請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85504完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹瀅潔(Ying-Chieh Chan) | |
| dc.contributor.author | Rui Zeng | en |
| dc.contributor.author | 曾睿 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:17:36Z | - |
| dc.date.copyright | 2022-07-12 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-11 | |
| dc.identifier.citation | Sheail M. Thepapers of ProfessorGordonManley. Weather. 1985, 40: 22–23. Upmanis, H., Eliasson, I., & Lindqvist, S. (1998). The influence of green areas on nocturnal temperatures in a high latitude city (Göteborg, Sweden). International Journal of Climatology, 18, 681-700. Höppe, P. (1999). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal ENVIronment. International Journal of Biometeorology, 43, 71-75. Shashua‐Bar, L., & Hoffman, M.E. (2000). Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings, 31, 221-235. ASHRAE. (2004). ASHRAE Standard 55:Thermal ENVIronmental Conditions for Human Occupancy. Atlanta:American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. Schmidt, M. (2006). The contribution of rainwater harvesting against global warming. Technische Universität Berlin, IWA Publishing, London, UK, 9. Rosenzweig, C., Solecki, W., & Slosberg, R. (2006). Mitigating New York City’s heat island with urban forestry, living roofs, and light surfaces. A report to the New York State Energy Research and Development Authority. Yu, C., & Hien, W. N. (2006). Thermal benefits of city parks. Energy and buildings, 38(2), 105-120. Kravčík, M., Pokorný, J., Kohutiar, J., Kovac, M., & Toth, E. (2008). Water for the recovery of the climate: a new water paradigm. Alexandri, E., & Jones, P.J. (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and ENVIronment, 43, 480-493. Ferguson, B., Fisher, K., Golden, J., Hair, L., Haselbach, L., Hitchcock, D., ... & Waye, D. (2008). Reducing urban heat islands: compendium of strategies-cool pavements. Chow, W. T., Pope, R. L., Martin, C. A., & Brazel, A. J. (2011). Observing and modeling the nocturnal park cool island of an arid city: horizontal and vertical impacts. Theoretical and applied climatology, 103(1), 197-211. Kleerekoper, L., Esch, M.V., & Salcedo, T.B. (2012). How to make a city climate-proof, addressing the urban heat island effect. Resources Conservation and Recycling, 64, 30-38. Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met (Doctoral dissertation, Mainz, Univ., Diss., 2012). Declet-Barreto, J., Brazel, A. J., Martin, C. A., Chow, W. T., & Harlan, S. L. (2013). Creating the park cool island in an inner-city neighborhood: heat mitigation strategy for Phoenix, AZ. Urban Ecosystems, 16(3), 617-635. Goldberg, V., Kurbjuhn, C., & Bernhofer, C. (2013). How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany). Meteorologische Zeitschrift, 22(6), 739-751. Carnielo, E., & Zinzi, M. (2013). Optical and thermal characterisation of cool asphalts to mitigate urban temperatures and building cooling demand. Building and ENVIronment, 60, 56-65. Brosy, C., Zaninovic, K., & Matzarakis, A. (2014). Quantification of climate tourism potential of Croatia based on measured data and regional modeling. International journal of biometeorology, 58(6), 1369-1381. Cameron, R.W., Taylor, J., & Emmett, M.R. (2014). What's ‘cool’ in the world of green facades? How plant choice influences the cooling properties of green walls. Building and ENVIronment, 73, 198-207. Müller, N., Kuttler, W., & Barlag, A. B. (2014). Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and applied climatology, 115(1), 243-257. Ghaffarianhoseini, A., Berardi, U., & Ghaffarianhoseini, A. (2015). Thermal performance characteristics of unshaded courtyards in hot and humid climates. Building and ENVIronment, 87, 154-168. Lobaccaro, G., & Acero, J. A. (2015). Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 14, 251-267. Duarte, D. H., Shinzato, P., dos Santos Gusson, C., & Alves, C. A. (2015). The impact of vegetation on urban microclimate to counterbalance built density in a subtropical changing climate. Urban Climate, 14, 224-239. Noro, M., & Lazzarin, R. (2015). Urban heat island in Padua, Italy: Simulation analysis and mitigation strategies. Urban Climate, 14, 187-196. CHEN Bin-hui, FENG Yao, YUAN Jian-guo, et al. (2016). Spatiotemporal Difference of Urban Heat Island in Jing-Jin-Ji Area Based on MODIS Land Surface Temperature[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 52(6), 1134-1140. Hoelscher, M., Nehls, T., Jänicke, B., & Wessolek, G. (2016). Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy and Buildings, 114, 283-290. Battista, G., Carnielo, E., & Vollaro, R. D. L. (2016). Thermal impact of a redeveloped area on localized urban microclimate: A case study in Rome. Energy and Buildings, 133, 446-454. Taleghani, M., Sailor, D., & Ban-Weiss, G. A. (2016). Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. ENVIronmental Research Letters, 11(2), 024003. Wang, Y., Berardi, U., & Akbari, H. (2016). Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 114, 2-19. Jesus, M.P., Lourenço, J.M., Arce, R.M., & Macías, M. (2017). Green facades and in situ measurements of outdoor building thermal behaviour. Building and ENVIronment, 119, 11-19. Yang, A. S., Juan, Y. H., Wen, C. Y., & Chang, C. J. (2017). Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park. Applied energy, 192, 178-200. Medl, A., Stangl, R., & Florineth, F. (2017). Vertical greening systems–A review on recent technologies and research advancement. Building and ENVIronment, 125, 227-239. Tsoka, S., Tsikaloudaki, K., & Theodosiou, T. (2017). Urban space’s morphology and microclimatic analysis: A study for a typical urban district in the Mediterranean city of Thessaloniki, Greece. Energy and Buildings, 156, 96-108. Evola, G., Gagliano, A., Fichera, A., Marletta, L., Martinico, F., Nocera, F., & Pagano, A. (2017). UHI effects and strategies to improve outdoor thermal comfort in dense and old neighbourhoods. Energy Procedia, 134, 692-701. Daemei, A.B., Azmoodeh, M., Zamani, Z., & Khotbehsara, E.M. (2018). Experimental and simulation studies on the thermal behavior of vertical greenery system for temperature mitigation in urban spaces. Journal of Building Engineering, 20, 277-284. Karakounos, I., Dimoudi, A., & Zoras, S. (2018). The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy and Buildings, 158, 1266-1274. Jandaghian, Z., & Akbari, H. (2018). The effect of increasing surface albedo on urban climate and air quality: A detailed study for Sacramento, Houston, and Chicago. Climate, 6(2), 19. Ma, S., Pitman, A., Yang, J., Carouge, C., Evans, J. P., Hart, M., & Green, D. (2018). Evaluating the effectiveness of mitigation options on heat stress for Sydney, Australia. Journal of applied meteorology and climatology, 57(2), 209-220. Santamouris, M., Haddad, S., Saliari, M., Vasilakopoulou, K., Synnefa, A., Paolini, R., ... & Fiorito, F. (2018). On the energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies. Energy and Buildings, 166, 154-164. Toparlar, Y., Blocken, B., Maiheu, B. V., & Van Heijst, G. J. F. (2018). The effect of an urban park on the microclimate in its vicinity: a case study for Antwerp, Belgium. International Journal of Climatology, 38, e303-e322. Kyriakodis, G. E., & Santamouris, M. J. U. C. (2018). Using reflective pavements to mitigate urban heat island in warm climates-Results from a large scale urban mitigation project. Urban Climate, 24, 326-339. ZHANG Jun. (2020). Permeable Pavement Technology in the Construction of Sponge City Application Research[J]. Energy Conservation & ENVIronmental Protection in Transportation, 16(4), 80-83. Huang, J. M., & Chen, L. C. (2020). A numerical study on mitigation strategies of urban heat islands in a tropical megacity: A case study in Kaohsiung City, Taiwan. Sustainability, 12(10), 3952. Karimi, A., Sanaieian, H., Farhadi, H., & Norouzian-Maleki, S. (2020). Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 6, 1670-1684. 林子平 (2021)。《都市的夏天為什麼愈來愈熱?:圖解都市熱島現象與退燒策略》。商周出版。 CHEN Yu-heng, JI Chao-yu, HUANG Li-yao, YI Jun-yan. (2021). Simulation and Analysis on Influence of Permeable Pavement on Micro-region Climate Based on ENVI-met. Journal of Highway and Transportation Research and Development, 38(6), 46-53. Lan, H., Lau, K. K. L., Shi, Y., & Ren, C. (2021). Improved urban heat island mitigation using bioclimatic redevelopment along an urban waterfront at Victoria Dockside, Hong Kong. Sustainable Cities and Society, 74, 103172. Yang, J., Hu, X., Feng, H., & Marvin, S. (2021). Verifying an ENVI-met simulation of the thermal ENVIronment of Yanzhong Square Park in Shanghai. Urban Forestry & Urban Greening, 66, 127384. Faragallah, R. N., & Ragheb, R. A. (2022). Evaluation of thermal comfort and urban heat island through cool paving materials using ENVI-Met. Ain Shams Engineering Journal, 13(3), 101609. Cortes, A., Rejuso, A. J., Santos, J. A., & Blanco, A. (2022). Evaluating mitigation strategies for urban heat island in Mandaue City using ENVI-met. Journal of Urban Management, 11(1), 97-106. Ouyang, W., Sinsel, T., Simon, H., Morakinyo, T. E., Liu, H., & Ng, E. (2022). Evaluating the thermal-radiative performance of ENVI-met model for green infrastructure typologies: Experience from a subtropical climate. Building and Environment, 207, 108427. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85504 | - |
| dc.description.abstract | 在過去的幾十年裡,由於人口的擴張、經濟和基礎設施的發展導致許多地區城市化,城市化將導致大規模的土地覆蓋變化和人為的熱量釋放,從而調節城市環境微氣候。這種增長對城市有負面影響,如城市熱島效應 (Urban heat island, UHI):指城市中心地區的溫度高於週邊郊區。它會對城市能源消耗、環境質量、人體健康等方面產生深遠影響。其中道路鋪面是導致城市熱島效應增加的主要因素之一,且伴隨著海綿城市和綠色建築的概念出現,透水鋪面及綠色立面的應用成為研究熱點。目前研究表明透水鋪面和綠色立面可以有效降低城市熱島效應,但是每個地區的城市結構與氣候環境不同,使得不同地區內的研究結果較為局限,需要將理論研究應用到實際地區環境中,才能真正體現其減緩效益。因此本研究目的是為確定研究區域內 (停車場區域) 適宜的鋪面以緩解城市熱島效應,並改善行人的熱舒適度,有助於更好地理解城市氣候環境設計策略,以實現較合適的城市更新。同時預測綠色立面水平空間的冷卻範圍並比較透水鋪面對熱環境產生的冷卻效果。 本研究選取台灣受到最嚴重的城市熱島效應影響地區—臺北地區為研究區域,研究方法為數值模擬,使用CFD模擬軟體 (ENVI-met) 作為研究工具,並實地測量進行模型驗證,分析研究區域當前的熱環境狀況,通過數值模擬結果主要討論透水瀝青鋪面、植草型透水鋪面和綠色立面對熱環境的改善效益。 研究結果顯示透水鋪面對於氣候環境具有一定的改善作用。在改善熱島效應方面,除可降低微區域平均空氣溫度外,還能起到減少局部高溫面積的功能。效果最好的鋪面為透水瀝青鋪面,在夏季,透水瀝青鋪面最大減少2.24°C,植草型透水鋪面最大減少2.12°C,綠色立面最大減少0.28°C,主要影響集中在停車場區域,對全局的影響較小。在行人熱舒適性方面,雖然透水瀝青鋪面在夏季14點對生理等效溫度最大減小到6°C,卻未能改變舒適度區間。同時在台灣亞熱帶氣候的條件下,綠色立面存在對氣候環境的冷卻效果,垂直空間最大降溫範圍達到在36米左右,與透水鋪面降溫範圍相似,在水平空間上綠色立面的降溫效在墻體向外3米範圍內顯著,且對於本研究案例而言,綠色立面的影響效果會遜色與透水鋪面。在城市更新方面,本研究建議使用透水鋪面時需考慮風向與建築物的影響,並添加自動灌溉設施利於發揮更好的作用。 | zh_TW |
| dc.description.abstract | Over the past few decades, many areas have been urbanized due to population expansion, economic and infrastructure development, and urbanization will lead to large-scale land cover changes and anthropogenic heat release, there by regulating the urban environmental microclimate. This growth has negative effects on cities, such as the urban heat island effect (UHI): the temperature in the central part of a city is higher than in the surrounding suburbs. It will have a profound impact on urban energy consumption, environmental quality, and human health. Among them, road pavement is one of the main factors leading to the increase of urban heat island effect, and with the emergence of the concept of sponge city and green building, the application of permeable pavement and green facade has become a research hotspot. Current research shows that permeable pavement and green facade can effectively reduce the urban heat island effect, but the urban structure and climatic environment of each region are different, which makes the research results in different regions relatively limited. It is necessary to apply theoretical research to the actual regional environment in order to truly reflect its mitigation benefits. Therefore, the purpose of this study is to determine the appropriate pavement in the study area (parking area) to alleviate the urban heat island effect and improve the thermal comfort of pedestrians. At the same time, the cooling range of the horizontal space of the green facade is predicted and the cooling effect of the permeable pavement on the thermal environment is compared. In this study, the most severely affected area of urban heat island effect in Taiwan-Taipei area is selected as the research area, the research method is numerical simulation, CFD simulation software (ENVI-met) is used as the research tool, and field measurements are carried out to verify the model and analyze the current situation in the research area. Based on the thermal environment conditions, the numerical simulation results mainly discuss the improvement benefits of permeable asphalt pavement, grass-planted permeable pavement and green facade to the thermal environment. The research results show that the permeable pavement has a certain improvement effect on the climate environment. In terms of improving the heat island effect, in addition to reducing the average air temperature in the micro area, it can also reduce the local high temperature area. The best pavement is permeable asphalt pavement. In summer, the maximum reduction of permeable asphalt pavement is 2.24°C, the maximum reduction of grass-planted permeable pavement is 2.12°C, and the maximum reduction of green facade is 0.28°C. The main impact is concentrated in the parking lot area, and the overall impact is small. In terms of pedestrian thermal comfort, although the physiological equivalent temperature of permeable asphalt pavement is reduced to a maximum of 6°C at 14:00 in summer, it fails to change the comfort zone. At the same time, under the subtropical climate of Taiwan, the green facade has a cooling effect on the climatic environment. The maximum cooling range of the vertical space is about 36 meters, which is similar to the cooling range of the permeable pavement. It is significant within 3 meters of the body, and for this study case, the effect of the green facade will be inferior to that of the permeable pavement. In terms of urban renewal, this study suggests that the influence of wind direction and buildings should be considered when using permeable pavement, and adding automatic irrigation facilities will help to play a better role. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:17:36Z (GMT). No. of bitstreams: 1 U0001-1107202200191900.pdf: 9499188 bytes, checksum: 17c6deee442df57277332187cbcf252f (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract iv 圖目錄 viii 表目錄 xiii 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究範圍與對象 2 第二章 文獻回顧 4 2.1城市熱島效應 (UHI) 4 2.2人體熱舒適性 5 2.2.1熱舒適性之定義 5 2.2.2熱舒適性指標 6 2.3透水鋪面 7 2.4綠色植被 8 2.5綠色立面 9 2.6 CFD (Computational fluid dynamics) 類軟體 9 2.6.1 ENVI-met計算原理 11 2.6.2 CFD類軟體研究與應用 19 第三章 研究方法 23 3.1研究架構與內容 23 3.1.1研究流程 23 3.1.2研究變項定義 24 3.2 ENVI-met軟體模型設定與驗證 26 3.2.1模型設定 26 3.2.2模型驗證 28 3.3改善熱環境之模擬方案 48 3.3.1現況:瀝青鋪面 (案例A) 49 3.3.2混凝土鋪面 (案例B) 50 3.3.3透水瀝青鋪面 (案例C) 51 3.3.4植草型透水鋪面 (案例D) 52 3.3.4綠色立面 (案例E) 53 第四章 研究結果與討論 55 4.1夏季空氣溫度在行人層高度 (1.5 m) 分佈 55 4.2冬季空氣溫度在行人層高度 (1.5 m) 分佈 71 4.3行人熱舒適性分析 76 4.4風向之影響 78 4.5水份(灌溉)之影響 81 4.6與過往研究對比 86 4.7研究討論 89 第五章 結論與建議 91 參考文獻 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | ENVI-met | zh_TW |
| dc.subject | 綠色立面 | zh_TW |
| dc.subject | 透水鋪面 | zh_TW |
| dc.subject | 熱舒適性 | zh_TW |
| dc.subject | 城市熱島效應 | zh_TW |
| dc.subject | Green facade | en |
| dc.subject | Thermal comfort | en |
| dc.subject | ENVI-met | en |
| dc.subject | Permeable pavement | en |
| dc.subject | UHI | en |
| dc.title | 不同鋪面對城市熱島效應和熱舒適性的影響 | zh_TW |
| dc.title | Influence of different pavements on urban heat island effect and thermal comfort | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林偲妘(Szu-Yun Lin),謝尚賢(Shang-Hsien Hsieh),李婉甄(WAN-CHEN LEE) | |
| dc.subject.keyword | 城市熱島效應,熱舒適性,ENVI-met,透水鋪面,綠色立面, | zh_TW |
| dc.subject.keyword | UHI,Thermal comfort,ENVI-met,Permeable pavement,Green facade, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU202201387 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-12 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1107202200191900.pdf | 9.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
