Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85459
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊瑋(Jiunn-Wei Chen)
dc.contributor.authorChien-Yu Chouen
dc.contributor.author周建宇zh_TW
dc.date.accessioned2023-03-19T23:16:54Z-
dc.date.copyright2022-07-19
dc.date.issued2022
dc.date.submitted2022-07-14
dc.identifier.citation[1] R. Abdul Khalek et al. Snowmass 2021 White Paper: Electron Ion Collider for High Energy Physics. In 2022 Snowmass Summer Study, 3 2022. [2] C. Alexandrou, K. Cichy, M. Constantinou, J. R. Green, K. Hadjiyiannakou, K. Jansen, F. Manigrasso, A. Scapellato, and F. Steffens. Lattice continuum-limit study of nucleon quasi-PDFs. Phys. Rev. D, 103:094512, 2021. [3] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, H. Panagopoulos, and F. Steffens. A complete non-perturbative renormalization prescription for quasi-PDFs. Nucl. Phys. B, 923:394–415, 2017. [4] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato, and F. Steffens. Systematic uncertainties in parton distribution functions from lattice QCD simulations at the physical point. Phys. Rev. D, 99(11):114504, 2019. [5] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato, and F. Steffens. Unpolarized and helicity generalized parton distributions of the proton within lattice QCD. Phys. Rev. Lett., 125(26):262001, 2020. [6] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato, and F. Steffens. Transversity GPDs of the proton from lattice QCD. Phys. Rev. D, 105(3):034501, 2022. [7] C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, F. Steffens, and C. Wiese. Updated Lattice Results for Parton Distributions. Phys. Rev. D, 96(1):014513, 2017. [8] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens. Light-Cone Parton Distribution Functions from Lattice QCD. Phys. Rev. Lett., 121(11):112001, 2018. [9] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens. Transversity parton distribution functions from lattice QCD. Phys. Rev. D, 98(9):091503, 2018. [10] C. Alexandrou, K. Cichy, V. Drach, E. Garcia-Ramos, K. Hadjiyiannakou, K. Jansen, F. Steffens, and C. Wiese. Lattice calculation of parton distributions. Phys. Rev. D, 92:014502, 2015. [11] C. Alexandrou, G. Iannelli, K. Jansen, and F. Manigrasso. Parton distribution functions from lattice QCD using Bayes-Gauss-Fourier transforms. Phys. Rev. D, 102(9):094508, 2020. [12] G. S. Bali, V. M. Braun, B. Gläßle, M. Göckeler, M. Gruber, F. Hutzler, P. Korcyl, A. Schäfer, P. Wein, and J.-H. Zhang. Pion distribution amplitude from Euclidean correlation functions: Exploring universality and higher-twist effects. Phys. Rev. D, 98(9):094507, 2018. [13] G. S. Bali et al. Pion distribution amplitude from Euclidean correlation functions. Eur. Phys. J. C, 78(3):217, 2018. [14] I. Balitsky, W. Morris, and A. Radyushkin. Gluon Pseudo-Distributions at Short Distances: Forward Case. Phys. Lett. B, 808:135621, 2020. [15] M. Bhat, K. Cichy, M. Constantinou, and A. Scapellato. Flavor nonsinglet parton distribution functions from lattice QCD at physical quark masses via the pseudodistribution approach. Phys. Rev. D, 103(3):034510, 2021. [16] S. Bhattacharya, K. Cichy, M. Constantinou, J. Dodson, A. Metz, A. Scapellato, and F. Steffens. First Lattice QCD Study of Proton Twist-3 GPDs. 12 2021. [17] S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, A. Scapellato, and F. Steffens. Insights on proton structure from lattice QCD: The twist-3 parton distribution function gT (x). Phys. Rev. D, 102(11):111501, 2020. [18] S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, A. Scapellato, and F. Steffens. One-loop matching for the twist-3 parton distribution gT (x). Phys. Rev. D, 102(3):034005, 2020. [19] S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, A. Scapellato, and F. Steffens. The role of zero-mode contributions in the matching for the twist-3 PDFs e(x) and hL(x). Phys. Rev. D, 102:114025, 2020. [20] S. Bhattacharya, C. Cocuzza, and A. Metz. Generalized quasi parton distributions in a diquark spectator model. Phys. Lett. B, 788:453–463, 2019. [21] V. Braun and D. Müller. Exclusive processes in position space and the pion distribution amplitude. Eur. Phys. J. C, 55:349–361, 2008. [22] V. M. Braun, K. G. Chetyrkin, and B. A. Kniehl. Renormalization of parton quasidistributions beyond the leading order: spacelike vs. timelike. JHEP, 07:161, 2020. [23] V. M. Braun, A. Vladimirov, and J.-H. Zhang. Power corrections and renormalons in parton quasidistributions. Phys. Rev. D, 99(1):014013, 2019. [24] R. A. Briceño, J. V. Guerrero, M. T. Hansen, and C. J. Monahan. Finite-volume effects due to spatially nonlocal operators. Phys. Rev. D, 98(1):014511, 2018. [25] M. Burkardt. Impact parameter space interpretation for generalized parton distributions. Int. J. Mod. Phys. A, 18:173–208, 2003. [26] K. U. Can et al. Lattice QCD evaluation of the Compton amplitude employing the Feynman-Hellmann theorem. Phys. Rev. D, 102:114505, 2020. [27] C. E. Carlson and M. Freid. Lattice corrections to the quark quasidistribution at one-loop. Phys. Rev. D, 95(9):094504, 2017. [28] Y. Chai et al. Parton distribution functions of ∆+ on the lattice. Phys. Rev. D, 102(1):014508, 2020. [29] A. J. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. E. L. Rakow, G. Schierholz, A. Schiller, K. Somfleth, R. D. Young, and J. M. Zanotti. Nucleon Structure Functions from Operator Product Expansion on the Lattice. Phys. Rev. Lett., 118(24):242001, 2017. [30] J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin, and J.-H. Zhang. Nucleon Helicity and Transversity Parton Distributions from Lattice QCD. Nucl. Phys. B, 911:246–273, 2016. [31] J.-W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, Y.-B. Yang, J.-H. Zhang, and Y. Zhao. Parton distribution function with nonperturbative renormalization from lattice QCD. Phys. Rev. D, 97(1):014505, 2018. [32] J.-W. Chen, T. Ishikawa, L. Jin, H.-W. Lin, J.-H. Zhang, and Y. Zhao. Symmetry properties of nonlocal quark bilinear operators on a Lattice. Chin. Phys. C, 43(10):103101, 2019. [33] J.-W. Chen, X. Ji, and J.-H. Zhang. Improved quasi parton distribution through Wilson line renormalization. Nucl. Phys. B, 915:1–9, 2017. [34] J.-W. Chen, L. Jin, H.-W. Lin, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y. Zhao. Lattice Calculation of Parton Distribution Function from LaMET at Physical Pion Mass with Large Nucleon Momentum. 3 2018. [35] J.-W. Chen, H.-W. Lin, and J.-H. Zhang. Pion generalized parton distribution from lattice QCD. Nucl. Phys. B, 952:114940, 2020. [36] L.-B. Chen, W. Wang, and R. Zhu. Master integrals for two-loop QCD corrections to quark quasi PDFs. JHEP, 10:079, 2020. [37] L.-B. Chen, W. Wang, and R. Zhu. Quasi parton distribution functions at NNLO: flavor non-diagonal quark contributions. Phys. Rev. D, 102(1):011503, 2020. [38] L.-B. Chen, W. Wang, and R. Zhu. Next-to-Next-to-Leading Order Calculation of Quasiparton Distribution Functions. Phys. Rev. Lett., 126(7):072002, 2021. [39] M.-H. Chu et al. Nonperturbative Determination of Collins-Soper Kernel from Quasi Transverse-Momentum Dependent Wave Functions. 4 2022. [40] K. Cichy and M. Constantinou. A guide to light-cone PDFs from Lattice QCD: an overview of approaches, techniques and results. Adv. High Energy Phys., 2019:3036904, 2019. [41] M. Constantinou et al. Lattice QCD Calculations of Parton Physics. 2 2022. [42] M. Constantinou and H. Panagopoulos. Perturbative renormalization of quasiparton distribution functions. Phys. Rev. D, 96(5):054506, 2017. [43] W. Detmold, R. G. Edwards, J. J. Dudek, M. Engelhardt, H.-W. Lin, S. Meinel, K. Orginos, and P. Shanahan. Hadrons and Nuclei. Eur. Phys. J. A, 55(11):193, 2019. [44] W. Detmold, A. V. Grebe, I. Kanamori, C. J. D. Lin, S. Mondal, R. J. Perry, and Y. Zhao. Parton physics from a heavy-quark operator product expansion: Lattice QCD calculation of the second moment of the pion distribution amplitude. Phys. Rev. D, 105(3):034506, 2022. [45] W. Detmold, I. Kanamori, C. J. D. Lin, S. Mondal, and Y. Zhao. Moments of pion distribution amplitude using operator product expansion on the lattice. PoS, LATTICE2018:106, 2018. [46] W. Detmold and C. J. D. Lin. Deep-inelastic scattering and the operator product expansion in lattice QCD. Phys. Rev. D, 73:014501, 2006. [47] M. A. Ebert, S. T. Schindler, I. W. Stewart, and Y. Zhao. One-loop Matching for Spin-Dependent Quasi-TMDs. JHEP, 09:099, 2020. [48] M. A. Ebert, S. T. Schindler, I. W. Stewart, and Y. Zhao. Factorization connecting continuum & lattice TMDs. 1 2022. [49] M. A. Ebert, I. W. Stewart, and Y. Zhao. Determining the Nonperturbative CollinsSoper Kernel From Lattice QCD. Phys. Rev. D, 99(3):034505, 2019. [50] M. A. Ebert, I. W. Stewart, and Y. Zhao. Towards Quasi-Transverse Momentum Dependent PDFs Computable on the Lattice. JHEP, 09:037, 2019. [51] M. A. Ebert, I. W. Stewart, and Y. Zhao. Renormalization and Matching for the Collins-Soper Kernel from Lattice QCD. JHEP, 03:099, 2020. [52] Z. Fan, X. Gao, R. Li, H.-W. Lin, N. Karthik, S. Mukherjee, P. Petreczky, S. Syritsyn, Y.-B. Yang, and R. Zhang. Isovector parton distribution functions of the proton on a superfine lattice. Phys. Rev. D, 102(7):074504, 2020. [53] Z. Fan, R. Zhang, and H.-W. Lin. Nucleon gluon distribution function from 2 + 1 + 1-flavor lattice QCD. Int. J. Mod. Phys. A, 36(13):2150080, 2021. [54] Z.-Y. Fan, Y.-B. Yang, A. Anthony, H.-W. Lin, and K.-F. Liu. Gluon Quasi-PartonDistribution Functions from Lattice QCD. Phys. Rev. Lett., 121(24):242001, 2018. [55] S. Fleming, A. H. Hoang, S. Mantry, and I. W. Stewart. Top Jets in the Peak Region: Factorization Analysis with NLL Resummation. Phys. Rev. D, 77:114003, 2008. [56] X. Gao, A. D. Hanlon, S. Mukherjee, P. Petreczky, P. Scior, S. Syritsyn, and Y. Zhao. Lattice QCD Determination of the Bjorken-x Dependence of Parton Distribution Functions at Next-to-Next-to-Leading Order. Phys. Rev. Lett., 128(14):142003, 2022. [57] X. Gao, L. Jin, C. Kallidonis, N. Karthik, S. Mukherjee, P. Petreczky, C. Shugert, S. Syritsyn, and Y. Zhao. Valence parton distribution of the pion from lattice QCD: Approaching the continuum limit. Phys. Rev. D, 102(9):094513, 2020. [58] J. Green, K. Jansen, and F. Steffens. Nonperturbative Renormalization of Nonlocal Quark Bilinears for Parton Quasidistribution Functions on the Lattice Using an Auxiliary Field. Phys. Rev. Lett., 121(2):022004, 2018. [59] J. R. Green, K. Jansen, and F. Steffens. Improvement, generalization, and scheme conversion of Wilson-line operators on the lattice in the auxiliary field approach. Phys. Rev. D, 101(7):074509, 2020. [60] R. Gupta, Y.-C. Jang, B. Yoon, H.-W. Lin, V. Cirigliano, and T. Bhattacharya. Isovector Charges of the Nucleon from 2+1+1-flavor Lattice QCD. Phys. Rev. D, 98:034503, 2018. [61] T. J. Hobbs. Quantifying finite-momentum effects in the quark quasidistribution functions of mesons. Phys. Rev. D, 97(5):054028, 2018. [62] J. Hua, M.-H. Chu, P. Sun, W. Wang, J. Xu, Y.-B. Yang, J.-H. Zhang, and Q.-A. Zhang. Distribution Amplitudes of K* and ϕ at the Physical Pion Mass from Lattice QCD. Phys. Rev. Lett., 127(6):062002, 2021. [63] J. Hua et al. Pion and Kaon Distribution Amplitudes from Lattice QCD. 1 2022. [64] Y.-K. Huo et al. Self-renormalization of quasi-light-front correlators on the lattice. Nucl. Phys. B, 969:115443, 2021. [65] T. Ishikawa, L. Jin, H.-W. Lin, A. Schäfer, Y.-B. Yang, J.-H. Zhang, and Y. Zhao. Gaussian-weighted parton quasi-distribution (Lattice Parton Physics Project (LP3 )). Sci. China Phys. Mech. Astron., 62(9):991021, 2019. [66] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu, and S. Yoshida. Practical quasi parton distribution functions. 9 2016. [67] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu, and S. Yoshida. Renormalizability of quasiparton distribution functions. Phys. Rev. D, 96(9):094019, 2017. [68] T. Izubuchi, X. Ji, L. Jin, I. W. Stewart, and Y. Zhao. Factorization Theorem Relating Euclidean and Light-Cone Parton Distributions. Phys. Rev. D, 98(5):056004, 2018. [69] T. Izubuchi, L. Jin, C. Kallidonis, N. Karthik, S. Mukherjee, P. Petreczky, C. Shugert, and S. Syritsyn. Valence parton distribution function of pion from fine lattice. Phys. Rev. D, 100(3):034516, 2019. [70] X. Ji. Parton Physics on a Euclidean Lattice. Phys. Rev. Lett., 110:262002, 2013. [71] X. Ji. Parton Physics from Large-Momentum Effective Field Theory. Sci. China Phys. Mech. Astron., 57:1407–1412, 2014. [72] X. Ji. Fundamental Properties of the Proton in Light-Front Zero Modes. Nucl. Phys., B:115181, 2020. [73] X. Ji. Why is LaMET an effective field theory for partonic structure? 7 2020. [74] X. Ji, L.-C. Jin, F. Yuan, J.-H. Zhang, and Y. Zhao. Transverse momentum dependent parton quasidistributions. Phys. Rev. D, 99(11):114006, 2019. [75] X. Ji, Y. Liu, and Y.-S. Liu. TMD soft function from large-momentum effective theory. Nucl. Phys. B, 955:115054, 2020. [76] X. Ji, Y. Liu, and Y.-S. Liu. Transverse-momentum-dependent parton distribution functions from large-momentum effective theory. Phys. Lett. B, 811:135946, 2020. [77] X. Ji, Y. Liu, A. Schäfer, W. Wang, Y.-B. Yang, J.-H. Zhang, and Y. Zhao. A Hybrid Renormalization Scheme for Quasi Light-Front Correlations in Large-Momentum Effective Theory. Nucl. Phys. B, 964:115311, 2021. [78] X. Ji, Y. Liu, and I. Zahed. Quasiparton distribution functions: Two-dimensional scalar and spinor QCD. Phys. Rev. D, 99(5):054008, 2019. [79] X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao. Large-momentum effective theory. Rev. Mod. Phys., 93(3):035005, 2021. [80] X. Ji, A. Schäfer, X. Xiong, and J.-H. Zhang. One-Loop Matching for Generalized Parton Distributions. Phys. Rev. D, 92:014039, 2015. [81] X. Ji, P. Sun, X. Xiong, and F. Yuan. Soft factor subtraction and transverse momentum dependent parton distributions on the lattice. Phys. Rev. D, 91:074009, 2015. [82] X. Ji and J.-H. Zhang. Renormalization of quasiparton distribution. Phys. Rev. D, 92:034006, 2015. [83] X. Ji, J.-H. Zhang, and Y. Zhao. More On Large-Momentum Effective Theory Approach to Parton Physics. Nucl. Phys. B, 924:366–376, 2017. [84] X. Ji, J.-H. Zhang, and Y. Zhao. Renormalization in Large Momentum Effective Theory of Parton Physics. Phys. Rev. Lett., 120(11):112001, 2018. [85] Y. Jia, S. Liang, L. Li, and X. Xiong. Solving the Bars-Green equation for moving mesons in two-dimensional QCD. JHEP, 11:151, 2017. [86] Y. Jia, S. Liang, X. Xiong, and R. Yu. Partonic quasidistributions in twodimensional QCD. Phys. Rev. D, 98(5):054011, 2018. [87] B. Joó, J. Karpie, K. Orginos, A. Radyushkin, D. Richards, and S. Zafeiropoulos. Parton Distribution Functions from Ioffe time pseudo-distributions. JHEP, 12:081, 2019. [88] B. Joó, J. Karpie, K. Orginos, A. V. Radyushkin, D. G. Richards, R. S. Sufian, and S. Zafeiropoulos. Pion valence structure from Ioffe-time parton pseudodistribution functions. Phys. Rev. D, 100(11):114512, 2019. [89] B. Joó, J. Karpie, K. Orginos, A. V. Radyushkin, D. G. Richards, and S. Zafeiropoulos. Parton Distribution Functions from Ioffe Time Pseudodistributions from Lattice Calculations: Approaching the Physical Point. Phys. Rev. Lett., 125(23):232003, 2020. [90] J. Karpie, K. Orginos, and S. Zafeiropoulos. Moments of Ioffe time parton distribution functions from non-local matrix elements. JHEP, 11:178, 2018. [91] T. Khan et al. Unpolarized gluon distribution in the nucleon from lattice quantum chromodynamics. Phys. Rev. D, 104(9):094516, 2021. [92] H.-n. Li. Nondipolar Wilson links for quasiparton distribution functions. Phys. Rev. D, 94(7):074036, 2016. [93] Y. Li et al. Lattice QCD Study of Transverse-Momentum Dependent Soft Function. Phys. Rev. Lett., 128(6):062002, 2022. [94] Z.-Y. Li, Y.-Q. Ma, and J.-W. Qiu. Multiplicative Renormalizability of Operators defining Quasiparton Distributions. Phys. Rev. Lett., 122(6):062002, 2019. [95] J. Liang, T. Draper, K.-F. Liu, A. Rothkopf, and Y.-B. Yang. Towards the nucleon hadronic tensor from lattice QCD. Phys. Rev. D, 101(11):114503, 2020. [96] H.-W. Lin. Frontiers in lattice nucleon structure. Int. J. Mod. Phys. A, 35:2030006, 2020. [97] H.-W. Lin. Nucleon Tomography and Generalized Parton Distribution at Physical Pion Mass from Lattice QCD. Phys. Rev. Lett., 127(18):182001, 2021. [98] H.-W. Lin. Nucleon helicity generalized parton distribution at physical pion mass from lattice QCD. Phys. Lett. B, 824:136821, 2022. [99] H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji. Flavor Structure of the Nucleon Sea from Lattice QCD. Phys. Rev. D, 91:054510, 2015. [100] H.-W. Lin, J.-W. Chen, Z. Fan, J.-H. Zhang, and R. Zhang. Valence-Quark Distribution of the Kaon and Pion from Lattice QCD. Phys. Rev. D, 103(1):014516, 2021. [101] H.-W. Lin, J.-W. Chen, T. Ishikawa, and J.-H. Zhang. Improved parton distribution functions at the physical pion mass. Phys. Rev. D, 98(5):054504, 2018. [102] H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y. Zhao. Proton Isovector Helicity Distribution on the Lattice at Physical Pion Mass. Phys. Rev. Lett., 121(24):242003, 2018. [103] H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y. Zhao. Proton Isovector Helicity Distribution on the Lattice at Physical Pion Mass. Phys. Rev. Lett., 121(24):242003, 2018. [104] H.-W. Lin, J.-W. Chen, and R. Zhang. Lattice Nucleon Isovector Unpolarized Parton Distribution in the Physical-Continuum Limit. 11 2020. [105] H.-W. Lin et al. Parton distributions and lattice QCD calculations: a community white paper. Prog. Part. Nucl. Phys., 100:107–160, 2018. [106] H.-W. Lin and R. Zhang. Lattice finite-volume dependence of the nucleon parton distributions. Phys. Rev. D, 100(7):074502, 2019. [107] K.-F. Liu. PDF in PDFs from Hadronic Tensor and LaMET. Phys. Rev. D, 102(7):074502, 2020. [108] K.-F. Liu and S.-J. Dong. Origin of difference between anti-d and anti-u partons in the nucleon. Phys. Rev. Lett., 72:1790–1793, 1994. [109] W.-Y. Liu and J.-W. Chen. Chiral perturbation for large momentum effective field theory. Phys. Rev. D, 104(5):054508, 2021. [110] W.-Y. Liu and J.-W. Chen. Renormalon effects in quasiparton distributions. Phys. Rev. D, 104(9):094501, 2021. [111] Y.-S. Liu, J.-W. Chen, L. Jin, R. Li, H.-W. Lin, Y.-B. Yang, J.-H. Zhang, and Y. Zhao. Nucleon Transversity Distribution at the Physical Pion Mass from Lattice QCD. 10 2018. [112] Y.-S. Liu et al. Unpolarized isovector quark distribution function from lattice QCD: A systematic analysis of renormalization and matching. Phys. Rev. D, 101(3):034020, 2020. [113] Y.-S. Liu et al. Unpolarized isovector quark distribution function from lattice QCD: A systematic analysis of renormalization and matching. Phys. Rev. D, 101(3):034020, 2020. [114] Y.-S. Liu, W. Wang, J. Xu, Q.-A. Zhang, J.-H. Zhang, S. Zhao, and Y. Zhao. Matching generalized parton quasidistributions in the RI/MOM scheme. Phys. Rev. D, 100(3):034006, 2019. [115] Y.-Q. Ma and J.-W. Qiu. QCD Factorization and PDFs from Lattice QCD Calculation. Int. J. Mod. Phys. Conf. Ser., 37:1560041, 2015. [116] Y.-Q. Ma and J.-W. Qiu. Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations. Phys. Rev. Lett., 120(2):022003, 2018. [117] Y.-Q. Ma and J.-W. Qiu. Extracting Parton Distribution Functions from Lattice QCD Calculations. Phys. Rev. D, 98(7):074021, 2018. [118] C. Monahan. Smeared quasidistributions in perturbation theory. Phys. Rev. D, 97(5):054507, 2018. [119] C. Monahan and K. Orginos. Quasi parton distributions and the gradient flow. JHEP, 03:116, 2017. [120] K. Orginos, A. Radyushkin, J. Karpie, and S. Zafeiropoulos. Lattice QCD exploration of parton pseudo-distribution functions. Phys. Rev. D, 96(9):094503, 2017. [121] J. F. Owens, A. Accardi, and W. Melnitchouk. Global parton distributions with nuclear and finite-Q2 corrections. Phys. Rev. D, 87(9):094012, 2013. [122] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky, and W. K. Tung. New generation of parton distributions with uncertainties from global QCD analysis. JHEP, 07:012, 2002. [123] A. Radyushkin. Nonperturbative Evolution of Parton Quasi-Distributions. Phys. Lett. B, 767:314–320, 2017. [124] A. Radyushkin. One-loop evolution of parton pseudo-distribution functions on the lattice. Phys. Rev. D, 98(1):014019, 2018. [125] A. V. Radyushkin. Quasi-parton distribution functions, momentum distributions, and pseudo-parton distribution functions. Phys. Rev. D, 96(3):034025, 2017. [126] A. V. Radyushkin. Quark pseudodistributions at short distances. Phys. Lett. B, 781:433–442, 2018. [127] A. V. Radyushkin. Generalized parton distributions and pseudodistributions. Phys. Rev. D, 100(11):116011, 2019. [128] A. V. Radyushkin. Structure of parton quasi-distributions and their moments. Phys. Lett. B, 788:380–387, 2019. [129] A. V. Radyushkin. Theory and applications of parton pseudodistributions. Int. J. Mod. Phys. A, 35(05):2030002, 2020. [130] J. P. Ralston and B. Pire. Femtophotography of protons to nuclei with deeply virtual Compton scattering. Phys. Rev. D, 66:111501, 2002. [131] G. Rossi and M. Testa. Euclidean versus Minkowski short distance. Phys. Rev. D, 98(5):054028, 2018. [132] G. C. Rossi and M. Testa. Note on lattice regularization and equal-time correlators for parton distribution functions. Phys. Rev. D, 96(1):014507, 2017. [133] A. Salas-Chavira, Z. Fan, and H.-W. Lin. First Glimpse into the Kaon Gluon Parton Distribution Using Lattice QCD. 12 2021. [134] P. Shanahan, M. Wagman, and Y. Zhao. Collins-Soper kernel for TMD evolution from lattice QCD. Phys. Rev. D, 102(1):014511, 2020. [135] P. Shanahan, M. Wagman, and Y. Zhao. Lattice QCD calculation of the CollinsSoper kernel from quasi-TMDPDFs. Phys. Rev. D, 104(11):114502, 2021. [136] P. Shanahan, M. L. Wagman, and Y. Zhao. Nonperturbative renormalization of staple-shaped Wilson line operators in lattice QCD. Phys. Rev. D, 101(7):074505, 2020. [137] C. Shugert, X. Gao, T. Izubichi, L. Jin, C. Kallidonis, N. Karthik, S. Mukherjee, P. Petreczky, S. Syritsyn, and Y. Zhao. Pion valence quark PDF from lattice QCD. In 37th International Symposium on Lattice Field Theory, 1 2020. [138] G. Spanoudes and H. Panagopoulos. Renormalization of Wilson-line operators in the presence of nonzero quark masses. Phys. Rev. D, 98(1):014509, 2018. [139] I. W. Stewart and Y. Zhao. Matching the quasiparton distribution in a momentum subtraction scheme. Phys. Rev. D, 97(5):054512, 2018. [140] R. S. Sufian, C. Egerer, J. Karpie, R. G. Edwards, B. Joó, Y.-Q. Ma, K. Orginos, J.- W. Qiu, and D. G. Richards. Pion Valence Quark Distribution from Current-Current Correlation in Lattice QCD. Phys. Rev. D, 102(5):054508, 2020. [141] W. Wang, J.-H. Zhang, S. Zhao, and R. Zhu. Complete matching for quasidistribution functions in large momentum effective theory. Phys. Rev. D, 100(7):074509, 2019. [142] W. Wang and S. Zhao. On the power divergence in quasi gluon distribution function. JHEP, 05:142, 2018. [143] W. Wang, S. Zhao, and R. Zhu. Gluon quasidistribution function at one loop. Eur. Phys. J. C, 78(2):147, 2018. [144] X. Xiong, X. Ji, J.-H. Zhang, and Y. Zhao. One-loop matching for parton distributions: Nonsinglet case. Phys. Rev. D, 90(1):014051, 2014. [145] X. Xiong, T. Luu, and U.-G. Meißner. Quasi-Parton Distribution Function in Lattice Perturbation Theory. 4 2017. [146] X. Xiong and J.-H. Zhang. One-loop matching for transversity generalized parton distribution. Phys. Rev. D, 92(5):054037, 2015. [147] J. Xu, Q.-A. Zhang, and S. Zhao. Light-cone distribution amplitudes of vector meson in a large momentum effective theory. Phys. Rev. D, 97(11):114026, 2018. [148] S.-S. Xu, L. Chang, C. D. Roberts, and H.-S. Zong. Pion and kaon valence-quark parton quasidistributions. Phys. Rev. D, 97(9):094014, 2018. [149] J.-H. Zhang, J.-W. Chen, X. Ji, L. Jin, and H.-W. Lin. Pion Distribution Amplitude from Lattice QCD. Phys. Rev. D, 95(9):094514, 2017. [150] J.-H. Zhang, J.-W. Chen, L. Jin, H.-W. Lin, A. Schäfer, and Y. Zhao. First direct lattice-QCD calculation of the x-dependence of the pion parton distribution function. Phys. Rev. D, 100(3):034505, 2019. [151] J.-H. Zhang, J.-W. Chen, and C. Monahan. Parton distribution functions from reduced Ioffe-time distributions. Phys. Rev. D, 97(7):074508, 2018. [152] J.-H. Zhang, X. Ji, A. Schäfer, W. Wang, and S. Zhao. Accessing Gluon Parton Distributions in Large Momentum Effective Theory. Phys. Rev. Lett., 122(14):142001, 2019. [153] J.-H. Zhang, L. Jin, H.-W. Lin, A. Schäfer, P. Sun, Y.-B. Yang, R. Zhang, Y. Zhao, and J.-W. Chen. Kaon Distribution Amplitude from Lattice QCD and the Flavor SU(3) Symmetry. Nucl. Phys. B, 939:429–446, 2019. [154] K. Zhang, Y.-Y. Li, Y.-K. Huo, A. Schäfer, P. Sun, and Y.-B. Yang. RI/MOM renormalization of the parton quasidistribution functions in lattice regularization. Phys. Rev. D, 104(7):074501, 2021. [155] Q.-A. Zhang et al. Lattice QCD Calculations of Transverse-Momentum-Dependent Soft Function through Large-Momentum Effective Theory. Phys. Rev. Lett., 125(19):192001, 2020. [156] R. Zhang, Z. Fan, R. Li, H.-W. Lin, and B. Yoon. Machine-learning prediction for quasiparton distribution function matrix elements. Phys. Rev. D, 101(3):034516, 2020. [157] R. Zhang, C. Honkala, H.-W. Lin, and J.-W. Chen. Pion and kaon distribution amplitudes in the continuum limit. Phys. Rev. D, 102(9):094519, 2020. [158] R. Zhang, H.-W. Lin, and B. Yoon. Probing nucleon strange and charm distributions with lattice QCD. Phys. Rev. D, 104(9):094511, 2021. [159] Y. Zhao. Theoretical Developments of the LaMET Approach to Parton Physics. PoS, LATTICE2019:267, 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85459-
dc.description.abstract大動量有效理論 (Large momentum effective theory) 允許藉由使用大動量匹配夸克雙線性強子矩陣元素來提取晶格量子色動力學中的強子部分子分佈函數。我們計算了混合-RI/MOM 方案 (scheme) 下的未極化、螺旋性和橫向等矢量部份子分佈函數 (isovector parton distribution function) 和無偏斜廣義部分子分佈的匹配核(matching kernel)。此重整化方案在 Wilson 線長度小於 z_s 時使用 RI/MOM,否則使用質量減法方案。根據混合方案之設計,其在 zs → ∞ 之極限恢復為非混合方案。在相反的極限 z→0,得到自重整化方案。當參數 p^z_R = 0 和 µ_R*z_s ≪ 1 時,混合-RI/MOM 方案與混合-比率方案乘以分佈函數的電荷相符。我們還討論了改進的最小減法方案 (modified minimal subtraction scheme) 中傅里葉變換和 ε 展開的可交換性。zh_TW
dc.description.abstractLarge momentum effective theory allows extraction of hadron parton distribution functions in lattice QCD by matching them to quark bilinear matrix elements of hadrons with large momenta. We calculate the matching kernels for the unpolarized, helicity, and transversity isovector parton distribution functions and skewless generalized parton distributions of all hadrons in the hybrid-RI/MOM scheme. This renormalization scheme uses RI/MOM when the Wilson line length is less then zs, otherwise a mass subtraction scheme is used. By design, the non-hybrid scheme is recovered as zs → ∞. In the opposite limit, zs → 0, the self renormalization scheme is obtained. When the parameters p^z_R = 0 and µ_R*z_s ≪ 1, the hybrid-RI/MOM scheme coincides with the hybrid-ratio scheme times the charge of the PDF. We also discuss the subtlety related to the commutativity of Fourier transform and ϵ expansion in the MS scheme.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:54Z (GMT). No. of bitstreams: 1
U0001-1706202222581400.pdf: 659613 bytes, checksum: 5ffd626ccb64833df7ea3ecff94a482d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi Chapter 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2 Review of the self and hybrid renormalization schemes 5 2.1 Hybrid scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Self renormalization scheme as a special hybrid scheme . . . . . . . 10 2.3 Hybrid-ratio scheme as a special case of hybrid-RI/MOM scheme . . 11 Chapter 3 Matching factor of quasi-pdf in the hybrid scheme 15 3.1 Purely MS to MS matching . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Ratio and hybrid-ratio schemes . . . . . . . . . . . . . . . . . . . . 20 3.3 Hybrid-RI/MOM scheme . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 4 Conclusion 33 References 35 Appendix A — Fourier transform of singular functions 53 A.1 Performing the Fourier transform first . . . . . . . . . . . . . . . . . 53 A.2 Performing the ϵ expansion first . . . . . . . . . . . . . . . . . . . . 55 A.3 δ function at infinite ξ . . . . . . . . . . . . . . . . . . . . . . . . . 56 A.4 Derivation of Eq.(3.19) . . . . . . . . . . . . . . . . . . . . . . . . 58
dc.language.isoen
dc.subject大動量有效理論zh_TW
dc.subject部分子分佈函數zh_TW
dc.subject混合重整化方案zh_TW
dc.subjectParton Distribution Functionsen
dc.subjectLaMETen
dc.subjectHybrid Renormalization Schemeen
dc.title準部分分佈的一階混合重整化匹配核zh_TW
dc.titleOne-Loop Hybrid Renormalization Matching Kernels for Quasi-Parton Distributionsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0001-9243-3281
dc.contributor.advisor-orcid陳俊瑋(0000-0002-8650-9371)
dc.contributor.oralexamcommittee川合 光(Hikaru Kawai),蔣正偉(Cheng-Wei Chiang)
dc.contributor.oralexamcommittee-orcid,蔣正偉(0000-0003-1716-0169)
dc.subject.keyword大動量有效理論,部分子分佈函數,混合重整化方案,zh_TW
dc.subject.keywordLaMET,Parton Distribution Functions,Hybrid Renormalization Scheme,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202200993
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
dc.date.embargo-lift2022-07-19-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-1706202222581400.pdf644.15 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved