Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85595
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童心欣zh_TW
dc.contributor.advisorHsin-Hsin Tungen
dc.contributor.author陳韋妡zh_TW
dc.contributor.authorWei-Hsin Chenen
dc.date.accessioned2023-03-19T23:19:19Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationAllen, N. E., & Nicas, T. I. (2003). Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS microbiology reviews, 26(5), 511-532.
Amarasiri, M., Sano, D., & Suzuki, S. (2019). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Critical Reviews in Environmental Science and Technology, 50(19), 2016-2059. https://doi.org/10.1080/10643389.2019.1692611
Arnold, B. J., Huang, I. T., & Hanage, W. P. (2022). Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol, 20(4), 206-218. https://doi.org/10.1038/s41579-021-00650-4
Ashbolt, N. J., Amezquita, A., Backhaus, T., Borriello, P., Brandt, K. K., Collignon, P., Coors, A., Finley, R., Gaze, W. H., Heberer, T., Lawrence, J. R., Larsson, D. G., McEwen, S. A., Ryan, J. J., Schonfeld, J., Silley, P., Snape, J. R., Van den Eede, C., & Topp, E. (2013). Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Perspect, 121(9), 993-1001. https://doi.org/10.1289/ehp.1206316
Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist, 11, 1645-1658. https://doi.org/10.2147/IDR.S173867
Basfar, A. A., & Rehim, F. A. (2002). Disinfection of wastewater from a Riyadh Wastewater Treatment Plant with ionizing radiation. Radiation Physics and Chemistry, 65(4-5), 527-532.
Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Burgmann, H., Sorum, H., Norstrom, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol, 13(5), 310-317. https://doi.org/10.1038/nrmicro3439
Bhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E. D., Johnston, M. D., Barton, H. A., & Wright, G. D. (2012). Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One, 7(4), e34953. https://doi.org/10.1371/journal.pone.0034953
Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol, 13(1), 42-51. https://doi.org/10.1038/nrmicro3380
Bowker, C., Sain, A., Shatalov, M., & Ducoste, J. (2011). Microbial UV fluence-response assessment using a novel UV-LED collimated beam system. Water Res, 45(5), 2011-2019. https://doi.org/10.1016/j.watres.2010.12.005
Bulman, D. M., Mezyk, S. P., & Remucal, C. K. (2019). The impact of pH and irradiation wavelength on the production of reactive oxidants during chlorine photolysis. Environmental science & technology, 53(8), 4450-4459.
Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., & Darst, S. A. (2001). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 104(6), 901-912.
Cerqueira, F., Matamoros, V., Bayona, J. M., Berendonk, T. U., Elsinga, G., Hornstra, L. M., & Pina, B. (2019). Antibiotic resistance gene distribution in agricultural fields and crops. A soil-to-food analysis. Environ Res, 177, 108608. https://doi.org/10.1016/j.envres.2019.108608
Chang, P. H., Juhrend, B., Olson, T. M., Marrs, C. F., & Wigginton, K. R. (2017). Degradation of extracellular antibiotic resistance genes with UV254 treatment. Environmental science & technology, 51(11), 6185-6192.
Chang, P. H., Juhrend, B., Olson, T. M., Marrs, C. F., & Wigginton, K. R. (2017). Degradation of Extracellular Antibiotic Resistance Genes with UV254 Treatment. Environ Sci Technol, 51(11), 6185-6192. https://doi.org/10.1021/acs.est.7b01120
Chen, C. C. H., & Feingold, D. S. (1973). Mechanism of polymyxin B action and selectivity toward biologic membranes. Biochemistry, 12(11), 2105-2111.
Chen, J., Wei, X. D., Liu, Y. S., Ying, G. G., Liu, S. S., He, L. Y., Su, H. C., Hu, L. X., Chen, F. R., & Yang, Y. Q. (2016). Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading. Sci Total Environ, 565, 240-248. https://doi.org/10.1016/j.scitotenv.2016.04.176
Chen, R. Z., Craik, S. A., & Bolton, J. R. (2009). Comparison of the action spectra and relative DNA absorbance spectra of microorganisms: information important for the determination of germicidal fluence (UV dose) in an ultraviolet disinfection of water. Water Res, 43(20), 5087-5096. https://doi.org/10.1016/j.watres.2009.08.032
Cheng, H., & Hong, P. Y. (2017). Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes Affected by Varying Degrees of Fouling on Anaerobic Microfiltration Membranes. Environ Sci Technol, 51(21), 12200-12209. https://doi.org/10.1021/acs.est.7b03798
Cho, M., Kim, J., Kim, J. Y., Yoon, J., & Kim, J. H. (2010). Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res, 44(11), 3410-3418. https://doi.org/10.1016/j.watres.2010.03.017
Chu, L., Chen, D., Wang, J., Yang, Z., Yang, Q., & Shen, Y. (2020). Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment. J Hazard Mater, 382, 121058. https://doi.org/10.1016/j.jhazmat.2019.121058
Chuang, Y. H., Chen, S., Chinn, C. J., & Mitch, W. A. (2017). Comparing the UV/Monochloramine and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the UV/Hydrogen Peroxide AOP Under Scenarios Relevant to Potable Reuse. Environ Sci Technol, 51(23), 13859-13868. https://doi.org/10.1021/acs.est.7b03570
Czekalski, N., Imminger, S., Salhi, E., Veljkovic, M., Kleffel, K., Drissner, D., Hammes, F., Bürgmann, H., & Gunten, U. v. (2016). Inactivation of antibiotic resistant bacteria and resistance genes by ozone: from laboratory experiments to full-scale wastewater treatment. Environmental science & technology, 50(21), 11862-11871. https://doi.org/10.1021/acs.est.6b02640
D'Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477(7365), 457-461. https://doi.org/10.1038/nature10388
Daghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: a review. Environmental Chemistry Letters, 11(3), 209-227. https://doi.org/10.1007/s10311-013-0404-8
Destiani, R., & Templeton, M. R. (2019). Chlorination and ultraviolet disinfection of antibiotic-resistant bacteria and antibiotic resistance genes in drinking water. AIMS Environmental Science, 6(3), 222-241. https://doi.org/10.3934/environsci.2019.3.222
Di Cesare, A., Eckert, E. M., D'Urso, S., Bertoni, R., Gillan, D. C., Wattiez, R., & Corno, G. (2016). Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res, 94, 208-214. https://doi.org/10.1016/j.watres.2016.02.049
Dodd, M. C. (2012). Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J Environ Monit, 14(7), 1754-1771. https://doi.org/10.1039/c2em00006g
Eden, P. A., Schmidt, T. M., Blakemore, R. P., & Pace, N. R. (1991). Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. International journal of systematic and Evolutionary microbiology, 41(2), 324-325.
Elliott, K. T., & Neidle, E. L. (2011). Acinetobacter baylyi ADP1: transforming the choice of model organism. IUBMB Life, 63(12), 1075-1080. https://doi.org/10.1002/iub.530
Fabrega, A., Madurga, S., Giralt, E., & Vila, J. (2009). Mechanism of action of and resistance to quinolones. Microb Biotechnol, 2(1), 40-61. https://doi.org/10.1111/j.1751-7915.2008.00063.x
Fang, J., Fu, Y., & Shang, C. (2014). The Roles of Reactive Species in Micropollutant Degradation in the UV/free chlorine system. Environmental science & technology, 43(3), 1859-1868. https://doi.org/10.1021/es4036094
Ferro, G., Fiorentino, A., Alferez, M. C., Polo-López, M. I., Rizzo, L., & Fernández-Ibáñez, P. (2015). Urban wastewater disinfection for agricultural reuse: effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain. Applied Catalysis B: Environmental, 178, 65-73. https://doi.org/10.1016/j.apcatb.2014.10.043
Flaten, T. P. (2001). Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain research bulletin, 55(2), 187-196.
Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369-378. https://doi.org/10.1016/j.jiph.2016.08.007
Gao, P., Munir, M., & Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci Total Environ, 421-422, 173-183. https://doi.org/10.1016/j.scitotenv.2012.01.061
Ghernaout, D. (2017). Water treatment chlorination: An updated mechanistic insight review. Chemistry Research Journal, 2, 125-138.
Giannakis, S., López, M. I. P., Spuhler, D., Pérez, J. A. S., Ibáñez, P. F., & Pulgarin, C. (2016). Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Applied Catalysis B: Environmental, 198, 431-446. https://doi.org/10.1016/j.apcatb.2016.06.007
Grebel, J. E., Pignatello, J. J., & Mitch, W. A. (2010). Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environmental science & technology, 44(17), 6822-6828.
Gunten, U. v. (2003). Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water research, 37(7), 1469-1487. https://doi.org/10.1016/S0043-1354(02)00458-X
Guo, K., Wu, Z., Chen, C., & Fang, J. (2022). UV/Chlorine Process: An Efficient Advanced Oxidation Process with Multiple Radicals and Functions in Water Treatment. Acc Chem Res, 55(3), 286-297. https://doi.org/10.1021/acs.accounts.1c00269
Guo, K., Wu, Z., Shang, C., Yao, B., Hou, S., Yang, X., Song, W., & Fang, J. (2017). Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water. Environ Sci Technol, 51(18), 10431-10439. https://doi.org/10.1021/acs.est.7b02059
Guo, M. T., Yuan, Q. B., & Yang, J. (2015). Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environ Sci Technol, 49(9), 5771-5778. https://doi.org/10.1021/acs.est.5b00644
Harding, C. M., Tracy, E. N., Carruthers, M. D., Rather, P. N., Actis, L. A., & Munson, R. S., Jr. (2013). Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. mBio, 4(4). https://doi.org/10.1128/mBio.00360-13
Herigstad, B., Hamilton, M., & Heersink, J. (2001). How to optimize the drop plate method for enumerating bacteria. Journal of microbiological methods, 44(2), 121-129.
