請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85570完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔣明晃(Ming-Huang Chiang) | |
| dc.contributor.author | Yu-Hsien Lin | en |
| dc.contributor.author | 林育賢 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:18:47Z | - |
| dc.date.copyright | 2022-07-05 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-04 | |
| dc.identifier.citation | Dickey, D. & Fuller, Wayne. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. JASA. Journal of the American Statistical Association. 74. 10.2307/2286348. Hyndman, Rob. (2006). Another Look at Forecast Accuracy Metrics for Intermittent Demand. Foresight: The International Journal of Applied Forecasting. 4. 43-46. Holt, C.C. (1957) Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages. ONR Memorandum, Vol. 52, Carnegie Institute of Technology, Pittsburgh. Available from the Engineering Library, University of Texas, Austin. Makridakis, Spyros & Hibon, Michele. (1979). Accuracy of Forecasting: An Empirical Investigation. Journal of the Royal Statistical Society. Series A (General). 142. 10.2307/2345077. Gardner Jr., E.S. and McKenzie, E. (1985) Forecasting Trends in Time Series. Management Science, 31, 1237-1246. Gross, Charles & Sohl, Jeffrey. (1990). Disaggregation methods to expedite product line forecasting. Journal of Forecasting. 9. 233 - 254. 10.1002/for.3980090304. Athanasopoulos, George & Ahmed, Roman & Hyndman, Rob. (2014). Corrigendum to: “Hierarchical forecasts for Australian domestic tourism” [International Journal of Forecasting 25 (2009) 146–166 Athanasopoulos, George & Hyndman, Rob & Ahmed, Roman & Shang, Han Lin. (2011). Optimal combination forecasts for hierarchical. Computational Statistics & Data Analysis. 55. 2579-2589. 10.1016/j.csda.2011.03.006. Wickramasuriya, Shanika & Athanasopoulos, George & Hyndman, Rob. (2018). Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization. Journal of the American Statistical Association. 114. 1-45. 10.1080/01621459.2018.1448825. Ljung, Greta & Box, G.. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika. 65. 10.1093/biomet/65.2.297. Akaike, Hirotugu. (1975). A New Look At The Statistical Model Identification. Automatic Control, IEEE Transactions on. 19. 716 - 723. 10.1109/TAC.1974.1100705. Sagheer, Alaa & Hamdoun, Hala & Youness, Hassan. (2021). Deep LSTM-Based Transfer Learning Approach for Coherent Forecasts in Hierarchical Time Series. Sensors. 21. 10.3390/s21134379. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85570 | - |
| dc.description.abstract | 在現今全球化之供應鏈運營中,具有來自跨通路部門及市場需求,為確保供應鏈可平穩高效地運行,需分析來自不同部門的預測,並使用時間序列模型在連續時間獲得的數量的有序量值,如產品銷售量、股票價格、每日溫度測量和每週票房數據等資料,而當前時間序列模型以ARIMA、ETS等模型為主流,以預測數列間的季節性、趨勢性以及隨機性。 分層時間序列 (HTS) 是遵循分層聚合結構的時間序列的集合。假設有一家食品供應商共有數十種產品與口味。其中各個產品的銷售即為一時間序列。各個通路銷售的食品個數亦為一個時間序列,而這些時間序列的集合具有層次聚合結構,彼此數量間皆有一定程度的相關,分層時間序列用以探討其中的相關性並提供更佳的預測方法。 本篇論文主要探討關於各個SKU的需求性質,並從中疏理分層時間序列演算法較可準確預估各產品需求量之情境,目前較常見之分析方法Bottom-up approach、Top-down approach、Reconciliation approach 等演算法,本研究將自各種SKU需求性質判斷需要採用之演算法,以預測值與現實值之RMSE、MASE作為主要演算法損失函數,並從中減少預測誤差以降低成本。 | zh_TW |
| dc.description.abstract | In modern global supply chain operations, there are demands from cross-channel departments and markets. To ensure that the supply chain can run smoothly and efficiently, it is necessary to analyze forecasts from different departments. With time series models we could obtain continuous-time quantitative estimates of ordinal values such as product sales, stock prices, daily temperature measurements, and weekly box office data. Hierarchical time series are collections of time series that follow a hierarchical aggregation structure. For example, imagine a food supplier with dozens of products and SKUs. The sales of each product are time series. The numbers of foods sold by each channel are time series as well. And the collection of these time series has a hierarchical aggregation structure. This study will discuss the demand properties of each SKU, and analyze the scenario in which hierarchical time series algorithms, such as the Bottom-up approach, Top-down approach, and Reconciliation approach, could accurately estimate the demand of each product in different nodes. This study shows how to determine the algorithm that needs to be adopted based on the properties of various flavor demands, the RMSE of the predicted value and the actual value is considered as the main algorithm loss function, and the prediction error is reduced to further lower the cost. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:18:47Z (GMT). No. of bitstreams: 1 U0001-2706202220314500.pdf: 2280974 bytes, checksum: 7e2e298fa156643f76aaa99b27e5fdf5 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究架構 2 1.4 論文架構 3 第二章 文獻回顧 4 2.1 方便食品概述 4 2.2 需求預測方法 5 2.2.1 移動平均法 6 2.2.2 指數平滑法 6 2.2.3 迴歸分析法 7 2.2.4 自我迴歸滑動平均模型(ARMA) 8 2.2.5 Holt’s線性趨勢預測(Holt's linear trend) 9 2.2.6 阻尼趨勢法(Damped trend methods) 10 2.2.7 The bottom-up approach 10 2.2.8 The Top-down approach 12 2.2.9 The Reconciliation approach 13 2.3 需求預測準確性評估 15 2.4 小結 16 第三章 模型建立 17 3.1 研究流程 17 3.2 控制變數 18 3.3 建立預測模型 19 3.3.1 模型假設 19 3.3.2 The Bottom-up approach 20 3.3.3 The Top-down approach 21 3.3.4 The Reconciliation approach 22 3.4 小結 23 第四章 模型預測分析 24 4.1 探索式資料分析 24 4.1.1 資料簡述 24 4.1.2 商品資料性質 25 4.2 方便食品性質分類 29 4.3 時間序列模型建立 30 4.3.1 訓練集與測試集建立 31 4.3.2 ARIMA模型建立 31 4.3.3 ETS模型建立 34 4.4 層級時間序列模型建立 35 4.4.1 袋裝蛋酥捲 36 4.4.2 家庭裝蛋酥捲 36 4.4.3 紙盒裝蛋酥捲 36 4.4.4 紙盒裝樂芙球 37 4.4.5 袋裝彩笛卷 37 4.4.6 12入蛋糕 38 4.4.7 24入蛋糕 38 4.4.8 法式蛋糕 39 4.4.9 美味酥 39 4.4.10 新3+2蘇打 40 4.5 模型預測成效統整與分析 40 第五章 結論及未來研究方向 43 5.1 研究結論 43 5.2 研究貢獻 43 5.3 研究限制 44 5.4 未來研究方向 45 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | ETS模型 | zh_TW |
| dc.subject | 層級時間序列 | zh_TW |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | ARIMA模型 | zh_TW |
| dc.subject | Trace Minimization | en |
| dc.subject | ARIMA | en |
| dc.subject | ETS | en |
| dc.subject | Hierarchical Time Series | en |
| dc.title | 層級資料結構下預測演算法之效能比較 | zh_TW |
| dc.title | A Study on Performance of Joint Forecasts under Hierarchical Time Series Algorithms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王孔政(Kung-Jeng Wang),羅明琇(MING-SHIOW LO) | |
| dc.subject.keyword | 層級時間序列,最佳化,ARIMA模型,ETS模型, | zh_TW |
| dc.subject.keyword | Hierarchical Time Series,Trace Minimization,ARIMA,ETS, | en |
| dc.relation.page | 48 | |
| dc.identifier.doi | 10.6342/NTU202201159 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-05 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 商學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-05 | - |
| 顯示於系所單位: | 商學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2706202220314500.pdf | 2.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
