請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85538完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳光華(Kuang-hua Chen) | |
| dc.contributor.author | Tsung-Ming Hsiao | en |
| dc.contributor.author | 蕭宗銘 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:18:12Z | - |
| dc.date.copyright | 2022-07-13 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-08 | |
| dc.identifier.citation | Abrizah, A., Noorhidawati, A., & Zainab, A. N. (2015). LIS journals categorization in the journal citation report: A stated preference study. Scientometrics, 102(2), 1083-1099. doi: 10.1007/s11192-014-1492-3 Abu-Jbara, A., Ezra, J., & Radev, D. (2013). Purpose and polarity of citation: Towards NLP-based bibliometrics. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (p. 596-606). Atlanta, Georgia: Association for Computational Linguistics. Ahlgren, P., Chen, Y., Colliander, C., & van Eck, N. J. (2020). Enhancing direct citations: A comparison of relatedness measures for community detection in a large set of PubMed publications. Quantitative Science Studies, 1-20. doi: 10.1162/qss_a_00027 Ahmed, T., Johnson, B., Oppenheim, C., & Peck, C. (2004). Highly cited old papers and the reasons why they continue to be cited. Part II., The 1953 Watson and Crick article on the structure of DNA. Scientometrics, 61(2), 147-156. doi: 10.1023/B:SCIE.0000041645.60907.57 Athar, A. (2011). Sentiment analysis of citations using sentence structure-based features. In Proceedings of the ACL 2011 Student Session (p. 81-87). Portland, OR, USA: Association for Computational Linguistics. Athar, A., & Teufel, S. (2012a). Context-enhanced citation sentiment detection. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (p. 597-601). Montréal, Canada: Association for Computational Linguistics. Athar, A., & Teufel, S. (2012b). Detection of implicit citations for sentiment detection. In Proceedings of the Workshop on Detecting Structure in Scholarly Discourse (p. 18-26). Jeju Island, Korea: Association for Computational Linguistics. Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (p. 238-247). Baltimore, Maryland: Association for Computational Linguistics. doi: 10.3115/v1/P14-1023 Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3, 1137-1155. Bertin, M., Atanassova, I., Gingras, Y., & Larivière, V. (2016). The invariant distribution of references in scientific articles. Journal of the Association for Information Science and Technology, 67(1), 164-177. doi: 10.1002/asi.23367 Bonzi, S., & Snyder, H. W. (1991). Motivations for citation: A comparison of self citation and citation to others. Scientometrics, 21(2), 245-254. doi: 10.1007/BF02017571 Bornmann, L., & Daniel, H.-D. (2007). Functional use of frequently and infrequently cited articles in citing publications: A content analysis of citations to articles with low and high citation counts. European Science Editing, 34(2), 35-38. Boyack, K. W., Newman, D., Duhon, R. J., Klavans, R., Patek, M., Biberstine, J. R., ... Börner, K. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PLoS ONE, 6(3), e18029. doi: 10.1371/journal.pone.0018029 Boyack, K. W., Small, H., & Klavans, R. (2013). Improving the accuracy of co-citation clustering using full text. Journal of the American Society for Information Science and Technology, 64(9), 1759-1767. doi: 10.1002/asi.22896 Boyack, K. W., van Eck, N. J., Colavizza, G., & Waltman, L. (2018). Characterizing in-text citations in scientific articles: A large-scale analysis. Journal of Informetrics, 12(1), 59-73. doi: 10.1016/j.joi.201 Brooks, T. A. (1985). Private acts and public objects: An investigation of citer motivations. Journal of the American Society for Information Science, 36(4), 223-229. doi: 10.1002/asi.4630360402 Brooks, T. A. (1986). Evidence of complex citer motivations. Journal of the American Society for Information Science, 37(1), 34-36. doi: 10.1002/(SICI)1097-4571(198601)37:1<34::AID-ASI5>3.0.CO;2-0 Bu, Y., Wang, B., Huang, W.-B., Che, S., & Huang, Y. (2018). Using the appearance of citations in full text on author co-citation analysis. Scientometrics, 116(1), 275-289. doi: 10.1007/s11192-018-2757-z Callahan, A., Hockema, S., & Eysenbach, G. (2010). Contextual cocitation: Augmenting cocitation analysis and its applications. Journal of the American Society for Information Science and Technology, 61(6), 1130-1143. doi: 10.1002/asi.21313 Case, D. O., & Higgins, G. M. (2000). How can we investigate citation behavior? A study of reasons for citing literature in communication. Journal of the American Society for Information Science, 51(7), 635-645. doi: 10.1002/(SICI)1097-4571(2000)51:7<635::AID-ASI6>3.0.CO;2-H Catalini, C., Lacetera, N., & Oettl, A. (2015). The incidence and role of negative citations in science. Proceedings of the National Academy of Sciences, 112(45), 13823-13826. doi: 10.1073/pnas.1502280112 Chandrasekharan, S., Zaka, M., Gallo, S., Zhao, W., Korobskiy, D., Warnow, T., & Chacko, G. (2020). Finding scientific communities in citation graphs: Articles and authors. Quantitative Science Studies, 1-20. doi: 10.1162/qss_a_00095 Chubin, D. E., & Moitra, S. D. (1975). Content analysis of references: Adjunct or alternative to citation counting? Social Studies of Science, 5(4), 423-441. Clark, K. E. (1957). Indices of eminence. In America’s psychologists: A survey of a growing profession (p. 26-61). Washington, D. C.: American Psychological Association. Cole, J., & Cole, S. (1971). Measuring the quality of sociological research: Problems in the use of the ”Science Citation Index”. The American Sociologist, 6(1), 23-29. Cole, J. R., & Cole, S. (1972). The Ortega hypothesis: Citation analysis suggests that only a few scientists contribute to scientific progress. Science, 178(4059), 368-375. doi: 10.1126/science.178.4059.368 Cole, S., & Cole, J. R. (1967). Scientific output and recognition: A study in the operation of the reward system in science. American Sociological Review, 32(3), 377-390. doi: 10.2307/2091085 Cronin, B., & Pearson, S. (1990). The export of ideas from information science. Journal of Information Science, 16(6), 381-391. doi: 10.1177/016555159001600606 Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 [cs]. Ding, Y., Chowdhury, G., & Foo, S. (1999). Mapping the intellectual structure of information retrieval studies: an author co-citation analysis, 1987-1997. Journal of Information Science, 25(1), 67-78. doi: 10.1177/016555159902500107 Ding, Y., Liu, X., Guo, C., & Cronin, B. (2013). The distribution of references across texts: Some implications for citation analysis. Journal of Informetrics, 7(3), 583-592. doi: 10.1016/j.joi.2013.03.003 Ding, Y., Zhang, G., Chambers, T., Song, M., Wang, X., & Zhai, C. (2014). Content-based citation analysis: The next generation of citation analysis. Journal of the Association for Information Science and Technology, 65(9), 1820-1833. doi: 10.1002/asi.23256 Dong, C., & Schäfer, U. (2011, Nov). Ensemble-style self-training on citation classification. In Proceedings of 5th international joint conference on natural language processing (p. 623-631). Chiang Mai, Thailand: Asian Federation of Natural Language Processing. Elkiss, A., Shen, S., Fader, A., Erkan, G., States, D., & Radev, D. (2008). Blind men and elephants: What do citation summaries tell us about a research article? Journal of the American Society for Information Science and Technology, 59(1), 51-62. doi: 10.1002/asi.20707 Eom, S. B. (2003). Author co-citation analysis using custom bibliographic databases: An introduction to the SAS approach. Lewiston, N.Y: Edwin Mellen Press. Eom, S. B. (2009). Author cocitation analysis: Quantitative methods for mapping the intellectual structure of an academic discipline. Hershey, PA: Information Science Reference. Eto, M. (2007). Multivalued co-citation measure based on semantic distance between co-cited papers in a citing paper: A case study focused on enumeration of citations. Library and Information Science(58), 49-67. Eto, M. (2008). A new co-citation measure based on structures of citing papers. 情報処理学会論文誌データベース(TOD), 49(7), 1-15. Eto, M. (2012). Evaluations of context-based co-citation searching. Scientometrics, 94(2), 651-673. doi: 10.1007/s11192-012-0756-z Eto, M. (2019). Extended co-citation search: Graph-based document retrieval on a co-citation network containing citation context information. Information Processing & Management, 56(6), 102046. doi: 10.1016/j.ipm.2019.05.007 Fiala, D., Rousselot, F., & Ježek, K. (2008). PageRank for bibliographic networks. Scientometrics, 76(1), 135-158. doi: 10.1007/s11192-007-1908-4 Frost, C. O. (1979). The use of citations in literary research: A preliminary classification of citation functions. The Library Quarterly: Information, Community, Policy, 49(4), 399-414. Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through association of ideas. Science, 122(3159), 108-111. doi: 10.1126/science.122.3159.108 Garfield, E. (1957). Breaking the subject index barrier - a citation index for chemical patents. Journal of the Patent Office Society, 39(8), 583-595. Garfield, E. (1964). ”Science Citation Index”–A new dimension in indexing. Science, 144(3619), 649-654. doi: 10.1126/science.144.3619.649 Garfield, E. (1965). Can citation indexing be automated? In Statistical Association Methods for Mechanized Documentation, Symposium Proceedings (p. 189-192). Washington: National Bureau of Standards Miscellaneous Publication. Garfield, E. (1970). Citation indexing for studying science. Nature, 227(5259), 669-671. doi: 10.1038/227669a0 Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178(4060), 471-479. Garfield, E. (1977a). 250 most cited primary authors, 1961-1975 .1. how names were selected. Current Contents(49), 5-15. Garfield, E. (1977b). 250 most-cited primary authors, 1961-1975 .2. correlation between citedness, Nobel-Prizes, and academy memberships. Current Contents(50), 5-15. Garfield, E. (1977c). 250 most-cited primary authors, 1961-1975 .3. each authors most-cited publication. Current Contents(51), 5-20. Ghosh, S., Das, D., & Chakraborty, T. (2018). Determining sentiment in citation text and analyzing its impact on the proposed ranking index. In A. Gelbukh (Ed.), Computational linguistics and intelligent text processing (p. 292-306). Cham: Springer International Publishing. Gilbert, G. N. (1977). Referencing as persuasion. Social Studies of Science, 7(1), 113-122. doi: 10.1177/030631277700700112 Gipp, B., & Beel, J. (2009). Citation proximity analysis (CPA)–A new approach for identifying related work based on co-citation analysis. In Proceedings of ISSI 2009. Giuffrida, C., Abramo, G., & D’Angelo, C. A. (2019). Are all citations worth the same? Valuing citations by the value of the citing items. Journal of Informetrics, 13(2), 500-514. doi: 10.1016/j.joi.2019.02.008 Goodarzi, M., Mahmoudi, M. T., & Zamani, R. (2014). A framework for sentiment analysis on schema-based research content via lexica analysis. In 7’th International Symposium on Telecommunications (IST’2014) (p. 405-411). Hargens, L. L. (1986). Migration patterns of U. S. Ph. D. s among disciplines and specialties. Scientometrics, 9(3), 145-164. doi: 10.1007/BF02017238 Harwood, N. (2008). Citers’ use of citees’ names: Findings from a qualitative interview-based study. Journal of the American Society for Information Science and Technology, 59(6), 1007-1011. doi: https://doi.org/10.1002/asi.20789 Herlach, G. (1978). Can retrieval of information from citation indexes be simplified? Multiple mention of a reference as a characteristic of the link between cited and citing article. Journal of the American Society for Information Science, 29(6), 308-310. doi: 10.1002/asi.4630290608 Hernández-Álvarez, M., Gomezsoriano, J., & Martínez-Barco, P. (2017). Citation function, polarity and influence classification. Natural Language Engineering, 23(4), 561-588. Hooten, P. A. (1991). Frequency and functional use of cited documents in information science. Journal of the American Society for Information Science, 42(6), 397-404. doi: 10.1002/(SICI)1097-4571(199107)42:6<397::AID-ASI2>3.0.CO;2-N Hou, W.-R., Li, M., & Niu, D.-K. (2011). Counting citations in texts rather than reference lists to improve the accuracy of assessing scientific contribution. BioEssays, 33(10), 724-727. doi: https://doi.org/10.1002/bies.201100067 Hsiao, T.-M., & Chen, K.-H. (2017). Yet another method for author co-citation analysis: A new approach based on paragraph similarity. Proceedings of the Association for Information Science and Technology, 54(1), 170-178. doi: 10.1002/pra2.2017.14505401019 Hsiao, T.-M., & Chen, K.-H. (2018). How authors cite references? A study of characteristics of in-text citations. Proceedings of the Association for Information Science and Technology, 55(1), 179-187. doi: 10.1002/pra2.2018.14505501020 Hsiao, T.-M., & Chen, K.-H. (2019). Word bibliographic coupling: Another way to map science field and identify core references. Proceedings of the Association for Information Science and Technology, 56(1), 107-116. doi: 10.1002/pra2.10 Hsiao, T.-M., & Chen, K.-H. (2020). The dynamics of research subfields for library and information science: An investigation based on word bibliographic coupling. Scientometrics, 125(1), 717-737. doi: 10.1007/s11192-020-03645-9 Hu, Z., Lin, G., Sun, T., & Hou, H. (2017). Understanding multiply mentioned references. Journal of Informetrics, 11(4), 948-958. doi: https://doi.org/10.1016/j.joi.2017.08.004 Huang, M., Shaw, W.-C., & Lin, C.-S. (2015). One category, two communities: Subfield differences in “information science and library science” in journal citation reports. Scientometrics, 119(2), 1059-1079. doi: 10.1007/s11192-019-03074-3 Huang, W., Wang, B., Bu, Y., & Min, C. (2018). A study on scientometrics of co-citation analysis of keywords. Information and Documentation Services(2), 37-42. Hurt, C. (1987). Conceptual citation differences in science, technology, and social sciences literature. Information Processing & Management, 23(1), 1-6. doi: 10.1016/0306-4573(87)90033-1 Jeong, Y. K., Song, M., & Ding, Y. (2014). Content-based author co-citation analysis. Journal of Informetrics, 8(1), 197-211. doi: 10.1016/j.joi.2013.12.001 Kaplan, N. (1965). The norms of citation behavior: Prolegomena to the footnote. American Documentation, 16(3), 179-184. doi: 10.1002/asi.5090160305 Kessler, M. (1963a). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10-25. doi: 10.1002/asi.5090140103 Kessler, M. (1963b). An experimental study of bibliographic coupling between technical papers. IEEE Transactions on Information Theory, 9(1), 49-51. doi: 10.1109/TIT.1963.1057800 Kim, H. J., Jeong, Y. K., & Song, M. (2016). Content- and proximity-based author co-citation analysis using citation sentences. Journal of Informetrics, 10(4), 954-966. doi: https://doi.org/10.1016/j.joi.2016.07.007 Kim, I. C., & Thoma, G. R. (2015). Automated classification of author’s sentiments in citation using machine learning techniques: A preliminary study. In 2015 IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB) (p. 1-7). doi: 10.1109/CIBCB.2015.7300319 Krampen, G., Becker, R., Wahner, U., & Montada, L. (2007). On the validity of citation counting in science evaluation: Content analyses of references and citations in psychological publications. Scientometrics, 71(2), 191-202. doi: 10.1007/s11192-007-1659-2 Lin, C.-S. (2018). An analysis of citation functions in the humanities and social sciences research from the perspective of problematic citation analysis assumptions. Scientometrics, 116(2), 797-813. Lipetz, B.-A. (1965). Improvement of the selectivity of citation indexes to science literature through inclusion of citation relationship indicators. American Documentation, 16(2), 81-90. doi: 10.1002/asi.5090160207 Liu, R.-L. (2017). A new bibliographic coupling measure with descriptive capability. Scientometrics, 110(2), 915-935. doi: 10.1007/s11192-016-2196-7 Liu, R.-L., & Hsu, C.-K. (2018). Issue-based clustering of scholarly articles. Applied Sciences, 8(12), 2591. doi: 10.3390/app8122591 Liu, S., & Chen, C. (2011a). The effects of co-citation proximity on co-citation analysis. Proceedings of ISSI 2011 - The 13th International Conferenceon Scientometrics and Informetrics, 474-484. Liu, S., & Chen, C. (2011b). The proximity of co-citation. Scientometrics, 91(2), 495-511. doi: 10.1007/s11192-011-0575-7 Ma, R., Dai, Q., Ni, C., & Li, X. (2009). An author co-citation analysis of information science in China with Chinese Google Scholar search engine, 2004–2006. Scientometrics, 81(1), 33-46. doi: 10.1007/s11192-009-2063-x MacRoberts, M. H., & MacRoberts, B. R. (1986). Quantitative measures of communication in science: A study of the formal level. Social Studies of Science, 16(1), 151-172. doi: 10.1177/030631286016001008 MacRoberts, M. H., & MacRoberts, B. R. (1987). Another test of the normative theory of citing. Journal of the American Society for Information Science, 38(4), 305-306. doi: 10.1002/(SICI)1097-4571(198707)38:4<305::AID-ASI11>3.0.CO;2-I MacRoberts, M. H., & MacRoberts, B. R. (1988). Author motivation for not citing influences: A methodological note. Journal of the American Society for Information Science, 39(6), 432-433. doi: 10.1002/(SICI)1097-4571(198811)39:6<432::AID-ASI8>3.0.CO;2-2 MacRoberts, M. H., & MacRoberts, B. R. (1996). Problems of citation analysis. Scientometrics, 36(3), 435-444. doi: 10.1007/BF02129604 MacRoberts, M. H., & MacRoberts, B. R. (2018). The mismeasure of science: Citation analysis. Journal of the Association for Information Science and Technology, 69(3), 474-482. doi: 10.1002/asi.23970 Marshakove, I. (1973). System of document connections based on references. Nauchno-Tekhnicheskaya Informatsiya, 2(6), 3-8. McCain, K. W. (1990). Mapping authors in intellectual space: A technical overview. Journal of the American Society for Information Science, 41(6), 433-443. doi: 10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q McCain, K. W., & Turner, K. (1989). Citation context analysis and aging patterns of journal articles in molecular genetics. Scientometrics, 17(1-2), 127-163. doi: 10.1007/BF02017729 Merton, R. K. (1973). The normative structure of science. In N. W. Storer (Ed.), The sociology of science: Theoretical and empirical investigations (p. 267-278). Chicago: University of Chicago Press. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv:1301.3781 [cs]. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. arXiv:1310.4546 [cs, stat]. Milard, B. (2014). The social circles behind scientific references: Relationships between citing and cited authors in chemistry publications. Journal of the Association for Information Science and Technology, 65(12), 2459-2468. doi: 10.1002/asi.23149 Miller, G. A., & Charles, W. G. (1991). Contextual correlates of semantic similarity. Language and Cognitive Processes, 6(1), 1-28. doi: 10.1080/01690969108406936 Moravcsik, M. J., & Murugesan, P. (1975). Some results on the function and quality of citations. Social Studies of Science, 5(1), 86-92. Moya-Anegón, F., Vargas-Quesada, B., Victor, Herrero-Solana, Chinchilla-Rodríguez, Z., Corera-Álvarez, E., & Munoz-Fernández, F. J. (2004). A new technique for building maps of large scientific domains based on the cocitation of classes and categories. Scientometrics, 61(1), 129-145. doi: 10.1023/B:SCIE.0000037368.31217.34 Murugesan, P., & Moravcsik, M. J. (1978). Variation of the nature of citation measures with journals and scientific specialties. Journal of the American Society for Information Science, 29(3), 141-147. doi: https://doi.org/10.1002/asi.4630290307 Nakov, P. I., Schwartz, A. S., & Hearst, M. A. (2004). Citances: Citation sentences for semantic analysis of bioscience text. In Proceedings of the SIGIR’04 workshop on Search and Discovery in Bioinformatics. Narin, F., Carpenter, M., & Berlt, N. C. (1972). Interrelationships of scientific journals. Journal of the American Society for Information Science, 23(5), 323-331. doi: 10.1002/asi.4630230508 Nassiri, I., Masoudi-Nejad, A., Jalili, M., & Moeini, A. (2013). Normalized Similarity Index: An adjusted index to prioritize article citations. Journal of Informetrics, 7(1), 91-98. doi: 10.1016/j.joi.2012.08.006 Newman, M. E. J. (2004, Jun). Fast algorithm for detecting community structure in networks. Phys. Rev. E, 69, 066133. doi: 10.1103/PhysRevE.69.066133 Nicolaisen, J. (2007). Citation analysis. Annual Review of Information Science and Technology, 41(1), 609-641. doi: 10.1002/aris.2007.1440410120 O’Connor, J. (1982). Citing statements: Computer recognition and use to improve retrieval. Information Processing & Management, 18(3), 125-131. doi: 10.1016/0306-4573(82)90036-X Oppenheim, C., & Renn, S. P. (1978). Highly cited old papers and the reasons why they continue to be cited. Journal of the American Society for Information Science, 29(5), 225-231. doi: 10.1002/asi.4630290504 Peritz, B. C. (1983). A classification of citation roles for the social sciences and related fields. Scientometrics, 5(5), 303-312. doi: 10.1007/BF02147226 Persson, O. (2010a). Identifying research themes with weighted direct citation links. Journal of Informetrics, 4(3), 415-422. doi: 10.1016/j.joi.2010.03.006 Persson, O. (2010b). Identifying research themes with weighted direct citation links. Journal of Informetrics, 4(3), 415-422. doi: https://doi.org/10.1016/j.joi.2010.03.006 Price, D., & Gursey, S. (1976). Studies in scientometrics .2. relation between source author and cited author populations. International Forum on Information and Documentation, 1(3), 19-22. Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510-515. doi: 10.1126/science.149.3683.510 Priem, J., Taraboerlli, D., Groth, P., & Neylon, C. (2015). Altmetrics: A manifesto–altmetrics.org. Retrieved from http://altmetrics.org/manifesto/ Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embedding using siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Saitoh, K. (2019). Deep learning from scratch 2. Taipei: GOTOP Information Inc. Shadish, W. R., Tolliver, D., Gray, M., & Sen Gupta, S. K. (1995). Author judgements about works they cite: Three studies from psychology journals. Social Studies of Science, 25(3), 477-498. doi: 10.1177/030631295025003003 Sher, I. H., & Garfield, E. (1983). New tools for improving and evaluating the effectiveness of research. Essays of an information Scientist, 6, 503-513. Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2009). Comparative study on methods of detecting research fronts using different types of citation. Journal of the American Society for Information Science and Technology, 60(3), 571-580. doi: 10.1002/asi.20994 Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265-269. doi: 10.1002/asi.4630240406 Small, H. (1997). Update on science mapping: Creating large document spaces. Scientometrics, 38(2), 275-293. doi: https://doi.org/10.1007/BF02457414 Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799-813. doi: https://doi.org/10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G Small, H. (2004). On the shoulders of Robert Merton: Towards a normative theory of citation. Scientometrics, 60(1), 71-79. doi: 10.1023/B:SCIE.0000027310.68393.bc Small, H., & Griffith, B. C. (1974). The structure of scientific literatures I: Identifying and graphing specialties. Science Studies, 4(1), 17-40. doi: 10.1177/030631277400400102 Small, H., Tseng, H., & Patek, M. (2017). Discovering discoveries: Identifying biomedical discoveries using citation contexts. Journal of Informetrics, 11(1), 46-62. doi: 10.1016/j.joi.2016.11.001 Small, H. G. (1978). Cited documents as concept symbols. Social Studies of Science, 8(3), 327-340. doi: 10.1177/030631277800800305 Smith, L. C. (1981). Citation analysis. Library Trends, 30(1), 83-106. Spiegel-Rösing, I. (1977). Science studies: Bibliometric and content analysis. Social Studies of Science. doi: 10.1177/030631277700700111 Tabatabaei, N. (2013). Contribution of information science to other disciplines as reflected in citation contexts of highly cited JASIST papers (Unpublished doctoral dissertation). McGill University, Montreal. Tahamtan, I., & Bornmann, L. (2018). Core elements in the process of citing publications: Conceptual overview of the literature. Journal of Informetrics, 12(1), 203-216. doi: 10.1016/j.joi.2018.01.002 Tang, R., & Safer, M. A. (2008). Author-rated importance of cited references in biology and psychology publications. Journal of Documentation, 64(2), 246-272. doi: 10.1108/00220410810858047 Teufel, S., Siddharthan, A., & Tidhar, D. (2006a). An annotation scheme for citation function. In Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue (p. 80-87). Sydney, Australia: Association for Computational Linguistics. Teufel, S., Siddharthan, A., & Tidhar, D. (2006b). Automatic classification of citation function. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (p. 103-110). Stroudsburg, PA, USA: Association for Computational Linguistics. Thornley, C., Watkinson, A., Nicholas, D., Volentine, R., Mahmuei, H., Herman, E., ... Tenopir, C. (2015). The role of trust and authority in the citation behaviour of researchers. Information Research, 20(3), 1-21. Tsay, M.-Y., Xu, H., & Wu, C.-W. (2003). Author co-citation analysis of semiconductor literature. Scientometrics, 58(3), 529-545. doi: 10.1023/B:SCIE.0000006878.83104.61 Tseng, Y.-H. (2020). The feasibility of automated topic analysis: An empirical evaluation of deep learning techniques applied to skew-distributed chinese text classification. Journal of Educational Media and Library Sciences, 57(1), 121-144. Urata, H. (1990). Information flows among academic disciplines in Japan. Scientometrics, 18(3), 309-319. doi: 10.1007/BF02017767 Valenzuela, M., Ha, V., & Etzioni, O. (2015). Identifying meaningful citations. In C. Caragea et al. (Eds.), Scholarly big data: AI perspectives, challenges, and ideas, papers from the 2015 AAAI workshop (pp. 21–26). Menlo Park, CA: AAAI Press. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... Polosukhin, I. (2017). Attention is all you need. arXiv:1706.03762 [cs]. Voos, H., & Dagaev, K. S. (1976). Are all citations equal? Or, did we op. cit. your idem?. The Journal of Academic Librarianship, 1(6), 19-21. Waltman, L., Boyack, K. W., Colavizza, G., & van Eck, N. J. (2019). A principled methodology for comparing relatedness measures for clustering publications. arXiv:1901.06815 [cs]. Wan, X., & Liu, F. (2014). Are all literature citations equally important? Automatic citation strength estimation and its applications. Journal of the Association for Information Science and Technology, 65(9), 1929-1938. doi: 10.1002/asi.23083 Wang, P., & White, M. D. (1999). A cognitive model of document use during a research project. Study II. Decisions at the reading and citing stages. Journal of the American Society for Information Science, 50(2), 98-114. doi: 10.1002/(SICI)1097-4571(1999)50:2<98::AID-ASI2>3.0.CO;2-L White, H. D. (2009). Citation analysis. In Encyclopedia of Library and Information Sciences, Third Edition (p. 1012-1026). Taylor & Francis. White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163-171. doi: 10.1002/asi.4630320302 White, H. D., & Griffith, B. C. (1982). Authors as markers of intellectual space: co-citation in studies of science, technology and society. Journal of Documentation, 38(4), 255-272. doi: 10.1108/eb026731 White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327-355. doi: 10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-4 White, M., & Wang, P. (1997a). Document selection and relevance assessments during a research project (CLIS Technical Report No. 97-02). College Park, MD: University of Maryland. White, M., & Wang, P. (1997b). A qualitative study of citing behavior: Contributions, criteria, and metalevel documentation concerns. Library Quarterly(67), 122-154. Xu, J., Zhang, Y., Wu, Y., Wang, J., Dong, X., & Xu, H. (2015). Citation sentiment analysis in clinical trial papers. AMIA Annual Symposium Proceedings, 2015, 1334-1341. Xu, L., Ding, K., & Lin, Y. (2022). Do negative citations reduce the impact of cited papers? Scientometrics, 127(2), 1161-1186. doi: 10.1007/s11192-021-04214-4 Yaghtin, M., Sotudeh, H., Mirzabeigi, M., Fakhrahmad, S. M., & Mohammadi, M. (2019). In quest of new document relations: evaluating co-opinion relations between co-citations and its impact on Information retrieval effectiveness. Scientometrics, 119(2), 987-1008. doi: 10.1007/s11192-019-03058-3 Yan, E., & Ding, Y. (2012). Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other. Journal of the American Society for Information Science and Technology, 63(7), 1313-1326. doi: 10.1002/asi.22680 Zhao, D., Cappello, A., & Johnston, L. (2017). Functions of uni- and multi-citations: Implications for weighted citation analysis. Journal of Data and Information Science, 2(1), 51-69. doi: doi:10.1515/jdis-2017-0003 Zhao, D., & Strotmann, A. (2008a). Author bibliographic coupling: Another approach to citation-based author knowledge network analysis. Proceedings of the American Society for Information Science and Technology, 45(1), 1-10. doi: 10.1002/meet.2008.1450450292 Zhao, D., & Strotmann, A. (2008b). Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070-2086. doi: 10.1002/asi.20910 Zhao, D., & Strotmann, A. (2011). Intellectual structure of stem cell research: a comprehensive author co-citation analysis of a highly collaborative and multidisciplinary field. Scientometrics, 87(1), 115-131. doi: 10.1007/s11192-010-0317-2 Zhao, D., & Strotmann, A. (2014). The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis. Journal of the Association for Information Science and Technology, 65(5), 995-1006. doi: 10.1002/asi.23027 Zhu, X., Turney, P., Lemire, D., & Vellino, A. (2015). Measuring academic influence: Not all citations are equal. Journal of the Association for Information Science and Technology, 66(2), 408-427. doi: https://doi.org/10.1002/asi.23179 Zingg, C., Nanumyan, V., & Schweitzer, F. (2020). Citations driven by social connections? A multi-layer representation of coauthorship networks. Quantitative Science Studies, 1-17. doi: 10.1162/qss_a_00092 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85538 | - |
| dc.description.abstract | 本研究分析三種被廣泛應用的引用關係,包含直接引用、書目耦合、共被引。以瞭解於不同模型衡量引用關係後,其所得分析結果之異同。研究分析的模型,除實務應用之經典模型與本研究設計之兩種語意模型外,另納入相關研究提出之頻率模型、距離模型、辭彙模型,總計六種。語意模型的部分,本研究使用基於Wordnet與BERT設計之自然語言處理開源工具,以Awais(2011)資料集進行訓練後,判斷引用句的情感傾向與語意相似度。一方面,經由判斷引用句的情感傾向,分類直接引用關係;另一方面,則衡量引用句間的語意相似度,修正書目耦合與共被引的關係強度。頻率模型部分,則依文內引用頻率,調整直接引用、書目耦合、共被引之引用強度。辭彙模型上,則依引用句所用辭彙的相似程度,調整書目耦合、共被引之引用強度。距離模型則依文內引用的對應位置,調整共被引強度。 對於各模型衡量之結果,則比較其網路結構、分群結果、關鍵節點與強關係之情形,以確認在引用分析結果上的表現情形。本研究將各模型形成之引用網路,區別為整體網路與核心網路。對這兩類網路,比較各模型的節點數、關係數、網路密度、連結元件數(number of connected components)、傳導性(transitivity)、平均群聚係數(average clustering coefficience)上的差異。對分群結果的比較上,本研究以Modularity分群演算法對各模型核心網路之節點進行分群。於初步檢視分群數、孤立節點(singleton)數、群規模後,再以Adjusted Rand Index確認分群結果間的相似程度。接著,則以文字群聚度(textual coherence),量化衡量分群結果的表現。並以各群文獻標題中之高頻詞彙,確認各群的主題後,比較各模型間主題分析結果。最後,於節點與關係的部分,則檢視各模型中,來源文章在直接引用網路中的被引用的傾向與次數,以及書目耦合、共被引網路中的強關係書目組。經由前述方式分析不同模型在衡量各類引用關係的表現,本研究對在目前引用分析中,應用語意分析技術之優缺,加以綜整分析。 基於上述研究設計,本研究選定圖書資訊學領域之十五種期刊,以其中所刊登之10,088篇文章做為研究對象。由網路層級的分析結果來看,在直接引用關係上,判斷情感傾向並移除負面引用之後,對於整體網路與核心網路的結構影響並不明顯。而在書目耦合網路中,對關係強度進行調整後,核心網路的結構上有較大差異,但在整體網路結構上則無明顯變化。於共被引網路時,則不論在整體網路或核心網路上,各網路指標均指出有明顯差異。 由核心網路分群結果的相似程度來看,直接引用的部分,僅有經典模型的結果明顯不同,而頻率模型、Wordnet模型、BERT模型三者的分群結果則十分相似。書目耦合的部分,各模型的結果略有差距,但除了詞彙模型的較為明顯,其它模型間的差距並不明顯。在共被引的部分,各指標則指出,多數模型相互存在明顯差異。而文字群聚度、主題分析結果則顯示,語意模型應用在共被引時,文字群聚度較高,則具發掘研究領域新議題的能力。但當應用於直接引用、書目耦合時,除了沒有明顯改善文字群聚度外,主題分析的結果亦十分類似。 在節點與關係層次上,當來源文獻有被正面引用過時,其被直接引用數更可能高於未被正面引用過的文獻。此一傾向,在多個語意模型均判定此來源文獻有被正面引用或考慮進累積引用所需時間之後,會更為明顯。但在書目耦合與共被引關係的部分,則未觀察到使用語意分析的模型會提供更為優秀的表現。 綜觀而言,目前設計之語意分析模型的影響,依引用關係類型、分析層次的差異,有著不同影響。以網路層次而言,排除負面引用對於網路結果的影響甚微,這可能代表目前語意分析模型在負面引用偵測上仍力有未逮,或負面引用影響不如先前學者預期的明顯。而於書目耦合、共被引上,則對於核心網路結構均產生明顯影響。分群結果的比較,則顯示目前語意分析模型僅應用於共被引時有得到較明顯的改善。除了在文字群聚度上有較佳表現外,主題分析的結果也較能反映出領域變動情形。但應用於直接引用、書目耦合上時,則未有明顯改善。而由節點與關係層次的分析來看,應用語意分析模型區別引用句的情感傾向,有助於判斷被引用文獻的影響力。但使用語意相似度修正書目耦合與共被引時,則未觀察有進一步的改善。 | zh_TW |
| dc.description.abstract | The present study investigates three kinds of citation relationships, including direct citation (DC), bibliographic coupling (BC), and co-citation (CC), to understand the effects of considering semantic meanings when conducting citation analysis. Six models were included in this study. The classical model is the general way to implement citation analysis. The frequency model adjusts the strength of DC, BC, and CC by the number of citations. The lexical model revises the BC and CC strength based on the lexical similarity of citances. The distance model weights CC strength by considering the relative locations between citations. Another two models, Wordnet and BERT models, are based on the open-source tools and trained by the corpus provided by Awais (2011) to decide the citations' sentimental polarity and measure the semantic similarity between two citations. The sentimental polarity and semantic similarity were used to classify DC and weight BC/CC, respectively. To evaluate these models, the present study compares their results at three levels: network, cluster, and node/relationship. At the network level, six indicators were used, including number of nodes, number of edges, network density, number of connected components, transitivity, and average clustering coefficient. At the cluster level, the clusters resulting from the clustering algorithm based on modularity were first examined by number of clusters, number of singletons, and cluster size. Then, Adjusted Rand Index was used to measure the similarity between the clustering results. This study further evaluated the quality of clustering results based on textual coherence and subject analysis. At node/relationship level, this research examined the correlation between a reference's sentimental types and its DC counts. Whether the citation strength will be higher if two works' topics are highly similar was also investigated. The present study chose the 10,088 articles published in the fifteen journals of Library and Information Science (LIS) as the research subjects. The examination of network level showed that removing negative citations does not significantly affect the DC citation network. As to BC/CC citation network, weighting strength by the semantic meaning reveals different whole networks, especially the core networks. Comparing the clustering results of DC core networks indicated that the results of the frequency, Wordnet, and BERT models were highly similar. Only that of the classical model shows a different pattern. As to the BC core networks, no noticeable differences existed between the results of these models except the lexical model. Examining the clustering results of CC core networks revealed the existence of evident divergence. Textual coherence and subject analysis supports that the clustering results of CC core network based on the Wordnet/BERT models have higher textual coherence. The subjects identified from the clustering results of the two models better reflected the development of LIS in this period. The examination at node/relationship level revealed that the DC is probably higher if the source article has been cited positively. The tendency will be more evident when using multiple semantic models or considering the time effects. However, applying semantic models in weighting BC and CC did not improve their results. Overall, the effect of the semantic models proposed in this study varies by the type of citation relationship and at which level researchers analyze the result. At the network level, removing negative citations affects slightly. It shows that the current semantic tools may have difficult in identifying negative citations or that the effects of negative citations are not as critical as the arguments of the previous studies. As to BC/CC, however, applying semantic models does significantly affect. The examination at the cluster level indicates that applying semantic models in CC improves its textual coherence and better reflects the evolution in the domain. Yet, no similar effect is found when using semantic models in DC and BC. Additionally, classifying citations by their sentimental polarity helps identify the influence of the cited works. At the node/relationship level, however, adjusting BC and CC based on the semantic similarity may not improve the result. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:18:12Z (GMT). No. of bitstreams: 1 U0001-0707202212050200.pdf: 4773326 bytes, checksum: 07c91277609ee1c030d290d37631ea52 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 1 Introduction 1 1.1 Citation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Citation relationship and citation entities . . . . . . . . . . . . 4 1.1.2 Differentiate citation relationships . . . . . . . . . . . . . . . . 5 1.2 Semantic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Definition of Terminologies . . . . . . . . . . . . . . . . . . . . . . . 11 2 Literature Review 19 2.1 Citation Relationships and Citation Entities . . . . . . . . . . . . . . . 21 2.2 Citation Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Citation theory . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.2 Citation motivation . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.3 Citation selection . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 Citation function . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.5 Citation feature . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3 Different Weighting Schemes . . . . . . . . . . . . . . . . . . . . . . . 39 2.3.1 Weighting direct citation . . . . . . . . . . . . . . . . . . . . . 39 2.3.2 Weighting bibliographic coupling and co-citation . . . . . . . . 43 2.4 NLP, Sentiment Analysis, and Citation Analysis . . . . . . . . . . . . . 50 3 Research Design 57 3.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.1 Defining research domain and download research data . . . . . 59 3.1.2 Extracting data . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.1.3 Mapping WoS records and HTML full-texts . . . . . . . . . . . 62 3.1.4 NLP and other preparing procedures . . . . . . . . . . . . . . . 63 3.2 Citation Relationships Measurement . . . . . . . . . . . . . . . . . . . 65 3.2.1 Classical model . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.2 Frequency model . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2.3 Distance model . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.2.4 Lexical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.5 Semantic model . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3 Citation Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . 73 3.3.1 Network level . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.3.2 Cluster level . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3.3 Node Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4 Results and Discussions 81 4.1 Brief Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.1.1 Articles, references, and in-text citations . . . . . . . . . . . . . 82 4.1.2 Citation relationships . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 The Results of Network Analysis . . . . . . . . . . . . . . . . . . . . . 90 4.2.1 Direct citation . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2.2 Bibliographic coupling . . . . . . . . . . . . . . . . . . . . . . 95 4.2.3 Co-citation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.3 The Results of Clusters Analysis . . . . . . . . . . . . . . . . . . . . . 103 4.3.1 The number of clusters and their size . . . . . . . . . . . . . . 103 4.3.2 The similarity between the clustering results . . . . . . . . . . . 105 4.3.3 The textual coherence . . . . . . . . . . . . . . . . . . . . . . 108 4.3.4 The investigations of the largest clusters . . . . . . . . . . . . . 112 4.4 The Results of Nodes/Relationships Analysis . . . . . . . . . . . . . . 119 4.4.1 Citation counts and sentimental polarity . . . . . . . . . . . . . 119 4.4.2 Topic similarity of the BCS pairs . . . . . . . . . . . . . . . . . 123 4.4.3 Topic similarity of the CCS pairs . . . . . . . . . . . . . . . . . 124 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.5.1 Applying semantic analysis in DC . . . . . . . . . . . . . . . . 125 4.5.2 Applying semantic analysis in BC . . . . . . . . . . . . . . . . 127 4.5.3 Applying semantic analysis in CC . . . . . . . . . . . . . . . . 129 4.5.4 Further discussion of the advantages and weaknesses . . . . . . 131 5 Conclusion 141 5.1 Research Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.1.1 The conclusion of network analysis . . . . . . . . . . . . . . . 142 5.1.2 The conclusion of cluster analysis . . . . . . . . . . . . . . . . 144 5.1.3 The conclusion of node/relationship analysis . . . . . . . . . . 146 5.2 Research Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.3 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . . 150 References 155 Appendix A: The Size of Top 5 Clusters in the DC Core Networks 173 Appendix B: The Size of Top 10 Clusters in the BC Core Networks 175 Appendix C: The Size of Top 15 Clusters in the CC Core Network 179 | |
| dc.language.iso | en | |
| dc.subject | 共被引 | zh_TW |
| dc.subject | 語意分析 | zh_TW |
| dc.subject | 引用分析 | zh_TW |
| dc.subject | 直接引用 | zh_TW |
| dc.subject | 書目耦合 | zh_TW |
| dc.subject | Semantic Analysis | en |
| dc.subject | Citation Analysis | en |
| dc.subject | Direct Citation | en |
| dc.subject | Bibliographic Coupling | en |
| dc.subject | Co-Citation | en |
| dc.title | 應用語意分析於衡量文獻引用關係之探討 | zh_TW |
| dc.title | A Study on Applying Semantic Analysis in Measuring Citation Relationships | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-4359-3136 | |
| dc.contributor.oralexamcommittee | 唐牧群(Muh-Chyun Tang),羅思嘉(Szu-Chia Lo),曾元顯(Yuen-Hsien Tseng),林雯瑤(Wen-Yau Cathy Lin) | |
| dc.contributor.oralexamcommittee-orcid | ,曾元顯(0000-0001-8904-7902) | |
| dc.subject.keyword | 語意分析,引用分析,直接引用,書目耦合,共被引, | zh_TW |
| dc.subject.keyword | Semantic Analysis,Citation Analysis,Direct Citation,Bibliographic Coupling,Co-Citation, | en |
| dc.relation.page | 181 | |
| dc.identifier.doi | 10.6342/NTU202201326 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-08 | |
| dc.contributor.author-college | 文學院 | zh_TW |
| dc.contributor.author-dept | 圖書資訊學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-07-07 | - |
| 顯示於系所單位: | 圖書資訊學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0707202212050200.pdf | 4.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