Hermann, T. (2007). Aminoglycoside antibiotics: old drugs and new therapeutic approaches. Cell Mol Life Sci, 64(14), 1841-1852. https://doi.org/10.1007/s00018-007-7034-x
Hirayama, H., Yatabe, T., Noguchi, N., & Kamata, N. (2010). Development of 230-270 nm AlGaN-based deep-UV LEDs. Electronics and Communications in Japan, 93(3), 24-33. https://doi.org/10.1002/ecj.10197
Ioannou-Ttofa, L., Raj, S., Prakash, H., & Fatta-Kassinos, D. (2019). Solar photo-Fenton oxidation for the removal of ampicillin, total cultivable and resistant E. coli and ecotoxicity from secondary-treated wastewater effluents. Chemical Engineering Journal, 355, 91-102. https://doi.org/10.1016/j.cej.2018.08.057
Jia, S., Shi, P., Hu, Q., Li, B., Zhang, T., & Zhang, X. X. (2015). Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination. Environ Sci Technol, 49(20), 12271-12279. https://doi.org/10.1021/acs.est.5b03521
Jia, S., Wu, J., Ye, L., Zhao, F., Li, T., & Zhang, X. X. (2019). Metagenomic assembly provides a deep insight into the antibiotic resistome alteration induced by drinking water chlorination and its correlations with bacterial host changes. Journal of hazardous materials, 379, 120841. https://doi.org/10.1016/j.jhazmat.2019.120841
Jin, M., Liu, L., Wang, D. N., Yang, D., Liu, W. L., Yin, J., Yang, Z. W., Wang, H. R., Qiu, Z. G., Shen, Z. Q., Shi, D. Y., Li, H. B., Guo, J. H., & Li, J. W. (2020). Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. ISME J, 14(7), 1847-1856. https://doi.org/10.1038/s41396-020-0656-9
Johnsborg, O., Eldholm, V., & Havarstein, L. S. (2007). Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol, 158(10), 767-778. https://doi.org/10.1016/j.resmic.2007.09.004
Kappell, A. D., Kimbell, L. K., Seib, M. D., Carey, D. E., Choi, M. J., Kalayil, T., Fujimoto, M., Zitomer, D. H., & McNamara, P. J. (2018). Removal of antibiotic resistance genes in an anaerobic membrane bioreactor treating primary clarifier effluent at 20 °C. Environmental Science: Water Research & Technology, 4(11), 1783-1793. https://doi.org/10.1039/c8ew00270c
Karaolia, P., Michael, I., Garcia-Fernandez, I., Aguera, A., Malato, S., Fernandez-Ibanez, P., & Fatta-Kassinos, D. (2014). Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation. Sci Total Environ, 468-469, 19-27. https://doi.org/10.1016/j.scitotenv.2013.08.027
Karkman, A., Do, T. T., Walsh, F., & Virta, M. P. J. (2018). Antibiotic-Resistance Genes in Waste Water. Trends Microbiol, 26(3), 220-228. https://doi.org/10.1016/j.tim.2017.09.005
Keeling, P. J., & Palmer, J. D. (2008). Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet, 9(8), 605-618. https://doi.org/10.1038/nrg2386
Khan, S., Beattie, T. K., & Knapp, C. W. (2016). Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. Chemosphere, 152, 132-141. https://doi.org/10.1016/j.chemosphere.2016.02.086
Kimura, M., Matsui, Y., Kondo, K., Ishikawa, T. B., Matsushita, T., & Shirasaki, N. (2013). Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants. Water Res, 47(6), 2075-2084. https://doi.org/10.1016/j.watres.2013.01.037
Kiwi, J., Lopez, A., & Nadtochenko, V. (2000). Mechanism and Kinetics of the OH-Radical Intervention during Fenton Oxidation in the Presence of a Significant Amount of Radical Scavenger (Cl-). Environmental science & technology, 34(11), 2162-2168.
Klamerth, N., Miranda, N., Malato, S., Agüera, A., Fernández-Alba, A. R., Maldonado, M. I., & Coronado, J. M. (2009). Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2. Catalysis Today, 144(1-2), 124-130. https://doi.org/10.1016/j.cattod.2009.01.024
Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130(5), 797-810. https://doi.org/10.1016/j.cell.2007.06.049
Kong, K. F., Schneper, L., & Mathee, K. (2010). Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS, 118(1), 1-36. https://doi.org/10.1111/j.1600-0463.2009.02563.x
Kozari, A., Paloglou, A., & Voutsa, D. (2020). Formation potential of emerging disinfection by-products during ozonation and chlorination of sewage effluents. Sci Total Environ, 700, 134449. https://doi.org/10.1016/j.scitotenv.2019.134449
Krzeminski, P., Feys, E., Anglès d'Auriac, M., Wennberg, A. C., Umar, M., Schwermer, C. U., & Uhl, W. (2020). Combined membrane filtration and 265 nm UV irradiation for effective removal of cell free antibiotic resistance genes from feed water and concentrate. Journal of Membrane Science, 598. https://doi.org/10.1016/j.memsci.2019.117676
Kwon, M., Yoon, Y., Kim, S., Jung, Y., Hwang, T. M., & Kang, J. W. (2018). Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: A comparative evaluation of 275nm LED-UV and 254nm LP-UV. Sci Total Environ, 637-638, 1351-1357. https://doi.org/10.1016/j.scitotenv.2018.05.080
