Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85487
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平(Chang-Ping Yu)
dc.contributor.authorChun-Wei Yehen
dc.contributor.author葉俊葳zh_TW
dc.date.accessioned2023-03-19T23:17:20Z-
dc.date.copyright2022-07-29
dc.date.issued2022
dc.date.submitted2022-07-12
dc.identifier.citationAelterman, P., Rabaey, K., Pham, H. T., Boon, N., & Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental science & technology, 40(10), 3388-3394. An, J., & Lee, H. S. (2014). Occurrence and implications of voltage reversal in stacked microbial fuel cells. ChemSusChem, 7(6), 1689-1695. Anam, M., Yousaf, S., Sharafat, I., Zafar, Z., Ayaz, K., & Ali, N. (2017). Comparing natural and artificially designed bacterial consortia as biosensing elements for rapid non-specific detection of organic pollutant through microbial fuel cell. Int. J. Electrochem. Sci, 12(3), 2836-2851. Baron, D., LaBelle, E., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2009). Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. Journal of Biological Chemistry, 284(42), 28865-28873. Behera, M., & Ghangrekar, M. á. (2009). Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource technology, 100(21), 5114-5121. Biffinger, J. C., Byrd, J. N., Dudley, B. L., & Ringeisen, B. R. (2008). Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosensors and bioelectronics, 23(6), 820-826. Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Vanhaecke, L., De Maeyer, K., . . . Rabaey, K. (2008). Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Applied microbiology and biotechnology, 77(5), 1119-1129. Boretti, A., & Rosa, L. (2019). Reassessing the projections of the world water development report. NPJ Clean Water, 2(1), 1-6. Catal, T., Xu, S., Li, K., Bermek, H., & Liu, H. (2008). Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosensors and bioelectronics, 24(4), 849-854. Cerrillo, M., Viñas, M., & Bonmatí, A. (2017). Microbial fuel cells for polishing effluents of anaerobic digesters under inhibition, due to organic and nitrogen overloads. Journal of Chemical Technology & Biotechnology, 92(12), 2912-2920. Chae, K.-J., Choi, M.-J., Lee, J.-W., Kim, K.-Y., & Kim, I. S. (2009). Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource technology, 100(14), 3518-3525. Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature biotechnology, 21(10), 1229-1232. Cheng, S., Liu, H., & Logan, B. E. (2006). Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications, 8(3), 489-494. Choo, Y.-F., Lee, J.-Y., Chang, I.-S., & Kim, B.-H. (2006). Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. Journal of Microbiology and Biotechnology, 16(9), 1481-1484. Choudhury, P., Bhunia, B., Bandyopadhyay, T. K., & Ray, R. N. (2021). The Overall Performance Improvement of Microbial Fuel Cells Connected in Series with Dairy Wastewater Treatment. Journal of Electrochemical Science and Technology, 12(1), 101-111. Cohen, B. (1931). The bacterial culture as an electrical half-cell. J. Bacteriol, 21(1), 18-19. Davis, F., & Higson, S. P. (2007). Biofuel cells—recent advances and applications. Biosensors and bioelectronics, 22(7), 1224-1235. Dessì, P., Chatterjee, P., Mills, S., Kokko, M., Lakaniemi, A.-M., Collins, G., & Lens, P. N. (2019). Power production and microbial community composition in thermophilic acetate-fed up-flow and flow-through microbial fuel cells. Bioresource technology, 294, 122115. Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology advances, 25(5), 464-482. Dziegielowski, J., Metcalfe, B., Villegas-Guzman, P., Martínez-Huitle, C. A., Gorayeb, A., Wenk, J., & Di Lorenzo, M. (2020). Development of a functional stack of soil microbial fuel cells to power a water treatment reactor: From the lab to field trials in North East Brazil. Applied energy, 278, 115680. Estrada-Arriaga, E. B., Hernández-Romano, J., García-Sánchez, L., Garcés, R. A. G., Bahena-Bahena, E. O., Guadarrama-Pérez, O., & Chavez, G. E. M. (2018). Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: effect of series and parallel configuration. Journal of environmental management, 214, 232-241. Feng, Y., Yang, Q., Wang, X., & Logan, B. E. (2010). Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. Journal of power sources, 195(7), 1841-1844. Gil, G.-C., Chang, I.-S., Kim, B. H., Kim, M., Jang, J.-K., Park, H. S., & Kim, H. J. (2003). Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosensors and bioelectronics, 18(4), 327-334. Glasser, N. R., Saunders, S. H., & Newman, D. K. (2017). The colorful world of extracellular electron shuttles. Annual review of microbiology, 71, 731-751. Harnisch, F., & Schröder, U. (2010). From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chemical Society Reviews, 39(11), 4433-4448. Hassan, H., Jin, B., Donner, E., Vasileiadis, S., Saint, C., & Dai, S. (2018). Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: microbial consortia could make differences. Chemical Engineering Journal, 332, 647-657. Ieropoulos, I., Greenman, J., & Melhuish, C. (2008). Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. International Journal of Energy Research, 32(13), 1228-1240. Ieropoulos, I. A., Greenman, J., Melhuish, C., & Hart, J. (2005). Comparative study of three types of microbial fuel cell. Enzyme and microbial technology, 37(2), 238-245. Ieropoulos, I. A., Stinchcombe, A., Gajda, I., Forbes, S., Merino-Jimenez, I., Pasternak, G., . . . Greenman, J. (2016). Pee power urinal–microbial fuel cell technology field trials in the context of sanitation. Environmental Science: Water Research & Technology, 2(2), 336-343. Jadhav, D. A. (2015). Effective ammonium removal by anaerobic oxidation in microbial fuel cells. Environmental technology, 36(6), 767-775. Jain, A., Zhang, X., Pastorella, G., Connolly, J. O., Barry, N., Woolley, R., . . . Marsili, E. (2012). Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode. Bioelectrochemistry, 87, 28-32. Jang, J.-K., Chang, I.-S., & Kim, B.-H. (2004). Improvement of cathode reaction of a mediatorless microbial fuel cell. Journal of Microbiology and Biotechnology, 14(2), 324-329. Jiang, H.-m. (2017). Combination of microbial fuel cells with microalgae cultivation for bioelectricity generation and domestic wastewater treatment. Environmental Engineering Science, 34(7), 489-495. Jung, S., & Regan, J. M. (2007). Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Applied microbiology and biotechnology, 77(2), 393-402. Khater, D., El-khatib, K., Hazaa, M., & Hassan, R. (2015). Electricity generation using Glucose as substrate in microbial fuel cell. Journal of Basic and Environmental Sciences, 2, 84-98. Kim, B., Mohan, S. V., Fapyane, D., & Chang, I. S. (2020). Controlling voltage reversal in microbial fuel cells. Trends in biotechnology, 38(6), 667-678. Li, X., Li, Y., Zhang, X., Zhao, X., Sun, Y., Weng, L., & Li, Y. (2019). Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. Science of the total environment, 651, 796-806. Liu, H., Cheng, S., & Logan, B. E. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental science & technology, 39(2), 658-662. Liu, X.-W., Li, W.-W., & Yu, H.-Q. (2014). Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chemical Society Reviews, 43(22), 7718-7745. Liu, Z.-D., & Li, H.-R. (2007). Effects of bio-and abio-factors on electricity production in a mediatorless microbial fuel cell. Biochemical engineering journal, 36(3), 209-214. Logan, B. E., Murano, C., Scott, K., Gray, N. D., & Head, I. M. (2005). Electricity generation from cysteine in a microbial fuel cell. Water Research, 39(5), 942-952. Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. TRENDS in Microbiology, 14(12), 512-518. Luo, H., Yu, S., Liu, G., Zhang, R., & Teng, W. (2016). Effect of in-situ immobilized anode on performance of the microbial fuel cell with high concentration of sodium acetate. Fuel, 182, 732-739. Mancilio, L. B. K., Ribeiro, G. A., de Almeida, E. J. R., de Siqueira, G. M. V., Rocha, R. S., Guazzaroni, M.-E., . . . Reginatto, V. (2021). Adding value to lignocellulosic byproducts by using acetate and p-coumaric acid as substrate in a microbial fuel cell. Industrial Crops and Products, 171, 113844. Mansoorian, H. J., Mahvi, A. H., Jafari, A. J., & Khanjani, N. (2016). Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell. Journal of Saudi Chemical Society, 20(1), 88-100. Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences, 105(10), 3968-3973. Masuda, M., Freguia, S., Wang, Y.-F., Tsujimura, S., & Kano, K. (2010). Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis. Bioelectrochemistry, 78(2), 173-175. Mobley, H., & Hausinger, R. (1989). Microbial ureases: significance, regulation, and molecular characterization. Microbiological reviews, 53(1), 85-108. Niessen, J., Harnisch, F., Rosenbaum, M., Schröder, U., & Scholz, F. (2006). Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochemistry Communications, 8(5), 869-873. Nimje, V. R., Chen, C.-Y., Chen, C.-C., Tsai, J.-Y., Chen, H.-R., Huang, Y. M., . . . Shih, R.-C. (2011). Microbial fuel cell of Enterobacter cloacae: Effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. International journal of hydrogen energy, 36(17), 11093-11101. Obata, O., Salar-Garcia, M. J., Greenman, J., Kurt, H., Chandran, K., & Ieropoulos, I. (2020). Development of efficient electroactive biofilm in urine-fed microbial fuel cell cascades for bioelectricity generation. Journal of environmental management, 258, 109992. Oh, S.-E., & Logan, B. E. (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Applied microbiology and biotechnology, 70(2), 162-169. Oh, S.-E., & Logan, B. E. (2007). Voltage reversal during microbial fuel cell stack operation. Journal of power sources, 167(1), 11-17. Oh, S., Kim, J., Joo, J.-H., & Logan, B. (2009). Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Science and Technology, 60(5), 1311-1317. Oh, S., Min, B., & Logan, B. E. (2004). Cathode performance as a factor in electricity generation in microbial fuel cells. Environmental science & technology, 38(18), 4900-4904. Okabe, S. (2020). Domestic wastewater treatment and energy harvesting by serpentine up-flow MFCs equipped with PVDF-based activated carbon air-cathodes and a low voltage booster. Chemical Engineering Journal, 380, 122443. Pandit, S., Ghosh, S., Ghangrekar, M., & Das, D. (2012). Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell. International journal of hydrogen energy, 37(11), 9383-9392. Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource technology, 101(6), 1533-1543. Papaharalabos, G., Greenman, J., Melhuish, C., Santoro, C., Cristiani, P., Li, B., & Ieropoulos, I. (2013). Increased power output from micro porous layer (MPL) cathode microbial fuel cells (MFC). International journal of hydrogen energy, 38(26), 11552-11558. Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., . . . Chang, H. I. (2001). A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 7(6), 297-306. Patil, S. A., Harnisch, F., Koch, C., Hübschmann, T., Fetzer, I., Carmona-Martínez, A. A., . . . Schröder, U. (2011). Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresource technology, 102(20), 9683-9690. Pierson, L. S., & Pierson, E. A. (2010). Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Applied microbiology and biotechnology, 86(6), 1659-1670. Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the royal society of London. Series b, containing papers of a biological character, 84(571), 260-276. Raghavulu, S. V., Mohan, S. V., Goud, R. K., & Sarma, P. (2009). Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochemistry Communications, 11(2), 371-375. Rago, L., Zecchin, S., Marzorati, S., Goglio, A., Cavalca, L., Cristiani, P., & Schievano, A. (2018). A study of microbial communities on terracotta separator and on biocathode of air breathing microbial fuel cells. Bioelectrochemistry, 120, 18-26. Rahimnejad, M., Mokhtarian, N., Najafpour, G., Daud, W., & Ghoreyshi, A. (2009). Low voltage power generation in a biofuel cell using anaerobic cultures. World Appl Sci J, 6, 1585-1588. Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and environmental microbiology, 72(11), 7345-7348. Ringeisen, B. R., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., . . . Jones-Meehan, J. M. (2006). High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environmental science & technology, 40(8), 2629-2634. Rismani-Yazdi, H., Carver, S. M., Christy, A. D., & Tuovinen, O. H. (2008). Cathodic limitations in microbial fuel cells: an overview. Journal of power sources, 180(2), 683-694. Rossi, R., & Logan, B. E. (2020). Impact of external resistance acclimation on charge transfer and diffusion resistance in bench-scale microbial fuel cells. Bioresource technology, 318, 123921. Rossi, R., & Logan, B. E. (2021). Using an anion exchange membrane for effective hydroxide ion transport enables high power densities in microbial fuel cells. Chemical Engineering Journal, 422, 130150. Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of power sources, 356, 225-244. Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9(21), 2619-2629. Tanikkul, P., Boonyawanich, S., & Pisutpaisal, N. (2019). Bioelectricity recovery and pollution reduction of distillery wastewater in air-cathode SCMFC. International journal of hydrogen energy, 44(11), 5481-5487. Tice, R. C. (2014). Sustainable wastewater treatment: nutrient separation, energy recovery and water reuse. Vellingiri, A., Song, Y. E., Munussami, G., Kim, C., Park, C., Jeon, B. H., . . . Kim, J. R. (2019). Overexpression of c‐type cytochrome, CymA in Shewanella oneidensis MR‐1 for enhanced bioelectricity generation and cell growth in a microbial fuel cell. Journal of Chemical Technology & Biotechnology, 94(7), 2115-2122. Venkataraman, A., Rosenbaum, M., Arends, J. B., Halitschke, R., & Angenent, L. T. (2010). Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems. Electrochemistry Communications, 12(3), 459-462. Walter, X. A., Stinchcombe, A., Greenman, J., & Ieropoulos, I. (2017). Urine transduction to usable energy: a modular MFC approach for smartphone and remote system charging. Applied energy, 192, 575-581. Wei, L., Han, H., & Shen, J. (2012). Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell. International journal of hydrogen energy, 37(17), 12980-12986. Xing, D., Cheng, S., Logan, B. E., & Regan, J. M. (2010). Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Applied microbiology and biotechnology, 85(5), 1575-1587. Xing, D., Cheng, S., Regan, J. M., & Logan, B. E. (2009). Change in microbial communities in acetate-and glucose-fed microbial fuel cells in the presence of light. Biosensors and bioelectronics, 25(1), 105-111. Xiong, H., Zou, D., Zhou, D., Dong, S., Wang, J., & Rittmann, B. E. (2017). Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB). Chemical Engineering Journal, 316, 7-14. Yaqoob, A. A., Ibrahim, M. N. M., Umar, K., Parveen, T., Ahmad, A., Lokhat, D., & Setapar, S. H. M. (2021). A glimpse into the microbial fuel cells for wastewater treatment with energy generation. Desalination Water Treat, 214, 379-389. Yazdi, H., Alzate-Gaviria, L., & Ren, Z. J. (2015). Pluggable microbial fuel cell stacks for septic wastewater treatment and electricity production. Bioresource technology, 180, 258-263. Yu, E. H., Burkitt, R., Wang, X., & Scott, K. (2012). Application of anion exchange ionomer for oxygen reduction catalysts in microbial fuel cells. Electrochemistry Communications, 21, 30-35. Yuan, Y., Zhao, B., Zhou, S., Zhong, S., & Zhuang, L. (2011). Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresource technology, 102(13), 6887-6891. Zhang, E., Xu, W., Diao, G., & Shuang, C. (2006). Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. Journal of power sources, 161(2), 820-825. Zhang, L., Li, C., Ding, L., Xu, K., & Ren, H. (2011). Influences of initial pH on performance and anodic microbes of fed‐batch microbial fuel cells. Journal of Chemical Technology & Biotechnology, 86(9), 1226-1232. Zhang, T., Cui, C., Chen, S., Yang, H., & Shen, P. (2008). The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochemistry Communications, 10(2), 293-297. Zhang, X., Miao, X., Li, J., & Li, Z. (2019). Evaluation of electricity production from Fenton oxidation pretreated sludge using a two-chamber microbial fuel cell. Chemical Engineering Journal, 361, 599-608. Zhao, N., Angelidaki, I., & Zhang, Y. (2017). Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol. Water Research, 109, 367-374. Zhuang, L., & Zhou, S. (2009). Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochemistry Communications, 11(5), 937-940. 史雨茹, 冷川江, 常胜, 王晶, & 王晓慧. (2018). 微生物燃料电池连接方式对产电效率影响的比较. 北京化工大学学报 (自然科学版), 45(2), 1-9. 刘达. (2019). WC 和 Ti_3C_2 作为高效微生物燃料电池阳极的研究. 哈尔滨工业大学, 罗帝洲, 许玫英, & 杨永刚. (2020). 微生物燃料电池串并联研究及应用. 环境化学(8), 2227-2236. 張朝欽. (2021). 陰極生物膜於無膜式微生物電化學污水處理系統之應用發展. 黃立勛. (2019). 雙槽平板式微生物燃料電池產能和磷回收研究.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85487-
dc.description.abstract微生物燃料電池是一種新興之生質能技術,透過消耗水中有機物質,將之轉為可用電能,因其能同時達到去除水中有機物及回收電能,故受到科學家們重視。但目前微生物燃料電池有其應用上的瓶頸,受限於其產電能力,通常單一微生物燃料電池的開路電壓在1伏特以下,雖然許多研究已開始透過電池之串並聯,嘗試將微生物燃料電池的產電能力放大,但微生物燃料電池自身過大的內阻,可能導致單一微生物燃料電池輸出效能的損失並進一步限制放大的效果,故優化微生物燃料電池構型以降低內阻為其往後放大應用的關鍵。而膜電極(membrane electrode assembly,MEA)技術為透過冷/熱壓的方式,將電極以及交換膜壓合在一起,使交換膜以及電極之距離,達到小於1 mm,以致幾乎沒有空隙,能大幅降低溶液所造成的阻抗,並獲得更高的性能。 本研究結合膜電極與3D列印技術,運用冷壓法將陰極與離子交換膜於10000 psi的壓力下緊密壓合,並客製化印製能與膜電極組件良好耦合的槽體,從整體構型設計上降低空氣陰極微生物燃料電池之內阻,優化其產電能力。 研究結果顯示,有做膜電極之組別,各項性能皆明顯優於其它未做膜電極之組別。產電效能部份,其輸出電壓穩定度高、個體差異小,開路電壓皆能突破600毫伏特,且在閉路運行時,有做膜電極之組別陰極單極電位,皆能維持於正電位,顯見其極化的程度較其他組別低,最大功率密度結果則發現有做膜電極之組別效能為未做的組別的1.3倍。水質分析部份,在水力停留時間為三天的條件下,COD去除率可達到75%的去除率。電化學結果顯示有膜電極之組別在功率密度曲線法所得到的電池內阻值為680 Ω,交流阻抗分析的總內阻阻抗結果為359 Ω,兩者相比其他組別的結果都明顯較低。此外亦針對不同條件之陰極進行阻抗分析,結果顯示有做膜電極的組別,其陰極阻抗僅為未做膜電極組別的一半。16S rRNA微生物群落結果則發現,已知產電菌Geobacter 在大部分的組別皆為最優勢之屬,其餘的產電菌屬像是Pseudomonas、Thiopseudomonas,也都占了一定的比例,間接證實了組別間的產電差異,關鍵是在使用膜電極技術。串並聯放大試驗結果顯示,開路情況下串聯五個電池,電壓可以達到3.4伏特,另外在並聯的情況下,電壓也可保持在0.68伏特,並可成倍增加電流。功率密度結果則發現串聯放大的過程中,由於電壓反轉的發生,其功率密度逐漸下降。並聯放大時,其功率輸出下降幅度較小,能較穩定地放大電能。串並聯前後之16S rRNA微生物群落結果顯示,無論是在串聯還是並聯,都可以得到在產電菌屬Geobacter以及Pseudomonas皆有下降之趨勢。電化學交流阻抗分析結果則顯示,串並聯後電池內阻皆增加。進一步分析內阻組成,發現歐姆阻抗之上升同時發生於串聯與並聯。極化阻抗部分,電荷轉移阻抗增加主要發生於串聯放大,擴散阻抗上升則主要發現於並聯放大。在電容充電試驗之結果,串聯五個電池之情況下,經過48小時之充電,能夠分別將1.5 F以及2.5 F之電容充至3.7 V、3 V;在並聯五個電池之情況下,能將1.5 F和2.5 F之電容充至3.6 V和3.1 V。經過48小時充電之電容所收集的電能,也成功地為桌上型電風扇進行充電。因此透過此方式優化之微生物燃料電池,對於微生物燃料電池的產電放大,具有良好的發展潛力。zh_TW
dc.description.abstractMicrobial fuel cell (MFC) is an emerging bioenergy technology that converts organic matter in wastewater into usable electrical energy. This technology has been proved that it can remove organic matter from the wastewater and recover electrical power simultaneously, attracting increasing attention. However, at present, MFCs still have bottlenecks in their development due to the low voltage and current output. Although several studies have been conducted to scale up the power generation of MFC by connecting them in series or parallel, the considerable internal resistance of a single microbial fuel cell may still cause significant power loss and limit the power-output efficiency of MFC. Optimizing the construction of the MFC is the key to large-scale application. The technology of membrane electrode assembly (MEA) can shorten the distance between the electrode and exchange membrane to less than 1 mm by cold/hot-pressing the electrode and exchange membrane together. Hence, the internal resistance can be reduced. In this study, technologies of the MEA and 3D printing were combined. The cathode and membrane were pressed together under the pressure of 10000 psi by cold-pressing. Then, a 3D-printed reactor was designed, and it can be well coupled with the MEA to collectively reduce the internal resistance of the air cathode microbial fuel cell and high power generation can be harvested. The results showed that the performance of the group with MEA is better than that of other groups without it. With regard to power generation, the output voltage has high stability and slight differences with open-circuit voltage exceeding 600 mV. During a closed-circuit operation, only the cathodic potential of the group with MEA can be maintained at a positive potential, which indicated no apparent polarization was observed. The maximum power density results found that the group's performances with MEA was 1.3 times that of those without MEA. Water quality analysis showed that under the hydraulic retention time of three days, the removal rate of COD can reach 75%. The electrochemical results showed that the internal resistance value of the air-cathode MFC obtained by the power density curve method for the group with MEA is 680 Ω, and the total internal resistance impedance result of the EIS analysis is 359 Ω, both of which are lower compared with the results of other groups. In addition, impedance analysis was carried out for the cathodes under different conditions. The results showed that the cathode impedance of the group with MEA was only half that of the group without MEA. The 16S rRNA microbial community results showed that the known electrogenic bacteria Geobacter was the most dominant genus in most of the groups, and the rest of the electrogenic bacteria genera, such as Pseudomonas and Thiopseudomonas, also accounted for a certain proportion. The results confirmed that the use of MEA is responsible for the difference in electricity production. The results of the scale-up test showed that the voltage could reach 3.4 V when five batteries are connected in series in the open circuit condition, and the voltage can also be maintained at 0.68 V in the case of a parallel connection. The power density results showed that in the process of series connection, the power density gradually decreases due to the occurrence of voltage reversal. When connected in parallel, its power output drops less and can scale up electric energy more stably. The results of the 16S rRNA microbial community before and after the series/parallel connection showed that the abudance of electrogenic bacteria Geobacter and Pseudomonas had a decreasing trend whether in the series or parallel connection. The electrochemical EIS analysis showed that the internal resistance increases after the series and parallel connection. Further investigating the internal resistance composition, it showed that the rise of ohmic resistance co-occurs in series and parallel. Concerning the polarization resistance, the increase in charge transfer resistance mainly occurs in series connections, and the increase in diffusion resistance is primarily found in parallel connections. With regard to the capacitor charging test, when five air-cathode MFCs are connected in series for 48-hour charging, the 1.5 F and 2.5 F capacitors can be charged to 3.7 V and 3 V, respectively; as for those in parallel, the 1.5 F and 2.5 F capacitors can be charged to 3.6 V and 3.1 V. In conclusion, air-cathode MFC with MEA performed outstanding potential for scale-up in the future.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:17:20Z (GMT). No. of bitstreams: 1
U0001-1207202212102700.pdf: 6999685 bytes, checksum: 7321f4e6ae1742ccbc76260a991a5e0c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents論文口試委員審定書 i 致謝 iii 中文摘要 v Abstract vii 圖目錄 xi 表目錄 xiii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻回顧 5 2.1 生物電化學之理論與發展 5 2.1.1 微生物燃料電池之沿革 5 2.1.2 微生物燃料電池之產電原理 6 2.1.3 電子傳遞機制 8 2.2 微生物燃料電池運行之分析 11 2.2.1 陽極微生物種類 11 2.2.2 陰極電子接受者之選擇 11 2.2.3 pH值 12 2.2.4 交換膜 13 2.2.5 陽極營養源類型 14 2.3 微生物燃料電池之放大 17 2.3.1 串聯放大並聯放大 17 2.3.2 實際應用 18 2.3.3 放大應用的瓶頸 21 第三章 材料與方法 25 3.1 實驗藥品與設備 25 3.1.1 實驗藥品 25 3.1.2 實驗設備與儀器 28 3.2 3D列印微生物燃料電池系統 29 3.2.1 3D列印微生物燃料電池之構型 29 3.2.2 菌種來源與馴養 30 3.2.3 微生物燃料電池之3D列印 32 3.2.4 微生物燃料電池電極之製備 33 3.2.5 微生物燃料電池薄膜之前處理 36 3.2.6 膜電極之製作 36 3.2.7 3D列印微生物燃料電池之運行 37 3.3 電化學分析 40 3.3.1 電壓量測與紀錄 40 3.3.2 參考電極之製備 41 3.3.3 功率密度與極化曲線 42 3.3.4 電化學阻抗分析 44 3.3.5 掃描式電子顯微鏡 46 3.4 水質項目分析 47 3.4.1 化學需氧量 47 3.4.2 pH值 47 3.4.3 氨氮 47 3.4.4 磷酸鹽 47 3.5 微生物實驗 48 3.5.1 陽極微生物DNA萃取 48 3.5.2 PCR聚合酶連鎖反應 49 3.5.3 膠片電泳 50 3.5.4 次世代定序 51 3.6 產電放大應用實驗 52 第四章 結果與討論 53 4.1 3D列印微生物燃料電池之電化學分析 53 4.1.1 不同陰極運行條件之產電能力 53 4.1.2 單極電位 57 4.1.3 功率密度與極化曲線 59 4.1.4 電化學阻抗譜 61 4.2 3D列印微生物燃料電池之水質分析 64 4.2.1 COD 64 4.2.2 氨氮 66 4.2.3 磷酸鹽 68 4.2.4 pH 69 4.3 3D列印微生物燃料電池陽極之表現 70 4.3.1 掃描式電子顯微鏡 70 4.3.2 菌群結構 73 4.4 3D列印微生物燃料電池之放大試驗 76 4.4.1 串/並聯放大試驗 76 4.4.2 水質分析 83 4.4.3 功率密度與極化曲線 88 4.4.4 電化學阻抗譜 90 4.4.5 電池放大前後之菌群結構變化 91 4.5 充電試驗與應用 93 4.5.1 電容充電試驗 93 4.5.2 電子產品充電之試驗 95 第五章 結論與建議 97 5.1 結論 97 5.2 建議 99 參考文獻 101 附錄 113
dc.language.isozh-TW
dc.subject電子產品充電zh_TW
dc.subject3D列印zh_TW
dc.subject膜電極zh_TW
dc.subject內電阻zh_TW
dc.subject電池放大zh_TW
dc.subject電容充電zh_TW
dc.subjectinternal resistanceen
dc.subjectMEAen
dc.subjectbattery scale-upen
dc.subject3D printen
dc.subjectcapacitor chargingen
dc.subjectelectronic product chargingen
dc.title膜電極組件應用於3D列印空氣陰極微生物燃料電池放大之研究zh_TW
dc.titleEvaluation of scaling up 3D printed air-cathode microbial fuel cells with the membrane electrode assembly designen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林居慶(Chu-Ching LIN),李學霖(Hsueh-Lin LI)
dc.subject.keyword3D列印,膜電極,內電阻,電池放大,電容充電,電子產品充電,zh_TW
dc.subject.keyword3D print,MEA,internal resistance,battery scale-up,capacitor charging,electronic product charging,en
dc.relation.page113
dc.identifier.doi10.6342/NTU202201420
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
dc.date.embargo-lift2022-07-29-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1207202212102700.pdf6.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved