請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85450完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊達(Guin-Dar Lin) | |
| dc.contributor.author | Yi-Cheng Wang | en |
| dc.contributor.author | 王奕誠 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:16:46Z | - |
| dc.date.copyright | 2022-07-26 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-18 | |
| dc.identifier.citation | [1] A. Solntsev, G. Agarwal, and Y. Kivshar, “Metasurfaces for quantum photonics,” Nat. Photonics, vol. 15, p. 327–336, 2020. [2] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, “Cooperative resonances in light scattering from two-dimensional atomic arrays,” Phys. Rev. Lett., vol. 118, p. 113601, Mar 2017. [3] J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M. Stamper-Kurn, C. Gross, and I. Bloch, “A subradiant optical mirror formed by a single structured atomic layer,” Nature, vol. 583, p. 369–374, 2020. [4] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, “Exponential improvement in photon storage fidelities using subradiance and “selective radiance” in atomic arrays,” Phys. Rev. X, vol. 7, p. 031024, Aug 2017. [5] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Topological quantum optics in two-dimensional atomic arrays,” Phys. Rev. Lett., vol. 119, p. 023603, Jul 2017. [6] R. Bekenstein, I. Pikovski, H. Pichler, E. Shahmoon, S. F. Yelin, and M. D. Lukin, “Quantum metasurfaces with atom arrays,” Nat. Phys., vol. 16, p. 676–681, 2020. [7] R. H. Lehmberg, “Radiation from an n-atom system. i. general formalism,” Phys. Rev. A, vol. 2, pp. 883–888, Sep 1970. [8] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-hermitian physics and pt symmetry,” Nat. Phys., vol. 14, p. 11–19, 2018. [9] Y. Ashida, Z. Gong, and M. Ueda, “Non-hermitian physics,” Advances in Physics, vol. 69, no. 3, pp. 249–435, 2020. [10] N. Moiseyev, Non-Hermitian Quantum Mechanics. New York: Cambridge University Press, 2011. [11] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Garcia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, “Enhanced sensitivity at higher-order exceptional points,” Nature, vol. 548, p. 187–191, 2017. [12] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D. Joannopoulos, M. Soljačić, and B. Zhen, “Observation of bulk fermi arc and polarization half charge from paired exceptional points,” Science, vol. 359, no. 6379, pp. 1009–1012, 2018. [13] S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity–time symmetry and exceptional points in photonics,” Nat. Mater., vol. 18, p. 783–798, 2019. [14] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, “Spawning rings of exceptional points out of dirac cones,” Nature, vol. 525, p. 354–358, 2015. [15] A. Cerjan, S. Huang, M. Wang, K. P. Chen, Y. Chong, and M. C. Rechtsman, “Experimental realization of a weyl exceptional ring,” Nat. Photonics, vol. 13, p. 623–628, 2019. [16] T. Hofmann, T. Helbig, F. Schindler, N. Salgo, M. Brzezińska, M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši, C. H. Lee, A. Bilušić, R. Thomale, and T. Neupert, “Reciprocal skin effect and its realization in a topolectrical circuit,” Phys. Rev. Research, vol. 2, p. 023265, Jun 2020. [17] W. Gao, X. Li, M. Bamba, and J. Kono, “Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons,” Nat. Photonics, vol. 12, p. 362–367, 2018. [18] R. Su, E. Estrecho, D. Biegańska, Y. Huang, M. Wurdack, M. Pieczarka, A. G. Truscott, T. C. H. Liew, E. A. Ostrovskaya, and Q. Xiong, “Direct measurement of a non-hermitian topological invariant in a hybrid light-matter system,” Science Advances, vol. 7, no. 45, p. eabj8905, 2021. [19] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, “Non-hermitian boundary modes and topology,” Phys. Rev. Lett., vol. 124, p. 056802, Feb 2020. [20] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, “Topological origin of non-hermitian skin effects,” Phys. Rev. Lett., vol. 124, p. 086801, Feb 2020. [21] K. Zhang, Z. Yang, and C. Fang, “Correspondence between winding numbers and skin modes in non-hermitian systems,” Phys. Rev. Lett., vol. 125, p. 126402, Sep 2020. [22] S. Yao and Z. Wang, “Edge states and topological invariants of non-hermitian systems,” Phys. Rev. Lett., vol. 121, p. 086803, Aug 2018. [23] V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, “Non-hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points,” Phys. Rev. B, vol. 97, p. 121401, Mar 2018. [24] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, “Biorthogonal bulk-boundary correspondence in non-hermitian systems,” Phys. Rev. Lett., vol. 121, p. 026808, Jul 2018. [25] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, “Exceptional topology of non-hermitian systems,” Rev. Mod. Phys., vol. 93, p. 015005, Feb 2021. [26] K. Yokomizo and S. Murakami, “Non-bloch band theory of non-hermitian systems,” Phys. Rev. Lett., vol. 123, p. 066404, Aug 2019. [27] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, “Photonic band structure of two-dimensional atomic lattices,” Phys. Rev. A, vol. 96, p. 063801, Dec 2017. [28] Y.-R. Zhen, K. H. Fung, and C. T. Chan, “Collective plasmonic modes in two-dimensional periodic arrays of metal nanoparticles,” Phys. Rev. B, vol. 78, p. 035419, Jul 2008. [29] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables. Washington: US Govt Print Office, 1972. [30] J. Javanainen and R. Rajapakse, “Light propagation in systems involving two-dimensional atomic lattices,” Phys. Rev. A, vol. 100, p. 013616, Jul 2019. [31] M. Fruchart, R. Hanai, P. B. Littlewood, and V. Vitelli, “Non-reciprocal phase transitions,” Nature, vol. 592, p. 363–369, 2021. [32] H. Shen, B. Zhen, and L. Fu, “Topological band theory for non-hermitian hamiltonians,” Phys. Rev. Lett., vol. 120, p. 146402, Apr 2018. [33] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, “Edge modes, de generacies, and topological numbers in non-hermitian systems,” Phys. Rev. Lett., vol. 118, p. 040401, Jan 2017. [34] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, “Topological phases of non-hermitian systems,” Phys. Rev. X, vol. 8, p. 031079, Sep 2018. [35] Z. Yang, A. P. Schnyder, J. Hu, and C.-K. Chiu, “Fermion doubling theorems in two-dimensional non-hermitian systems for fermi points and exceptional points,” Phys. Rev. Lett., vol. 126, p. 086401, Feb 2021. [36] N. Hatano and D. R. Nelson, “Localization transitions in non-hermitian quantum mechanics,” Phys. Rev. Lett., vol. 77, pp. 570–573, Jul 1996. [37] N. Hatano and D. R. Nelson, “Vortex pinning and non-hermitian quantum mechanics,” Phys. Rev. B, vol. 56, pp. 8651–8673, Oct 1997. [38] N. Hatano and D. R. Nelson, “Non-hermitian delocalization and eigenfunctions,” Phys. Rev. B, vol. 58, pp. 8384–8390, Oct 1998. [39] S.-G. Hwang, “Cauchy’s interlace theorem for eigenvalues of hermitian matrices,” The American Mathematical Monthly, vol. 111, no. 2, pp. 157–159, 2004. [40] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, “Symmetry and topology in non-hermitian physics,” Phys. Rev. X, vol. 9, p. 041015, Oct 2019. [41] C. Scheibner, W. T. M. Irvine, and V. Vitelli, “Non-hermitian band topology and skin modes in active elastic media,” Phys. Rev. Lett., vol. 125, p. 118001, Sep 2020. [42] K. Zhang, Z. Yang, and C. Fang, “Universal non-hermitian skin effect in two and higher dimensions,” Nat. Commun., vol. 13, p. 2496, 2022. [43] C. H. Lee, L. Li, and J. Gong, “Hybrid higher-order skin-topological modes in non-reciprocal systems,” Phys. Rev. Lett., vol. 123, p. 016805, Jul 2019. [44] K. Kawabata, M. Sato, and K. Shiozaki, “Higher-order non-hermitian skin effect,” Phys. Rev. B, vol. 102, p. 205118, Nov 2020. [45] C.-R. Mann, T. J. Sturges, G. Weick, W. L. Barnes, and E. Mariani, “Manipulating type-i and type-ii dirac polaritons in cavity-embedded honeycomb metasurfaces,” Nat. Commun., vol. 9, p. 2194, 2018. [46] C.-R. Mann, S. A. R. Horsley, and E. Mariani, “Tunable pseudo-magnetic fields for polaritons in strained metasurfaces,” Nat. Photonics, vol. 14, p. 669–674, 2020. [47] C. Coulais, R. Fleury, and J. van Wezel, “Topology and broken hermiticity,” Nat. Phys., vol. 17, p. 9–13, 2021. [48] L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics, vol. 8, p. 821–829, 2014. [49] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, “Topological photonics,” Rev. Mod. Phys., vol. 91, p. 015006, Mar 2019. [50] F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensed-matter realization of the “parity anomaly”,” Phys. Rev. Lett., vol. 61, pp. 2015–2018, Oct 1988. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85450 | - |
| dc.description.abstract | 本論文研究單層原子陣列形成的光學鏡的非厄米物理。在這種有光與物質交互作用的開放量子系統中,只關注物質的部分會使得非厄米行為無所不在。傳統 Bloch 能帶理論的分析受到了對非厄米系統的研究的挑戰,其行為取決於邊界條件,並且能量頻譜拓譜在此扮演了重要的角色。本研究討論二維原子陣列在不同邊界條件下的行為。我們發現,藉由降低正方形原子晶格的晶體對稱性,例外點可以出現在動量空間中。從這個例外點的 Riemann 曲面拓樸而來的在複數能量平面上的非尋常卷繞造成了非厄米趨膚效應,其中有大量的特徵態指數性的集中於系統的開放邊界上。我們的結果表明這系統的非厄米趨膚效應是取決於系統的幾何形狀的,並且這些趨膚模態表現出了源於長程交互作用的無標度行為。此外,我們展示不需要做掃頻的量測便可以從有限系統的光的部分獲取塊材能帶結構。 | zh_TW |
| dc.description.abstract | In this thesis, we study the non-Hermitian physics of an optical mirror formed by a single layer of an atomic array. For such an open quantum system with light-matter interaction, the non-Hermitian behavior is ubiquitous when we only focus on the matter aspect. The conventional Bloch band theory is challenged by the studies of non-Hermitian systems, which depend crucially on the boundary conditions, and their energy spectrum topologies play important roles. Here we study the two-dimensional~(2D) atomic arrays under different boundary conditions. We find the occurrence of exceptional points in the reciprocal space by lowering the crystalline symmetry of a square atomic lattice. The nontrivial winding in the complex energy plane arising from the Riemann surface topologies of exceptional points gives rise to the non-Hermitian skin effect, where an extensive number of eigenstates are exponentially localized at open boundaries. We show that the non-Hermitian skin effect here is geometry-dependent, and these skin modes have a scale-free behavior due to the long-range interaction. Furthermore, we can extract the bulk band structures from the light aspect of a finite system, where the detuning-resolved measurement is no longer necessary. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:46Z (GMT). No. of bitstreams: 1 U0001-0707202219212300.pdf: 8187478 bytes, checksum: 4c666cc272e313bf5aabe6e6200ca062 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員審定書 i 致謝 iii 摘要 v Abstract vii Contents ix Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Outline of the thesis 3 Chapter 2 Arrays of quantum emitters 5 2.1 Scattering problem 5 2.1.1 Macroscopic theory 6 2.1.2 Free-space resonant dipole-dipole interaction 7 2.1.3 Many-body problem of quantum emitters 9 2.1.4 Coupled dipole equation 11 2.2 Two-dimensional atomic lattice 13 2.2.1 Infinite lattice in free space 14 2.2.2 Emergence of light cone 18 2.2.3 Bravais and non-Bravais lattices 21 2.3 Euler-Maclaurin formula 22 2.3.1 Two-dimensional generalization 23 2.3.2 Correction term 27 2.3.3 Applications on infinite summations 30 2.3.4 Collective Lamb shift at normal incidence 32 2.3.5 Off-diagonal terms 36 2.4 Atomic lattice in a ribbon geometry 37 Chapter 3 Non-Hermitian physics 41 3.1 Exceptional point 42 3.1.1 Exceptional points and PT-symmetry 42 3.1.2 Non-reciprocal coupling and gain/loss 45 3.1.3 Exceptional points and Dirac points 45 3.1.4 Topologies of exceptional points 48 3.2 Non-Hermitian skin effect 50 3.2.1 Breakdown of conventional band theory 50 3.2.2 Non-Hermitian skin effect in Hatano-Nelson model 53 3.2.3 Energy spectra topology 56 3.2.4 Non-Bloch band theory 60 Chapter 4 A non-Hermitian optical atomic mirror 63 4.1 Non-Hermitian degeneracy points in bulk band structures 64 4.1.1 Non-Hermitian symmetry classification and breaking 66 4.2 Geometry-dependent non-Hermitian skin effect in a ribbon geometry 70 4.2.1 Bulk band structure of a ribbon geometry 71 4.2.2 Point-gap topology and skin modes 74 4.2.3 Scale-free localization 77 4.2.4 Breakdown of generalized Brillouin zone and symmetry classification 79 4.3 Geometry-dependent non-Hermitian skin effect in a 2D finite-size atomic array 83 4.3.1 Corner accumulation 85 4.3.2 Scale-free localization 87 Chapter 5 Simulations on optical responses of atomic mirror 89 5.1 The lightest mirror in the world 90 5.2 Scattering matrix and extraction of bulk properties 93 Chapter 6 Summary 97 References 99 | |
| dc.language.iso | en | |
| dc.subject | 能量頻譜拓樸 | zh_TW |
| dc.subject | 偶極-偶極交互作用 | zh_TW |
| dc.subject | 原子陣列 | zh_TW |
| dc.subject | 例外點 | zh_TW |
| dc.subject | 非厄米趨膚效應 | zh_TW |
| dc.subject | 非厄米物理 | zh_TW |
| dc.subject | Dipole-dipole interaction | en |
| dc.subject | Non-Hermitian skin effect | en |
| dc.subject | Exceptional point | en |
| dc.subject | Energy spectrum topology | en |
| dc.subject | Non-Hermitian physics | en |
| dc.subject | Atomic mirror | en |
| dc.title | 光學原子鏡的非厄米物理 | zh_TW |
| dc.title | Non-Hermitian physics of an optical atomic mirror | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 任祥華(Hsiang-Hua Jen),游至仕(Jhih-Shih You) | |
| dc.subject.keyword | 原子陣列,偶極-偶極交互作用,非厄米物理,能量頻譜拓樸,例外點,非厄米趨膚效應, | zh_TW |
| dc.subject.keyword | Atomic mirror,Dipole-dipole interaction,Non-Hermitian physics,Energy spectrum topology,Exceptional point,Non-Hermitian skin effect, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU202201338 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-07-01 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0707202219212300.pdf | 8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