Lan, L., Kong, X., Sun, H., Li, C., & Liu, D. (2019). High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. J Environ Manage, 231, 439-445. https://doi.org/10.1016/j.jenvman.2018.10.073
Le Caër, S. (2011). Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water, 3(1), 235-253. https://doi.org/10.3390/w3010235
Le, T. H., Ng, C., Tran, N. H., Chen, H., & Gin, K. Y. (2018). Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Res, 145, 498-508. https://doi.org/10.1016/j.watres.2018.08.060
Lee, J., Jeon, J. H., Shin, J., Jang, H. M., Kim, S., Song, M. S., & Kim, Y. M. (2017). Quantitative and qualitative changes in antibiotic resistance genes after passing through treatment processes in municipal wastewater treatment plants. Sci Total Environ, 605-606, 906-914. https://doi.org/10.1016/j.scitotenv.2017.06.250
Li, B., Qiu, Y., Li, J., Liang, P., & Huang, X. (2019). Removal of antibiotic resistance genes in four full-scale membrane bioreactors. Sci Total Environ, 653, 112-119. https://doi.org/10.1016/j.scitotenv.2018.10.305
Li, D., Zeng, S., He, M., & Gu, A. Z. (2016). Water Disinfection Byproducts Induce Antibiotic Resistance-Role of Environmental Pollutants in Resistance Phenomena. Environ Sci Technol, 50(6), 3193-3201. https://doi.org/10.1021/acs.est.5b05113
Li, H., Cai, Y., Gu, Z., Yang, Y. L., Zhang, S., Yang, X. L., & Song, H. L. (2020). Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater. Chemosphere, 248, 126014. https://doi.org/10.1016/j.chemosphere.2020.126014
Li, L. G., Huang, Q., Yin, X., & Zhang, T. (2020). Source tracking of antibiotic resistance genes in the environment - Challenges, progress, and prospects. Water Res, 185, 116127. https://doi.org/10.1016/j.watres.2020.116127
Li, N., Sheng, G. P., Lu, Y. Z., Zeng, R. J., & Yu, H. Q. (2017). Removal of antibiotic resistance genes from wastewater treatment plant effluent by coagulation. Water Res, 111, 204-212. https://doi.org/10.1016/j.watres.2017.01.010
Li, Z. H., Yuan, L., Gao, S. X., Wang, L., & Sheng, G. P. (2019). Mitigated membrane fouling and enhanced removal of extracellular antibiotic resistance genes from wastewater effluent via an integrated pre-coagulation and microfiltration process. Water Res, 159, 145-152. https://doi.org/10.1016/j.watres.2019.05.005
Lin, W., Zhang, M., Zhang, S., & Yu, X. (2016). Can chlorination co-select antibiotic-resistance genes? Chemosphere, 156, 412-419. https://doi.org/10.1016/j.chemosphere.2016.04.139
Liu, S. S., Qu, H. M., Yang, D., Hu, H., Liu, W. L., Qiu, Z. G., Hou, A. M., Guo, J., Li, J. W., Shen, Z. Q., & Jin, M. (2018). Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res, 136, 131-136. https://doi.org/10.1016/j.watres.2018.02.036
Lu, J., Zhang, Y., Wu, J., Wang, J., & Cai, Y. (2020). Fate of antibiotic resistance genes in reclaimed water reuse system with integrated membrane process. J Hazard Mater, 382, 121025. https://doi.org/10.1016/j.jhazmat.2019.121025
Luo, L. W., Wu, Y. H., Yu, T., Wang, Y. H., Chen, G. Q., Tong, X., Bai, Y., Xu, C., Wang, H. B., Ikuno, N., & Hu, H. Y. (2021). Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. Water Res, 188, 116474. https://doi.org/10.1016/j.watres.2020.116474
Lv, L., Jiang, T., Zhang, S., & Yu, X. (2014). Exposure to mutagenic disinfection byproducts leads to increase of antibiotic resistance in Pseudomonas aeruginosa. Environ Sci Technol, 48(14), 8188-8195. https://doi.org/10.1021/es501646n
Mamane-Gravetz, H., Linden, K. G., Cabaj, A., & Sommer, R. (2005). Spectral sensitivity of Bacillus subtilis spores and MS2 coliphage for validation testing of ultraviolet reactors for water disinfection. Environmental science & technology, 39(20), 7845-7852.
Mantilla-Calderon, D., Plewa, M. J., Michoud, G., Fodelianakis, S., Daffonchio, D., & Hong, P. Y. (2019). Water Disinfection Byproducts Increase Natural Transformation Rates of Environmental DNA in Acinetobacter baylyi ADP1. Environ Sci Technol, 53(11), 6520-6528. https://doi.org/10.1021/acs.est.9b00692
McKinney, C. W., & Pruden, A. (2012). Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol, 46(24), 13393-13400. https://doi.org/10.1021/es303652q
Michael, S. G., Michael-Kordatou, I., Beretsou, V. G., Jäger, T., Michael, C., Schwartz, T., & Fatta-Kassinos, D. (2019). Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater. Applied Catalysis B: Environmental, 244, 871-880. https://doi.org/10.1016/j.apcatb.2018.12.030
Nguyen, F., Starosta, A. L., Arenz, S., Sohmen, D., Donhofer, A., & Wilson, D. N. (2014). Tetracycline antibiotics and resistance mechanisms. Biol Chem, 395(5), 559-575. https://doi.org/10.1515/hsz-2013-0292
O’Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations [THE REVIEW ON ANTIMICROBIAL RESISTANCE].
Oguma, K., Kita, R., Sakai, H., Murakami, M., & Takizawa, S. (2013). Application of UV light emitting diodes to batch and flow-through water disinfection systems. Desalination, 328, 24-30. https://doi.org/10.1016/j.desal.2013.08.014
Oh, J., Salcedo, D. E., Medriano, C. A., & Kim, S. (2014). Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. Journal of Environmental Sciences, 26(6), 1238-1242. https://doi.org/10.1016/S1001-0742(13)60594-X
Phattarapattamawong, S., Chareewan, N., & Polprasert, C. (2021). Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. Sci Total Environ, 755(Pt 2), 142696. https://doi.org/10.1016/j.scitotenv.2020.142696
Pruden, A., Pei, R., Storteboom, H., & Carlson, K. H. (2006). Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environmental science & technology, 40(23), 7445-7450.
Qin, Y., Kwon, H.-J., Howlader, M. M., & Deen, M. J. (2015). Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: recent advances and research challenges. RSC advances, 5(85), 69086-69109.
Remucal, C., & Manley, D. (2016). Emerging investigators series: the efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment. Environmental Science: Water Research & Technology, 2(4), 565-579.
Ren, S., Boo, C., Guo, N., Wang, S., Elimelech, M., & Wang, Y. (2018). Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Environ Sci Technol, 52(15), 8666-8673. https://doi.org/10.1021/acs.est.8b01888
Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of the total environment, 447, 345-360.
Rodriguez-Chueca, J., Varella Della Giustina, S., Rocha, J., Fernandes, T., Pablos, C., Encinas, A., Barcelo, D., Rodriguez-Mozaz, S., Manaia, C. M., & Marugan, J. (2019). Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes? Sci Total Environ, 652, 1051-1061. https://doi.org/10.1016/j.scitotenv.2018.10.223
Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sanchez-Melsio, A., Borrego, C. M., Barcelo, D., & Balcazar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res, 69, 234-242. https://doi.org/10.1016/j.watres.2014.11.021
Sanganyado, E., & Gwenzi, W. (2019). Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci Total Environ, 669, 785-797. https://doi.org/10.1016/j.scitotenv.2019.03.162
Santos, A. L., Oliveira, V., Baptista, I., Henriques, I., Gomes, N. C., Almeida, A., Correia, A., & Cunha, A. (2013). Wavelength dependence of biological damage induced by UV radiation on bacteria. Arch Microbiol, 195(1), 63-74. https://doi.org/10.1007/s00203-012-0847-5
Schwermer, C. U., Krzeminski, P., Wennberg, A. C., Vogelsang, C., & Uhl, W. (2018). Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes. Water Sci Technol, 77(3-4), 1115-1126. https://doi.org/10.2166/wst.2017.642
Serna-Galvis, E. A., Velez-Pena, E., Osorio-Vargas, P., Jimenez, J. N., Salazar-Ospina, L., Guaca-Gonzalez, Y. M., & Torres-Palma, R. A. (2019). Inactivation of carbapenem-resistant Klebsiella pneumoniae by photo-Fenton: Residual effect, gene evolution and modifications with citric acid and persulfate. Water Res, 161, 354-363. https://doi.org/10.1016/j.watres.2019.06.024
Shen, Y., Chu, L., Zhuan, R., Xiang, X., Sun, H., & Wang, J. (2019). Degradation of antibiotics and antibiotic resistance genes in fermentation residues by ionizing radiation: A new insight into a sustainable management of antibiotic fermentative residuals. J Environ Manage, 232, 171-178. https://doi.org/10.1016/j.jenvman.2018.11.050
Shi, P., Jia, S., Zhang, X. X., Zhang, T., Cheng, S., & Li, A. (2013). Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res, 47(1), 111-120. https://doi.org/10.1016/j.watres.2012.09.046
Shi, Y., Fan, M., Brown, R. C., Sung, S., & Van Leeuwen, J. (2004). Comparison of corrosivity of polymeric sulfate ferric and ferric chloride as coagulants in water treatment. Chemical Engineering and Processing: Process Intensification, 43(8), 955-964. https://doi.org/10.1016/j.cep.2003.09.001
Sichel, C., Garcia, C., & Andre, K. (2011). Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Water Res, 45(19), 6371-6380. https://doi.org/10.1016/j.watres.2011.09.025
Skold, O. (2000). Sulfonamide resistance: mechanisms and trends. Drug Resist Updat, 3(3), 155-160. https://doi.org/10.1054/drup.2000.0146
Sommer, R., Haider, T., Cabaj, A., Pribil, W., & Lhotsky, M. (1998). Time dose reciprocity in UV disinfection of water. Water science and technology, 38(12), 145-150.
Song, K., Mohseni, M., & Taghipour, F. (2016). Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water Res, 94, 341-349. https://doi.org/10.1016/j.watres.2016.03.003
Soucy, S. M., Huang, J., & Gogarten, J. P. (2015). Horizontal gene transfer: building the web of life. Nat Rev Genet, 16(8), 472-482. https://doi.org/10.1038/nrg3962
Sousa, J. M., Macedo, G. a., Pedrosa, M., Becerra-Castro, C., Castro-Silva, S., Pereira, M. F. R., Silva, A. M. T., Nunes, O. C., & Manaia, C. M. (2017). Ozonation and UV254 nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater. Journal of hazardous materials, 323, 434-441. https://doi.org/10.1016/j.jhazmat.2016.03.096
Stange, C., Sidhu, J. P. S., Toze, S., & Tiehm, A. (2019). Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment. Int J Hyg Environ Health, 222(3), 541-548. https://doi.org/10.1016/j.ijheh.2019.02.002
Tenson, T., Lovmar, M., & Ehrenberg, M. (2003). The Mechanism of Action of Macrolides, Lincosamides and Streptogramin B Reveals the Nascent Peptide Exit Path in the Ribosome. Journal of Molecular Biology, 330(5), 1005-1014. https://doi.org/10.1016/s0022-2836(03)00662-4
Umar, M., Roddick, F., & Fan, L. (2019). Moving from the traditional paradigm of pathogen inactivation to controlling antibiotic resistance in water - Role of ultraviolet irradiation. Sci Total Environ, 662, 923-939. https://doi.org/10.1016/j.scitotenv.2019.01.289
Vilhunen, S., Sarkka, H., & Sillanpaa, M. (2009). Ultraviolet light-emitting diodes in water disinfection. Environ Sci Pollut Res Int, 16(4), 439-442. https://doi.org/10.1007/s11356-009-0103-y
Wang, H., Wang, J., Li, S., Ding, G., Wang, K., Zhuang, T., Huang, X., & Wang, X. (2020). Synergistic effect of UV/chlorine in bacterial inactivation, resistance gene removal, and gene conjugative transfer blocking. Water Res, 185, 116290. https://doi.org/10.1016/j.watres.2020.116290
Wang, J., & Wang, J. (2007). Application of radiation technology to sewage sludge processing: a review. J Hazard Mater, 143(1-2), 2-7. https://doi.org/10.1016/j.jhazmat.2007.01.027
Wang, J., & Zhuan, R. (2020). Degradation of antibiotics by advanced oxidation processes: An overview. Sci Total Environ, 701, 135023. https://doi.org/10.1016/j.scitotenv.2019.135023
Wang, W. L., Wu, Q. Y., Huang, N., Wang, T., & Hu, H. Y. (2016). Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species. Water Res, 98, 190-198. https://doi.org/10.1016/j.watres.2016.04.015
Watts, M. J., Hofmann, R., & Rcdsenfeldt, E. J. (2012). Low-pressure UV/Cl2
for advanced oxidation of taste and odor. Journal - American Water Works Association, 104(1), E58-E65. https://doi.org/10.5942/jawwa.2012.104.0006
Watts, M. J., & Linden, K. G. (2007). Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Res, 41(13), 2871-2878. https://doi.org/10.1016/j.watres.2007.03.032
WHO. (2014). Antimicrobial resistance: global report on surveillance. World Health Organization.
Wu, Z., Fang, J., Xiang, Y., Shang, C., Li, X., Meng, F., & Yang, X. (2016). Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways. Water Res, 104, 272-282. https://doi.org/10.1016/j.watres.2016.08.011
Wurtele, M. A., Kolbe, T., Lipsz, M., Kulberg, A., Weyers, M., Kneissl, M., & Jekel, M. (2011). Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection. Water Res, 45(3), 1481-1489. https://doi.org/10.1016/j.watres.2010.11.015
Xu, L., Ouyang, W., Qian, Y., Su, C., Su, J., & Chen, H. (2016). High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environ Pollut, 213, 119-126. https://doi.org/10.1016/j.envpol.2016.02.013
Yin, K., He, Q., Liu, C., Deng, Y., Wei, Y., Chen, S., Liu, T., & Luo, S. (2018). Prednisolone degradation by UV/chlorine process: Influence factors, transformation products and mechanism. Chemosphere, 212, 56-66. https://doi.org/10.1016/j.chemosphere.2018.08.032
Yin, R., Ling, L., & Shang, C. (2018). Wavelength-dependent chlorine photolysis and subsequent radical production using UV-LEDs as light sources. Water Res, 142, 452-458. https://doi.org/10.1016/j.watres.2018.06.018
Yoon, Y., Chung, H. J., Wen Di, D. Y., Dodd, M. C., Hur, H. G., & Lee, Y. (2017). Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2. Water Res, 123, 783-793. https://doi.org/10.1016/j.watres.2017.06.056
Zeng, D., Debabov, D., Hartsell, T. L., Cano, R. J., Adams, S., Schuyler, J. A., McMillan, R., & Pace, J. L. (2016). Approved Glycopeptide Antibacterial Drugs: Mechanism of Action and Resistance. Cold Spring Harb Perspect Med, 6(12). https://doi.org/10.1101/cshperspect.a026989
Zhang, M., Chen, S., Yu, X., Vikesland, P., & Pruden, A. (2019). Degradation of extracellular genomic, plasmid DNA and specific antibiotic resistance genes by chlorination. Frontiers of Environmental Science & Engineering, 13(3), 1-12. https://doi.org/10.1007/s11783-019-1124-5
Zhang, S., Wang, Y., Lu, J., Yu, Z., Song, H., Bond, P. L., & Guo, J. (2021). Chlorine disinfection facilitates natural transformation through ROS-mediated oxidative stress. ISME J, 15(10), 2969-2985. https://doi.org/10.1038/s41396-021-00980-4
Zhang, T., Hu, Y., Jiang, L., Yao, S., Lin, K., Zhou, Y., & Cui, C. (2019). Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water. Chemical Engineering Journal, 358, 589-597. https://doi.org/10.1016/j.cej.2018.09.218
Zhang, X. X., Zhang, T., & Fang, H. H. (2009). Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol, 82(3), 397-414. https://doi.org/10.1007/s00253-008-1829-z
Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Xu, K., & Ding, L. (2016). Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes. Sci Total Environ, 550, 184-191. https://doi.org/10.1016/j.scitotenv.2016.01.078
Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L., & Xu, K. (2015). Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Sci Total Environ, 512-513, 125-132. https://doi.org/10.1016/j.scitotenv.2015.01.028
Zhu, Y., Wang, Y., Zhou, S., Jiang, X., Ma, X., & Liu, C. (2018). Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: Role of membrane foulants. Water Res, 130, 139-150. https://doi.org/10.1016/j.watres.2017.11.067
Zhuang, Y., Ren, H., Geng, J., Zhang, Y., Zhang, Y., Ding, L., & Xu, K. (2015). Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environ Sci Pollut Res Int, 22(9), 7037-7044. https://doi.org/10.1007/s11356-014-3919-z
陳俊綸(2020)。探討以紫外光發光二極體結合自由餘氯提升對於MS-2 coliphage與Bacillus subtilis孢子之抑制效果〔未出版之碩士論文〕。國立臺灣大學環境工程學研究所。
王思云(2021)。紫外光波長及自由基對於降解細胞外抗生素抗性基因之影響〔未出版之碩士論文〕。國立臺灣大學環境工程學研究所。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85595-
dc.description.abstract二十一世紀初起,抗生素抗性開始成為全球所重視的公共衛生議題。傳統加氯消毒被發現具有篩選特定抗生素抗性基因的能力,並能共選擇出同時具有抗氯及抗生素抗性能力的細菌,低餘氯劑量及消毒副產物均被證實具有促進水平基因轉移發生的能力,因此加氯消毒已逐漸不足以確保水質供應之安全性。紫外光催化高級氧化處理具有處理難分解有機物及微污染物的實績,隨著紫外光發光二極體(UV-C LED)的發展漸趨成熟,製造特定波長的紫外光光源的可行性大幅提升,因此可作為替代性紫外光光源,應用於UV/chlorine高級氧化程序中。本研究以自然轉形勝任細菌A. baylyi及pWH1266質體作為模式系統,評估紫外光結合自由餘氯高級氧化處理程序之抗生素抗性基因水平基因轉移風險,並探討相較於254 nm波長之低壓汞燈,275 nm波長之紫外光發光二極體應用於UV/chlorine高級氧化程序是否能有效提升對A. baylyi的消毒能力及自然轉形的抑制能力。結果發現紫外光結合7.5 mg-Cl2/L之初始自由餘氯對於A. baylyi之消毒有協同作用(synergistic effect)效果,且以單位紫外光劑量對於A. baylyi之對數消毒能力 (mJ/cm2 per log inactivation)進行比較,發現UV-C LED (275 nm)結合自由餘氯對於A. baylyi之消毒效果皆優於LPUV (254 nm),顯示275 nm波長之紫外光光源更適合應用於本研究之UV/chlorine高級氧化程序中。此外,隨著自由餘氯加氯劑量的提升,初始自由餘氯Ct值為3.0 mg-Cl2·min /L時,UV-C LED (275 nm)結合自由餘氯即可有效抑制60%之轉形菌生長;初始自由餘氯Ct值為7.5 mg-Cl2·min /L時,LPUV (254 nm)結合自由餘氯才可有效抑制50%之轉形菌生長,因此以UV-C LED (275 nm)作為UV/chlorine的紫外光光源相較LPUV (254 nm)更適合抑制自然轉形的發生。zh_TW
dc.description.abstractAntibiotic resistance has been a public health issue since the early 21st century, giving rise to the examination of antibiotic resistance genes, and antibiotic resistance bacteria removal efficacy by existing water treatment processes. Chlorine is the most widely used disinfectant in water and wastewater treatment plants. However, chlorination is found to be insufficient to provide water resource security, since chlorine was found to be able to co-select both chlorine-resistance and antibiotic-resistance bacteria, as well as promote the horizontal gene transfer mechanisms in some bacteria. UV/chlorine advanced oxidation process is one of the promising water treatment technologies; owing to their fast reaction rate and strong oxidation capability, they can deal with micropollutants and recalcitrant organics. This study investigates the potential application of 275 nm ultraviolet light-emitting diodes (UV-LEDs) in UV/chlorine AOP by estimating the removal of natural transformation competent bacteria A. baylyi and the reduction of the follow-up transformation efficiency. The results suggest that UV-C LED (275 nm) is more suitable to disinfect A. baylyi than LPUV (254 nm) in the studying system by comparing log removal of A. baylyi, and the synergistic effect from UV and chlorine is observed with initial free chlorine dosage 7.5 mg-Cl2/L. In addition, with increasing spikes of the initial chlorine dosage, UV-C LED (275 nm)/chlorine can reduce 60% of the transformants with 3.0 mg-Cl2·min/L initial chlorine Ct value; LPUV (254 nm)/chlorine can reduce 50% of the transformants after promoting the initial chlorine Ct value up to 7.5 mg-Cl2·min/L, indicating UV-C LED (275 nm) is also more suitable to reduce transformation efficiency of A.baylyi than LPUV (254 nm) with lower initial chlorine dosage in this study.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:19:19Z (GMT). No. of bitstreams: 1
U0001-2909202203494100.pdf: 6813908 bytes, checksum: 7d50efc215d7036932f53a0294c319c3 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1 研究背景 1
1.2 研究目的與假說 3
第二章 文獻回顧 5
2.1 抗生素抗性(Antibiotic resistance) 5
2.1.1 抗生素類型與抗生素抗性機制 5
2.1.2 抗生素抗性基因或細菌的來源、分布與風險 7
2.1.3 水處理技術對抗生素抗性細菌及基因於之去除 8
2.2 加氯消毒 12
2.2.1 自由餘氯的化學特性與消毒機制 12
2.2.2 加氯消毒對抗生素抗性基因水平轉移的影響 14
2.3 紫外光消毒原理及對抗生素抗性基因水平轉移的影響 15
2.4 紫外光結合餘氯高級氧化程序(UV/chlorine AOP) 15
2.4.1 UV/chlorine AOP之原理及機制 16
2.4.2 UV/chlorine AOP對抗生素抗性基因水平轉移的影響 20
2.5 文獻回顧心得 20
第三章 材料與方法 22
3.1 研究架構 21
3.2 批次式UV/chlorine AOP實驗 24
3.2.1 批次式實驗反應裝置設計 25
3.2.2 UV/chlorine AOP實驗步驟 26
3.3 紫外光劑量測量方法 27
3.4 自由餘氯測量方法 30
3.5 細菌培養方法 31
3.6 自然轉形實驗 32
3.6.1 勝任細胞製備與質體轉形步驟 33
3.6.2 轉形系統建置與優化 34
3.7 分子生物實驗 37
3.7.1 質體DNA萃取 37
3.7.2 核酸濃度與品質分析 38
3.7.3 聚合酶連鎖反應(PCR) 39
3.7.4 瓊脂糖凝膠電泳(Gel Electrophoresis) 41
3.8 數據處理與分析 42
第四章 結果與討論 43
4.1 UV/chlorine AOP對A. baylyi之消毒效果 43
4.1.1 紫外光對A. baylyi之消毒效果 43
4.1.2 Chlorine對A. baylyi之消毒效果 45
4.1.3 UV/chlorine對A. baylyi之消毒效果 46
4.1.4 小結 51
4.2 A. baylyi經UV/chlorine AOP消毒後之轉形抑制效果 55
4.2.1 A. baylyi經紫外光消毒後之轉形抑制效果 55
4.2.2 A. baylyi經Chlorine消毒後之轉形抑制效果 58
4.2.3 A. baylyi經UV/chlorine消毒後之轉形抑制效果 61
4.2.4 小結 71
第五章 結論與建議 78
5.1 結論 78
5.2 建議 80
參考文獻 81
附錄 95
-
dc.language.isozh_TW-
dc.subject紫外光波長zh_TW
dc.subject自然轉形zh_TW
dc.subject水平基因轉移zh_TW
dc.subject紫外光結合餘氯高級氧化程序zh_TW
dc.subject消毒zh_TW
dc.subjectNatural transformationen
dc.subjectUltraviolet wavelengthsen
dc.subjectHorizontal gene transferen
dc.subjectUV/chlorine advanced oxidation process (UV/chlorine AOP)en
dc.subjectDisinfectionen
dc.title紫外光結合自由餘氯對於Acinetobacter baylyi之自然轉形抑制效果zh_TW
dc.titleReduction of Acinetobacter baylyi Transformation Competence by UV/Chlorine Processen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖秀娟;莊易學zh_TW
dc.contributor.oralexamcommitteeVivian Hsiu-ChuanLiao;Yi-Hsueh Brad Chuangen
dc.subject.keyword紫外光結合餘氯高級氧化程序,紫外光波長,消毒,水平基因轉移,自然轉形,zh_TW
dc.subject.keywordUV/chlorine advanced oxidation process (UV/chlorine AOP),Ultraviolet wavelengths,Disinfection,Horizontal gene transfer,Natural transformation,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202204219-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2027-09-29-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  此日期後於網路公開 2027-09-29
6.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved