, Xu L, Chen H, Gu X, Wu T, Yang X. 2018. Potential mechanism of detoxification of cyanide compounds by gut microbiomes of bamboo-eating pandas. mSphere 3:e00229-18. Zoetendal E, Raes J, van den Bogert B, Arumugam M, Booijink CCGM, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M. 2012. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6:1415–1426. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85596 | - |
dc.description.abstract | 微生物菌群普遍存在於動物的腸道中,並且在它們宿主中發揮著不可或缺的作用。這些腸道微生物能為宿主帶來益處,並且可能促進宿主與共生菌的交互作用的形成以及在宿主食性適應的過程中與宿主發生共同演化。果蠅科昆蟲具有高度食性多樣性,並且其與微生物關係相當緊密。先前的研究對果蠅和微生物之間的關係已有相當程度的了解,然而在自然環境的條件下腸道微生物菌群與果蠅生態適應的關聯仍存在著許多未解的問題。本論文係以專食性與廣食性的不同果蠅物種為研究對象,比較腸道菌群在各食性不同的果蠅間的差異性,來探討腸道菌群與果蠅食性適應的關聯性。 為了解微生物菌群在果蠅生態適應中的重要性,本論文第一章節回顧了近十年對於野生果蠅群腸道菌相的研究。為了解在自然環境中影響腸道菌相組成的決定因子,本論文第二章節針對具有專一食性的姑婆芋小蠅以及其天南星科寄主植物的微生物菌進行16S 核糖體RNA (16S ribosomal RNA) 的定序並分析。結果顯示小蠅的腸道菌相組成差異主要是受到採集的年份,其次是小蠅物種與寄主植物的物種所影響。此外,在比較小蠅與寄主植物的菌群後發現兩者間的菌群有很大的差異,這表示小蠅的腸道菌群的建立並非是在取食的過程中從單純地從食物取得,小蠅的體內環境亦會對所獲取的細菌進行篩選。為進一步了解腸道菌群在果蠅科昆蟲食性適應的過程所扮演的角色,本論文第三章節對所有針對野生果蠅腸道菌群研究的數據進行收集。總共收錄了四類食性不同的十個果蠅物種,包括三類分別以天南星科植物為食、以菇類為食與以仙人掌為食的專食性果蠅,以及廣食性的果蠅。經重新分析並比較腸道菌群在各食性不同的果蠅間的差異性後發現,專食性與廣食性果蠅的腸道菌群有組成及功能上的分化。這些分化反映了專食性與廣食性果蠅對食物利用的需求上差異性,包括對糖及高分子碳水化合物的代謝、氨基酸的代謝、維生素B12的獲取以及解毒上的差異。顯示腸道菌群在果蠅的食性適應中可能扮演功能上互補的角色。最後為進一步證實食物轉變會對腸道菌群產生影響,本論文第四章節比較不同果蠅物種與品系在取食具有毒性諾麗果後,腸道菌相改變的異同。結果發現在測試的果蠅中,具有諾麗果適應的塞席爾果蠅 (D. sechellia) 以及具有諾麗果毒性抗性的黃果蠅 (D. melanogaster) 中的Oregon-R 品系,在取食諾麗果後腸道菌相組成會有一致的改變,意味著腸道菌在果蠅食物利用中具有功能性,以及腸道菌在面對宿主食物轉變時,具有迅速調節的可塑性。 綜合以上,本論文提出了腸道菌群與果蠅食物利用的關聯性,顯示了腸道菌在動物食性演化過程中可能扮演著比過去認為還要重要的角色。因此建議往後在進行動物食性演化的研究時,腸道菌也必須作為驅動及促進動物食性演化助力。 | zh_TW |
dc.description.abstract | Bacteria commonly colonize the guts of almost all animals, playing indispensable roles in their animal hosts. The benefits of gut bacteria may facilitate host-symbiont interactions and coevolution in the dietary specialization of animal hosts. Drosophilid flies utilize a variety of diets and have a strong bond with microbes. Although the relationship between flies and microbes has been documented, there are still many unsolved questions about the association between flies and microbiota under natural conditions. To clarify the importance of microbiota of drosophilid flies in ecological adaptation, I first reviewed the studies of gut microbiota in the wild population of Drosophila species over the decade (chapter one). To reveal the ecological determinants of the gut microbiota composition in drosophilids, I focused on the Colocasiomyia flies, which only feed and breed in the inflorescence of Araceae plants. I sequenced and analyzed 16S rRNA amplicons of the microbiota from Colocasiomyia flies and their Araceae host plants. The results showed that the microbiota of Colocasiomyia flies was mainly shaped by the environmental factor, year, as well as fly species and host plant. Besides, the flies harbored a distinct gut microbiota from the microbiota in the host plants, suggesting that the microbiota of flies was not simply derived from the diets but was filtered by the intrinsic conditions of the flies (chapter two). To further understand the microbiota roles during the fly dietary specialization, I incorporated and re-analyzed published microbiota data from the wild population of drosophilids, including Araceae-feeding, mycophagous, and cactophilic specialists and generalists. The results showed that the gut microbiota were compositional and functional differentiated. The differences were mainly associated with the higher utilization of structural complex carbohydrates, protein utilization, vitamin B12 acquisition, and demand for detoxification in specialists than in generalists. It revealed functionally complementary roles of microbiota in the fly hosts (chapter three). Finally, to confirm the dietary effects on the microbiota composition, I investigated changes in microbiota after diet manipulation among different species and strains of Drosophila flies. I found a consistent shift in microbiota composition in D. sechellia and D. melanogaster Oregon-R, which are noni resistant or tolerant, after being manipulated to feed on noni fruit (chapter four). Altogether, this thesis demonstrated the association between gut microbiota and dietary utilization of drosophilid flies, revealing that the role of gut microbiota may be more important in dietary specialization than previous thought. Gut microbiota should be considered a force to drive and facilitate the dietary specialization of the animal host in the future. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:19:22Z (GMT). No. of bitstreams: 1 U0001-2209202217212200.pdf: 30224453 bytes, checksum: e8175dbd15e8ef784b4b9c9c37beb022 (MD5) Previous issue date: 2022 | en |
dc.description.tableofcontents | 口試委員會審定書 i 摘要 iii Abstract v Contents vii List of Tables ix List of Figures xi Chapter 1 Introduction to gut bacterial community in the wild population of Drosophila 1 Chapter 2 Gut bacterial community in Colocasiomyia 5 Abstract 5 Introduction 7 Materials and Methods 9 Results 13 Discussion 25 Chapter 3 Structural and functional differentiation of gut bacterial communities in specialist and generalist species 31 Abstract 31 Introduction 33 Materials and Methods 37 Results 41 Discussion 65 Chapter 4 Gut bacterial communities in D. sechellia and noni tolerant D. melanogaster 71 Abstracts 71 Introduction 73 Materials and Methods 77 Results 81 Discussion 93 Chapter 5 General conclusion and future direction 97 References 99 Appendix A Supplementary materials of Colocasiomyia microbiota 119 Appendix B Supplementary materials of drosophilid species microbiota 129 Appendix C Functional prediction of drosophilid species microbiota 131 Appendix D Supplementary materials of Drosophila species and strains used for testing noni tolerance 151 | |
dc.language.iso | en | |
dc.title | 食物利用驅動專食性與廣食性果蠅腸道菌相之分化 | zh_TW |
dc.title | Dietary Utilization Drives the Differentiation of Gut Bacterial Communities between Specialist and Generalist Flies | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 博士 | |
dc.contributor.author-orcid | 0000-0002-6587-9197 | |
dc.contributor.oralexamcommittee | 倪衍玄(Yen-Hsuan Ni),沈湯龍(Tang-Long Shen),湯森林(Sen-Lin Tang),方淑(Shu Fang),葉淑丹(Shu-Dan Yeh),呂曉沛(Hsiao-Pei Lu) | |
dc.subject.keyword | 姑婆芋小蠅,食性適應,果蠅,腸道菌,專食性果蠅, | zh_TW |
dc.subject.keyword | Colocasiomyia,Dietary specialization,Drosophila,Gut microbiota,Specialist fly, | en |
dc.relation.page | 152 | |
dc.identifier.doi | 10.6342/NTU202203838 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-09-27 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
dc.date.embargo-lift | 2022-09-27 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2209202217212200.pdf | 29.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。