Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85484
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙修武zh_TW
dc.contributor.advisorShiu-Wu Chauen
dc.contributor.author湯凱沂zh_TW
dc.contributor.authorHoi-Yi Tongen
dc.date.accessioned2023-03-19T23:17:17Z-
dc.date.available2023-11-10-
dc.date.copyright2022-10-20-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] Bilgili, M., Yasar, A., and Simsek, E., “Offshore Wind Power Development in Europe and Its Ccomparison with Onshore Counterpart,” Renewable and Sustainable Energy Reviews, vol. 15, no. 2, pp. 905-915, 2011.
[2] Nikolaos, N., “Deep Water Offshore Wind Technologies,” M.S. thesis, Dept. Mechanical Engineering, University of Strathclyde, Glasgow, Scotland, 2004.
[3] Barltrop, N., “Multiple Unit Floating Offshore Wind Farm (MUFOW),” Wind Engineering, pp. 183-188, 1993.
[4] Henderson, A. R. and Patel, M. H., “Floating Offshore Wind Energy,” presented at the 20th BWEA Conference, London, UK, May, 1998.
[5] Tong, K. C., “Technical and Economic Aspects of a Floating Offshore Wind Farm,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 74, pp. 399-410, 1998.
[6] Castro-Santos, L. and Diaz-Casas, V., Eds. Floating Offshore Wind Farms. Berlin/Heidelberg, Germany: Springer, 2016.
[7] Wang, Y. K., Chai, J. F., Chang, Y. W., Huang, T. Y., and Kuo, Y. S., “Development of Seismic Demand for Chang-Bin Offshore Wind Farm in Taiwan Strait,” Energies, vol. 9, no. 12, pp. 1036, 2016.
[8] Chang, T. J., Chen, C. L., Tu, Y. L., Yeh, H. T., and Wu, Y. T., “Evaluation of the Climate Change Impact on Wind Resources in Taiwan Strait,” Energy Conversion and Management, vol. 95, pp. 435-445, 2015.
[9] Lee, Y. J., Ho, C. Y., Huang, Z. Z., and Wang, Y. C., “Improvements on the Output of a Spar-Type Floating Wind Turbine Influenced by Wave-Induced Oscillation,” Journal of Taiwan Society of Naval Architects and Marine Engineers, vol. 34, no. 2, pp. 55-62, 2015.
[10] Huang, Z. Z., “Dynamic Response of Floating Offshore Wind Turbine,” M.S. thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2013.
[11] Wang, Y. C., “Motion Characteristics and Power Evaluation on Floating Offshore Wind Turbine,” M.S. thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2011.
[12] Chen, C. Y., “Comparative Study on Semi-Submersible Floating Platforms for Offshore Wind in Taiwan Strait,” M.S. thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2020.
[13] Hong, J. J., “Performance Prediction of a Disk-Type Semi-Submersible Floating Platform in Taiwan Strait,” M.S. thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2022.
[14] Li, B., Liu, K., Yan, G., and Ou, J., “Hydrodynamic Comparison of a Semi-Submersible, TLP, and Spar: Numerical Study in the South China Sea Environment,” Journal of Marine Science and Application, vol. 10, no. 3, pp. 306-314, 2011.
[15] Jonkman, J., Butterfield, S., Musial, W., and Scott, G., “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Lab, Golden, CO, USA, NREL/TP-500-38060, 2009.
[16] Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Hansen, M. H., Blasques, J. P. A. A., Gaunaa, M., and Natarajan, A., “The DTU 10-MW Reference Wind Turbine,” Dept. Wind Energy, Technical University of Denmark, 2013.
[17] Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A., “Definition of the IEA Wind 15-Megawatt Offshore Reference Wind Turbine,” National Renewable Energy Lab, Golden, CO, USA, NREL/TP-5000-75698, 2020.
[18] Global Wind Energy Council, “Global Wind Report 2022,” Brussels, Brussels Hoofdstedelijk Gewest, Belgium, 2022. Accessed: July 1, 2022. [Online]. Available: https://gwec.net/global-wind-report-2022/.
[19] Zheng, C. W., Xiao, Z. N., Peng, Y. H., Li, C. Y., and Du, Z. B., “Rezoning Global Offshore Wind Energy Resources,” Renewable Energy, vol. 129, pp. 1-11, 2018.
[20] Chang, P. C., Yang, R. Y., and Lai, C. M., “Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan,” Energies, vol. 8, no. 3, pp. 1685-1700, 2015.
[21] Industrial Technology Research Institute, “Wind Resource Assessment Handbook,” Hsinchu, Taiwan, 2011.
[22] Faulkner S., “Offshore wind energy in Taiwan.” Open Access Government. https://www.openaccessgovernment.org/taiwan-offshore-wind/129010/ (accessed July 1, 2022).
[23] Dicorato, M., Forte, G., Pisani, M., and Trovato, M., “Guidelines for Assessment of Investment Cost for Offshore Wind Generation,” Renewable Energy, vol. 36, no. 8, pp. 2043-2051, 2011.
[24] Hsu, I. J., Ivanov, G., Ma, K. T., Huang, Z. Z., Wu, H. T., Huang, Y. T., and Chou, M., “Optimization of Semi-Submersible Hull Design for Floating Offshore Wind Turbines,” presented at the 41st International Conference on Ocean, Offshore and Arctic Engineering, Hamburg, Germany, June, 2022.
[25] Huang, W. H., “Influence of Water Depth Variation on the Mooring Line Design for FOWT in Shallow Waters,” M.S. thesis, Dept. Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan, 2021.
[26] Coupled Analysis of Floating Wind Turbines, DNVGL-RP-0286, DNV, 2019.
[27] Ikhennicheu, M., Lynch, M., Doole, S., Borisade, F., Matha, D., Dominguez, J. L., Vicente, R. D., Habekost, T., Ramirez, L., Potestio, S., Molins, C., and Trubat, P., “Review of the State of the Art of Mooring and Anchoring Designs, Technical Challenges and Identification of Relevant DLCs”, INNOSEA, COBRA, DTU, WIND EUROPE, EQUINOR, IREC, UPC, UL DEW, 2020.
[28] Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A. “15MW Reference Wind Turbine Repository Developed in Conjunction with IEA Wind.” GitHub. https://github.com/IEAWindTask37/IEA-15-240-RWT/. (accessed May 27, 2022).
[29] Haskind, M. D., “The Oscillation of a Ship in Still Water,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, vol. 1, pp. 23-34, 1946.
[30] Haskind, M. D., “The Hydrodynamic Theory of Ship Oscillations in Rolling and Pitching,” Prikl. Mat. Mekh, vol. 10, pp. 33-66, 1946.
[31] Wehausen, J. V. and Laitone, E. V., “Surface Waves in Fluid Dynamics III,” Handbuch der Physik, vol. 9, no. 3, pp. 446-778, 1960.
[32] Simcenter STAR-CCM+ User Guide, ver. 2206, Siemens, Berlin, Germany, 2022.
[33] Boussinesq, J., "Essai sur la Théorie des Eaux Courantes," Mémoires Présentés par Divers Savants à l'Académie des Sciences, vol. 23, no. 1, pp. 1-680, 1877.
[34] Hirt, C. W. and B. D. Nichols, “Volume of Fluid Method for the Dynamics of Free Surface,” Journal of Computational Physics, vol. 39, pp. 201-225, 1981.
[35] Goldstein, S., “On the Vortex Theory of Screw Propellers,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 123, no. 792, pp. 440-465, 1929.
[36] Hansen, M. H., Hansen, A., Larsen, T. J., Øye, S., Sørensen, P., and Fuglsang, P., “Control Design for a Pitch-Regulated, Variable Speed Wind Turbine,” Risø National Laboratory, Roskilde, Danmark, RISØ-R-1500(EN), 2005.
[37] OrcaFlex Documentation Version 11.2d, Orcina, Cumbria, UK, 2022.
[38] Chuang, T. C., Yang, W. H., and Yang, R. Y., “Experimental and Numerical Study of a Barge-Type FOWT Platform under Wind and Wave Load,” Ocean Engineering, vol. 230, pp. 109015, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85484-
dc.description.abstract本研究預測在新竹外海海氣象條件下,使用半潛式臺大浮台、IEA 15-MW離岸風機以及3×2型式繫纜系統的浮式風機系統之正常運轉性能。本研究以Ansys Aqwa及STAR-CCM+預測水動力特性,以OrcaFlex預測浮式風機系統的繫纜受力及風機氣動力並求解運動方程式以獲得運動響應及風機功率。假設波向與風向相同,本研究考慮七個風向及四個流向的組合,預測在新竹外海一般及高波兩種波況下,浮式風機系統運動響應、風機功率和繫纜受力的平均值及標準差,並討論非黏性流和黏性流模擬方法對預測浮式風機系統性能的影響。模擬結果顯示,在起伏、橫搖及縱搖運動中,黏性對於水動力特性的影響較大。本研究結果顯示,當風機系統主纜繩與臺灣海峽最常見的東北風向夾角為0°時,在一般及高波波況下平均功率約為14 MW及15 MW,最大平均纜繩受力為1.643 MN及1.254 MN,此時風機系統之正常運轉性能相對較佳。zh_TW
dc.description.abstractThis study predicts the normal operating performance of a 15 MW floating wind turbine system equipped with a semi-submersible TaidaFloat platform, an IEA 15-MW offshore wind turbine and a 3×2 mooring design under the metocean conditions of the Hsinchu offshore area in the Taiwan Strait. The potential component of hydrodynamic properties is calculated by Ansys Aqwa, and the viscous component of hydrodynamic properties is obtained with the help of STAR-CCM+. The motion equations are solved by OrcaFlex to obtain the motion response and generator power, as well as the dynamic response of the mooring system and the aerodynamic loading of the wind turbine. Assuming that the wave has the same direction as the wind, this study compares the mean value and standard deviation of the motion response, generator power and mooring line tension between potential and viscous flow approaches by considering the combinations of seven wind directions and four current directions under the common wave and high wave condition in the Hsinchu offshore area. The numerical prediction shows that the viscous effect has a large impact on the hydrodynamic properties in the heave, roll and pitch motions. The angle between the leading mooring line of the system and the dominant wind direction in the Taiwan Strait, which is coming from the northeast, is recommended to be 0°, with the largest mean generator power of around 14 MW and 15 MW, and the maximum mean mooring line tension of 1.643 MN and 1.254 MN under the CW and HW condition, respectively, in order to deliver a relatively favorable performance of the system.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:17:17Z (GMT). No. of bitstreams: 1
U0001-3009202209321400.pdf: 14148309 bytes, checksum: 55332d6099995e9c5ce9226158c02fd7 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsNomenclature I
List of Figures VII
List of Tables XIV
1 Introduction 1
1.1 Literature Review 1
1.2 Motivation 3
2 Wind Turbine System Design 7
2.1 Floating Platform Design 7
2.2 Mooring Design 9
2.3 Wind Turbine Design 11
3 Numerical Methods 17
3.1 Numerical Framework 17
3.2 Potential Flow Modeling of Floating Body 20
3.3 Viscous Flow Modeling of Floating Body 25
3.3.1 Governing Equations 25
3.3.2 Setup of Modeling 31
3.4 Prediction of Hydrodynamic Properties 36
3.5 Modeling of Floating Wind Turbine System 38
3.5.1 Aerodynamics Modeling 38
3.5.2 Control System Modeling 45
3.5.3 Mooring Modeling 51
4 Performance Prediction 53
4.1 Cases Description 53
4.2 Hydrodynamic Properties 57
4.3 Response Amplitude Operator 63
4.4 Motion Response and Generator Power 66
4.4.1 Common Wave Condition 68
4.4.2 High Wave Condition 101
4.5 Mooring Line Tension 133
4.5.1 Common Wave Condition 134
4.5.2 High Wave Condition 151
5 Conclusions 169
Reference 173
-
dc.language.isoen-
dc.title使用半潛式臺大浮台之15 MW浮式風機系統於新竹外海場址正常運轉性能研究zh_TW
dc.titleNormal Operating Performance Study of a 15 MW Floating Wind Turbine System Using Semi-Submersible TaidaFloat Platform in the Hsinchu Offshore Areaen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊瑞源;鍾年勉;江茂雄;鍾承憲;林宗岳zh_TW
dc.contributor.oralexamcommitteeRay-Yeng Yang;Nien-Mien Chung;Mao-Hsiung Chiang;Cheng-Hsien Chung;Tsung-Yue Linen
dc.subject.keyword浮式風機,半潛式浮台,水動力特性,運動響應,風機功率,纜繩受力,正常運轉,新竹外海,臺灣海峽,zh_TW
dc.subject.keywordFloating Wind Turbine,Semi-Submersible,Hydrodynamic Properties,Motion Response,Generator Power,Mooring Line Tension,Normal Operating,Hsinchu Offshore Area,Taiwan Strait,en
dc.relation.page175-
dc.identifier.doi10.6342/NTU202204241-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2022-10-20-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf13.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved