請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85542完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃世建(Shyh-Jiann Hwang),朴艾雪(Aishwarya Y. Puranam) | |
| dc.contributor.author | Yu-Mei Chen | en |
| dc.contributor.author | 陳郁玫 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:18:16Z | - |
| dc.date.copyright | 2022-08-18 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-07 | |
| dc.identifier.citation | [1] ACI 318-19 (2019). “Building Code Requirements for Structural Concrete (ACI 318 19) and Commentary (ACI 318R 19),” American Concrete Institute, Farmington Hills, Mich., 623 pp. [2] Skillen K. C. (2020). “The Effects of Transverse Reinforcement on the Strength and Deformability of Reinforced Concrete Elements,” Ph. D. dissertation, Civil Engineering, Purdue University, Indiana, 368 pp. [3] Rincon, J. (2016). “Active Confinement of Reinforced Concrete Columns,” ENEQ 790 Research Proposal, Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, 70 pp. [4] ASCE/SEI 41-13 (2014). “Seismic Evaluation and Retrofit of Existing Buildings (41-13),” American Society of Civil Engineers, ASCE/SEI 41-13, Reston, VA., 518 pp. [5] ASCE/SEI 41-17 (2017). “Seismic Evaluation and Retrofit of Existing Buildings (41-17),” American Society of Civil Engineers, ASCE/SEI 41-17, Reston, VA., 576 pp. [6] Sezen H. and and Moehle, J. P. (2004). “Shear Strength Model for Lightly Reinforced Concrete Columns,” Journal of Structural Engineering, ASCE, 130(11), 1692 1703 pp. [7] Hwang, S. J., and Lee, H. J. (2002). “Strength Prediction for Discontinuity Regions by Softened Strut and Tie Model,” Journal of Structural Engineering, ASCE, 128(12), pp. 1519-1526. [8] Zhang, L. X. B. and Hsu, T. T. C. (1998). “Behavior and Analysis of 100Mpa Concrete Membrane Elements,” Journal of Structural Engineering, ASCE, 124(1), pp. 24-34. [9] Schäfer, K. (1996). “Strut-and-Tie Model for the Design of Structural Concrete, ” Notes of Workshop, Department of Civil Enigineering, National Cheng Kung University, Taiwan, 140 pp. [10] Paulay, T., and Priestley, M. J. N. (1992). “Seismic Design of Reinforced Concrete and Masonry Buildings,” Wiley, New York, 744 pp. [11] Hwang, S. J., Tsai, R. J., Lam, W. K., and Moehle, J. P. (2017). “Simplification of Softened Strut and Tie Model for Strength Prediction of Discontinuity Regions,” ACI Structural Journal, 114(5), pp. 1239-1248. [12] Ling, Y. C., Mogili S., and Hwang, S. J. (2022). “Parameter Optomization for Pivot Hysteresis Model for Reinforced Concrete Columns with Different Failure Modes,” Earthquake Engineering Structural Dynamics, 21 pp. [13] Dowell, R. K., Seiblem, F., and Wilson, E. L., (1998). “Pivor Hysteresis Model for Reinforced Concrete Members,” ACI Structural Jornal, Vol. 95, No. 5, pp. 607-617. [14] Sharma, A., Eligehausen, R., and Reddy, G. R., (2013). “Pivot Hysteresis Model Parameters for Reinforced Concrete Columns, Joints, and Structures,” ACI Structural Journal, Vol. 110, No. 2, pp. 217-228. [15] 邱聰智、鍾立來、涂耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建,(2020),「臺灣結構耐震評估與補強技術手冊(TEASPA 4.0)」,國家地震工程研究中心報告,NCREE-2020-005,台北。 [16] Priestley M. J. N. and Park R. (1987). “Strength and ductility of concrete bridge columns under seismic loading,” ACI Structural Journal, 84(1), pp. 61–76. [17] 俞孟廷 (2021),「鋼筋混凝土中短柱剪壓破壞之實驗研究」,碩士論文,國立台灣大學,土木工程系,台北,181頁。 [18] Wallace, J. W. and Moehle, J. P. (1989). “BIAX : A Computer Program for the Analysis of Reinforced Concrete Program for the Analysis of Reinforcced Concrete Section,” Department of Civil Engineering, University of California at Berkeley, California. [19] Northern Digital Inc. (2014). “Optotrak Certus User Guide,” Waterloo, Ontario, Canada, 177 pp. [20] CNS 560 A 2006 (2014),「中華民國國家標準-鋼筋混凝土用鋼筋」,標準檢驗局,台北。 [21] 林芳宇 (2021),「鋼筋混凝土牆剪力破壞之實驗研究」,碩士論文,國立台灣大學,土木工程學系,台北,270頁。 [22] 陳威志 (1999),「梁翼切削與弱梁柱交會區共存型梁柱接頭韌性行為研究」,碩士論文,國立台灣大學,土木工程系,台北,120頁。 [23] 洪詩晴 (2015),「高強度鋼筋於低矮剪力強往復載重行為研究」,碩士論文,國立台灣科技大學,營建工程系,台北,123頁。 [24] MacGregor, J. G., (1997). “Reinforced Concrete: Mechanics and Design. 3rd Edition,” Englewood Cliffs, NJ: Prentice Hall Inc., 939 pp. [25] 沈文成,翁樸文,莊國榮,蔡仁傑,徐侑呈,黃世建 (2020),「鋼筋混凝土柱雙J繫筋圍束工法之研究」,中華民國第15屆結構工程及第5屆地震工程研討會報告,74,8頁。 [26] ACI Committee 374, “Acceptance Criteria for Moment Frames Based on Structural Testing (ACI 374.1-05) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2005, 9 pp. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85542 | - |
| dc.description.abstract | 鋼筋混凝土柱構件為一般結構中相當重要的構件,在地震力作用下,柱構件應有一定的變形能力並且確保軸向以及側向承載能力皆能維持,因此柱構件的剪力容量要足夠並且受良好的圍束作用,而橫向鋼筋是影響耐震行為的重要存在,提供剪力強度的同時也可以在配置條件合格的前提下,提供圍束效果。 針對橫向鋼筋配置量不足,會導致剪力破壞的既有柱構件或是震後有損壞需要緊急補強的既有柱構件,本研究提出了一種可以快速安裝於既有柱體外部的「外部圍束」補強方法,除了可以提供剪力強度之外,透過對其施加橫向預力,可以提供主動圍束的效益。本研究設計四座利用外部圍束補強柱內部無配置橫向鋼筋的柱構件(高長比=4),透過不同的設計參數,包括:外部圍束橫向螺桿施加預力大小、配置間距以及試體施加軸力,觀察此種補強方法的適用性以及利用此種補強方法的柱構件的行為。 針對新建結構,承錨結構工業技師事務所的莊國榮技師開發了一種新型態的繫筋「90-180度繫筋」,利用此新工法,可以改善施工性,並且透過同時圍束繫筋兩端的閉合箍筋和縱向鋼筋,進而提高圍束效果。 本研究利用試驗方法,針對兩個試驗主題,分別於國家地震工程研究中心進行鋼筋混凝土柱之行為試驗,實驗配置為雙曲率,以觀察柱構件於真實結構中之耐震行為表現。試驗結果顯示,利用外部圍束補強的柱構件,可以提高柱構件的剪力容量,避免脆性剪力破壞的發生;而使用90-180度繫筋的試體,透過圍束效果的改善,可以使柱構件有良好的耐震行為,為未來可以廣泛於業界推廣的新工法。 | zh_TW |
| dc.description.abstract | The reinforced concrete columns are important members of structures. Under the attack of earthquake, columns should have deformability and ensure that both axial and lateral bearing capacity can be maintained. Therefore, the shear capacity of columns should be high enough, and the confinement of columns should also be under good condition. Transverse reinforcement is an important resistance that affects the seismic behavior. Transverse reinforcement can provide the confining effect and the shear strength. For existing columns that are susceptible to shear failure due to insufficient transverse reinforcement or require emergent retrofit after the earthquake, this study proposes a retrofitting measure using the 'external hoop.' External hoop can be quickly installed outside the existing column. In addition to providing shear strength, this method can provide the active confinement by applying lateral prestress to the external hoops. In this study, four columns (height-to-depth ratio of 4) without internal transverse reinforcement are retrofitted with external hoops. Test parameters include the lateral prestress level, the spacing of the external hoops and the applied axial force. Therefore, we can observe the applicability of this retrofit method and the behavior of columns using this retrofit method. For new structures, this study proposes a new type of tie '90-180 degree tie.' Using this new construction method, the constructability and the confinement effect can be improved. These two test programs were carried out in NCREE. The column specimens were tested under double curvature with high axial loads to observe the seismic behavior of columns of real structures. The test results show that columns retrofitted with external hoops can have higher shear capacity to avoid the occurrence of brittle shear failure. The columns using the 90-180 degree tie can improve the confining effect and enhance the seismic behavior. It is proved to be a new construction method that can be widely promoted in the industry in the near future. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:18:16Z (GMT). No. of bitstreams: 1 U0001-0707202209243900.pdf: 28523431 bytes, checksum: 4fbd661dbdbc92eba484b2d30ca521e6 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 iii 誌謝 v 摘要 vii Abstract viii 目錄 xi 表目錄 xvii 圖目錄 xix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容與方法 2 第二章 文獻回顧 4 2.1 以外部圍束補強之柱構件試驗 4 2.1.1 Skillen [2] 4 2.1.2 Rincon [3] 5 2.2 美國混凝土學會ACI 318-19 [1]規範 7 2.3 美國土木工程師學會ASCE/SEI規範 9 2.4 Hwang and Lee [7]軟化壓拉桿模型 9 2.4.1 Hwang et al.[11]簡算法 12 2.5 Pivot遲滯迴圈模型 13 2.5.1 模型參數α、β建議公式 14 2.5.2 Pivot遲滯模型建立流程 15 第三章 試體規劃 17 3.1 測試規劃 17 3.2 試體設計 17 3.2.1 設計目標 17 3.2.2 設計細節 18 3.2.3 試驗參數 19 3.2.4 各試體設計之檢核 22 3.3 試體施作 25 3.3.1 材料 25 3.3.2 鋼筋籠施作 26 3.3.3 組模與澆置 28 3.4 測試布置 29 3.4.1 系統簡介 30 3.4.2 載重平台與反力梁 30 3.4.3 施力系統 31 3.4.4 埋置螺桿 31 3.4.5 外部圍束 32 3.5 量測系統 34 3.5.1 內部量測系統 34 3.5.2 外部量測系統 34 3.6 測試流程 37 3.6.1 測試步驟 37 第四章 試驗結果 40 4.1 材料試驗 40 4.1.1 混凝土抗壓試驗 40 4.1.2 鋼筋與螺桿抗拉試驗 40 4.2 載重位移遲滯迴圈 41 ALR30_200_0.1 42 ALR30_200_0.7 43 ALR30_300_0.7 45 ALR40_200_0.7 46 4.3 裂縫發展與破壞模式 47 ALR30_200_0.1 47 ALR30_200_0.7 48 ALR30_300_0.7 49 ALR40_200_0.7 50 小結 51 4.4 應變計量測 51 4.5 變形量測 53 4.5.1 剪力變形計算 54 4.5.2 撓曲變形計算 55 4.5.3 基礎轉角計算 57 4.5.4 試體變形行為之討論 58 4.6 荷重計量測 58 ALR30_200_0.1 59 ALR30_200_0.7 60 ALR30_300_0.7 61 ALR40_200_0.7 63 小結 64 第五章 分析與討論 65 5.1 強度分析 65 5.1.1 撓曲強度之分析 65 5.1.2 混凝土剪力強度之分析 66 5.1.3 剪力強度之分析 68 小結 69 5.2 韌性分析 70 5.2.1 外部圍束配置量檢核 70 5.2.2 外部圍束之圍束應力檢核 71 5.3 Pivot 遲滯迴圈模型模擬結果 73 5.3.1 模擬結果 74 5.3.2 結果討論 74 5.4 實驗結果之討論 75 5.4.1 外部圍束預力大小之影響 76 5.4.2 外部圍束配置間距之影響 78 5.4.3 軸力之影響 79 5.5 設計建議 80 5.5.1 強度設計 81 5.5.2 圍束設計 84 第六章 鋼筋混凝土柱90°-180°繫筋圍束工法之研究 86 6.1 前言 86 6.2 試體規劃 86 6.2.1 圍束鋼筋量設計公式 86 6.2.2 試體設計 87 6.2.3 試體製作 89 6.2.4 測試系統 89 6.2.5 量測規劃 90 6.2.6 測試流程 90 6.3 試驗結果 91 6.3.1 材料試驗 91 6.3.2 裂縫發展 92 6.3.3 載重位移遲滯迴圈 93 6.3.4 應變計量測 94 6.3.5 變形量測 96 6.4 分析與討論 97 6.4.1 強度分析 97 6.4.2 韌性分析 98 第七章 結論與建議 100 7.1 結論與建議 100 外部圍束補強柱構件 100 使用90-180度繫筋柱構件 102 7.2 未來研究展望 103 外部圍束補強柱構件 103 使用90-180度繫筋柱構件 104 參考文獻 106 附件:符號對照表 305 | |
| dc.language.iso | zh-TW | |
| dc.subject | 圍束效益 | zh_TW |
| dc.subject | 鋼筋混凝土 | zh_TW |
| dc.subject | 外部圍束 | zh_TW |
| dc.subject | 補強工法 | zh_TW |
| dc.subject | 一般柱 | zh_TW |
| dc.subject | 新型繫筋工法 | zh_TW |
| dc.subject | new type of tie | en |
| dc.subject | reinforced concrete | en |
| dc.subject | column | en |
| dc.subject | external hoop | en |
| dc.subject | retrofit method | en |
| dc.subject | confinement effect | en |
| dc.title | 鋼筋混凝土柱耐震補強與圍束效應之實驗研究 | zh_TW |
| dc.title | Experimental Study on the Seismic Retrofitting and Confining Effect of Reinforced Concrete Columns | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊元森(Yuan-Sen Yang) | |
| dc.subject.keyword | 鋼筋混凝土,一般柱,外部圍束,補強工法,圍束效益,新型繫筋工法, | zh_TW |
| dc.subject.keyword | reinforced concrete,column,external hoop,retrofit method,confinement effect,new type of tie, | en |
| dc.relation.page | 308 | |
| dc.identifier.doi | 10.6342/NTU202201321 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-07 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0707202209243900.pdf | 27.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
