請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8550完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王奕翔(I-Hsiang Wang) | |
| dc.contributor.author | Heng Hsu | en |
| dc.contributor.author | 徐亨 | zh_TW |
| dc.date.accessioned | 2021-05-20T00:57:15Z | - |
| dc.date.available | 2021-03-11 | |
| dc.date.available | 2021-05-20T00:57:15Z | - |
| dc.date.copyright | 2021-03-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-05 | |
| dc.identifier.citation | [1] Henning U Voss. Anticipating chaotic synchronization. Physical review E, 61(5): 5115, 2000. [2] S Tang and JM Liu. Experimental verification of anticipated and retarded synchronization in chaotic semiconductor lasers. Physical review letters, 90(19):194101, 2003. [3] Michael J Berry, Iman H Brivanlou, Thomas A Jordan, and Markus Meister. Anticipation of moving stimuli by the retina. Nature, 398(6725):334–338, 1999. [4] Romi Nijhawan and Si Wu. Compensating time delays with neural predictions: are predictions sensory or motor? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1891):1063–1078, 2009. [5] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet. Novel type of phase transition in a system of self-driven particles. Physical review letters, 75(6):1226, 1995. [6] Yael Katz, Kolbjørn Tunstrøm, Christos C Ioannou, Cristián Huepe, and Iain D Couzin. Inferring the structure and dynamics of interactions in schooling fish. Proceedings of the National Academy of Sciences, 108(46):18720–18725, 2011. [7] Feng Xiao and Long Wang. State consensus for multi-agent systems with switching topologies and time-varying delays. International Journal of Control, 79(10):1277-1284, 2006. [8] Gregory Dudek, Michael RM Jenkin, Evangelos Milios, and David Wilkes. A taxonomy for multi-agent robotics. Autonomous Robots, 3(4):375–397, 1996. [9] Alcherio Martinoli, Kjerstin Easton, and William Agassounon. Modeling swarm robotic systems: A case study in collaborative distributed manipulation. The International Journal of Robotics Research, 23(4-5):415–436, 2004. [10] Xin-She Yang. A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010), pages 65–74. Springer, 2010. [11] A Rezaee Jordehi. Chaotic bat swarm optimisation (cbso). Applied Soft Computing, 26:523–530, 2015. [12] George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, and Stephan Munch. Detecting causality in complex ecosystems. science, 338(6106):496–500, 2012. [13] George Sugihara and Robert M May. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344(6268):734-741, 1990. [14] Paul A Dixon, Maria J Milicich, and George Sugihara. Episodic fluctuations in larval supply. Science, 283(5407):1528–1530, 1999. [15] John Aldrich et al. Correlations genuine and spurious in pearson and yule. Statistical science, 10(4):364–376, 1995. [16] Norbert Wiener. The theory of prediction. In Modern Mathematics for En- gineers, volume 58, pages 323–329. McGraw-Hill Book Company, New York, 1956. [17] Zsigmond Benkő, Adám Zlatniczki, Marcell Stippinger, Dániel Fabó, András Sólyom, Loránd Erőss, András Telcs, and Zoltán Somogyvári. Complete inference of causal relations between dynamical systems. arXiv preprint arXiv:1808.10806, 2018. [18] Clive WJ Granger. Investigating causal relations by econometric models and crossspectral methods. Econometrica: journal of the Econometric Society, pages 424-438, 1969. [19] Thomas Schreiber. Measuring information transfer. Physical review letters, 85(2): 461, 2000. [20] John A Vastano and Harry L Swinney. Information transport in spatiotemporal systems. Physical Review Letters, 60(18):1773, 1988. [21] Paul L Williams and Randall D Beer. Nonnegative decomposition of multivariate information. arXiv preprint arXiv:1004.2515, 2010. [22] Louis M Pecora and Thomas L Carroll. Synchronization in chaotic systems. Physical review letters, 64(8):821, 1990. [23] Michael Wibral, Joseph T Lizier, and Viola Priesemann. Bits from brains for biologically inspired computing. Frontiers in Robotics and AI, 2:5, 2015. [24] N Orange and N Abaid. A transfer entropy analysis of leader-follower interactions in flying bats. The European Physical Journal Special Topics, 224(17):3279–3293, 2015. [25] Subhradeep Roy, Kayla Howes, Rolf Müller, Sachit Butail, and Nicole Abaid. Extracting interactions between flying bat pairs using model-free methods. Entropy, 21(1):42, 2019. [26] Sachit Butail, Fabrizio Ladu, Davide Spinello, and Maurizio Porfiri. Information flow in animal-robot interactions. Entropy, 16(3):1315–1330, 2014. [27] Sachit Butail, Violet Mwaffo, and Maurizio Porfiri. Model-free informationtheoretic approach to infer leadership in pairs of zebrafish. Physical Review E, 93(4): 042411, 2016. [28] Pedro AM Mediano, Anil K Seth, and Adam B Barrett. Measuring integrated information: Comparison of candidate measures in theory and simulation. Entropy, 21(1):17, 2019. [29] Malte Harder, Christoph Salge, and Daniel Polani. Bivariate measure of redundant information. Physical Review E, 87(1):012130, 2013. [30] Adam B Barrett. Exploration of synergistic and redundant information sharing in static and dynamical gaussian systems. Physical Review E, 91(5):052802, 2015. [31] Ryan G James, Nix Barnett, and James P Crutchfield. Information flows? a critique of transfer entropies. Physical review letters, 116(23):238701, 2016. [32] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York, 2006. [33] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379–423, 1948. [34] Martin Vejmelka and Milan Paluš. Inferring the directionality of coupling with conditional mutual information. Physical Review E, 77(2):026214, 2008. [35] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Physical review E, 69(6):066138, 2004. [36] Matthäus Staniek and Klaus Lehnertz. Symbolic transfer entropy. Physical Review Letters, 100(15):158101, 2008. [37] Jürgen Pahle, Anne K Green, C Jane Dixon, and Ursula Kummer. Information transfer in signaling pathways: a study using coupled simulated and experimental data. BMC bioinformatics, 9(1):139, 2008. [38] Yao-Chen Hung and Chin-Kun Hu. Chaotic communication via temporal transfer entropy. Physical review letters, 101(24):244102, 2008. [39] Okyu Kwon and Jae-Suk Yang. Information flow between composite stock index and individual stocks. Physica A: Statistical Mechanics and its Applications, 387(12): 2851–2856, 2008. [40] Paul L Williams and Randall D Beer. Generalized measures of information transfer. arXiv preprint arXiv:1102.1507, 2011. [41] Gregory M Cahill. Clock mechanisms in zebrafish. Cell and tissue research, 309(1): 27–34, 2002. [42] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. [43] Terry Bossomaier, Lionel Barnett, Michael Harré, and Joseph T Lizier. An introduction to transfer entropy. Cham: Springer International Publishing, pages 65-95, 2016. [44] Xingyuan Wang and Mingjun Wang. A hyperchaos generated from lorenz system. Physica A: Statistical Mechanics and its Applications, 387(14):3751–3758, 2008. [45] Abdullah Makkeh, Dirk Oliver Theis, and Raul Vicente. Broja-2pid: A robust estimator for bivariate partial information decomposition. Entropy, 20(4):271, 2018. [46] Floris Takens. Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980, pages 366–381. Springer, 1981. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8550 | - |
| dc.description.abstract | 我們希望藉由分析斑馬魚的運動軌跡來量測它們之間的預期行為。如果其中A魚領先於B魚,而訊息是從B魚傳遞到A魚,則我們稱在此系統中A魚有預測B魚的行為。我們利用時間延遲的互信息 (TDMI) 先建立時序關係,再計算傳遞熵 (TE) 確定兩隻魚之間的訊息傳遞方向。我們設計了單向鏡實驗,證實這些方法可以檢測預期事件。不僅如此,通過部分信息分解 (PID) 方法,我們能夠將 TE與不同的 PID 分解項做連結,不同的系統(斑馬魚系統或模擬系統)之間 TE 和 PID 的關係也不盡相同。最後,我們的實驗結果表明,斑馬魚的預期作用主要發生在異性之間,而公魚更容易有預測母魚的行為。 | zh_TW |
| dc.description.abstract | We would like to measure the anticipatory interactions between a pair of zebrafish by tracking their trajectories (x(t) and y(t)). The trajectory y(t) is said to be anticipating x(t) if y(t) is ahead of x(t) while information is transferred from x(t) to y(t). We utilize the method of time delayed mutual information (TDMI) to establish the temporal order and the method of transfer entropy (TE) to determine the direction of information flow between x(t) and y(t). Our experiments with a one-way mirror indicate that anticipatory events can be indeed detected by these methods. More than that, by the method of partial information decomposition (PID), we are able to relate TE with the components of PID for different systems, either the zebrafish system or the synthetic system. Our results show that the anticipatory interactions mainly occur between the opposite sex with the male fish are more likely to anticipate the females. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T00:57:15Z (GMT). No. of bitstreams: 1 U0001-2501202112034000.pdf: 9213240 bytes, checksum: ace108eb796891397d7559cae4e2c3cb (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i Acknowledgements iii 摘要v Abstract vii Contents ix List of Figures xiii List of Tables xxi Symbols and Acronym xxiii Chapter 1 Introduction 1 Chapter 2 Related Works and Background 5 2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Time Delayed Mutual Information . . . . . . . . . . . . . . . . . . 8 2.3 Transfer Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Partial Information Decomposition . . . . . . . . . . . . . . . . . . . 11 Chapter 3 Experiment 15 3.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Regular Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 One-way Mirror Experiment . . . . . . . . . . . . . . . . . . . . . 19 3.3 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter 4 Methods 23 4.1 TDMI and TE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.1 TDMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1.2 TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Simulation Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 PID Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Chapter 5 Results 33 5.1 Zebrafish Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.1.1 Case 1: Male to Male . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.1.2 Case 2: Female to Female . . . . . . . . . . . . . . . . . . . . . . . 36 5.1.3 Case 3: Female to Male . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 One-way Mirror Zebrafish Experimental Data . . . . . . . . . . . . . 41 5.2.1 Female in Dark, Male in Bright (FDMB) . . . . . . . . . . . . . . . 42 5.2.2 Female in Bright, Male in Dark (FBMD) . . . . . . . . . . . . . . . 44 5.3 Simulation Data: Lorenz System . . . . . . . . . . . . . . . . . . . . 46 5.3.1 ”Following” Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3.2 ”Anticipating” Coupling . . . . . . . . . . . . . . . . . . . . . . . 47 5.4 Additional Experiments: Dimensional Causality . . . . . . . . . . . 48 5.4.1 Zebrafish Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4.2 One-way Mirror Experimental Data . . . . . . . . . . . . . . . . . 50 Chapter 6 Conclusion and Discussion 53 6.1 Zebrafish Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 Simulation: Lorenz System . . . . . . . . . . . . . . . . . . . . . . 56 6.3 Comparison: Zebrafish and Lorenz System . . . . . . . . . . . . . . 59 6.4 Compared to The Topological Method . . . . . . . . . . . . . . . . . 60 6.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 61 References 63 Appendix A — Supplementary Materials 69 A.1 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 | |
| dc.language.iso | en | |
| dc.subject | 部分信息分解 | zh_TW |
| dc.subject | 預期動力學 | zh_TW |
| dc.subject | 互信息 | zh_TW |
| dc.subject | 傳遞熵 | zh_TW |
| dc.subject | transfer entropy | en |
| dc.subject | Anticipatory dynamics | en |
| dc.subject | partial information decomposition | en |
| dc.subject | mutual information | en |
| dc.title | 基於資訊理論工具之斑馬魚預期動力學之研究 | zh_TW |
| dc.title | Study of Anticipatory Dynamics between Zebrafish with Information Theoretic Tools | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳志強(Chi Keung Chan) | |
| dc.contributor.oralexamcommittee | 黎璧賢(Pik-Yin Lai) | |
| dc.subject.keyword | 預期動力學,互信息,傳遞熵,部分信息分解, | zh_TW |
| dc.subject.keyword | Anticipatory dynamics,mutual information,transfer entropy,partial information decomposition, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202100151 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-02-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2501202112034000.pdf | 9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
