Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85447
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳進庭(Chin-Tin Chen)
dc.contributor.authorChien-Yu Chenen
dc.contributor.author陳芊伃zh_TW
dc.date.accessioned2023-03-19T23:16:44Z-
dc.date.copyright2022-07-22
dc.date.issued2022
dc.date.submitted2022-07-15
dc.identifier.citation1. Wilson, W.R. and M.P. Hay, Targeting hypoxia in cancer therapy. Nature Reviews Cancer, 2011. 11(6): p. 393-410. 2. Boedtkjer, E. and S.F. Pedersen, The Acidic Tumor Microenvironment as a Driver of Cancer, in Annual Review of Physiology, Vol 82, M.T. Nelson and K. Walsh, Editors. 2020. p. 103-126. 3. Harris, A.L., Hypoxia - A key regulatory factor in tumour growth. Nature Reviews Cancer, 2002. 2(1): p. 38-47. 4. Jing, X.M., et al., Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Molecular Cancer, 2019. 18(1). 5. Phillips, R.M., Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemotherapy and Pharmacology, 2016. 77(3): p. 441-457. 6. Ross, D., et al., NAD(P)H : quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chemico-Biological Interactions, 2000. 129(1-2): p. 77-97. 7. Li, Y., L. Zhao, and X.F. Li, Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Frontiers in Oncology, 2021. 11. 8. DiSilvestro, P.A., et al., Phase III Randomized Trial of Weekly Cisplatin and Irradiation Versus Cisplatin and Tirapazamine and Irradiation in Stages IB2, IIA, IIB, IIIB, and IVA Cervical Carcinoma Limited to the Pelvis: A Gynecologic Oncology Group Study. Journal of Clinical Oncology, 2014. 32(5): p. 458-464. 9. von Pawel, J., et al., Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: A report of the international CATAPULT I study group. Journal of Clinical Oncology, 2000. 18(6): p. 1351-1359. 10. Shulman, L.N., et al., Phase I trial of the hypoxic cell cytotoxin tirapazamine with concurrent radiation therapy in the treatment of refractory solid tumors. International Journal of Radiation Oncology Biology Physics, 1999. 44(2): p. 349-353. 11. Agnew, J., Medicine in the Old West: A History, 1850-1900. 2010: McFarland. 12. Ndagi, U., N. Mhlongo, and M.E. Soliman, Metal complexes in cancer therapy - an update from drug design perspective. Drug Design Development and Therapy, 2017. 11: p. 599-616. 13. Bruijnincx, P.C.A. and P.J. Sadler, New trends for metal complexes with anticancer activity. Current Opinion in Chemical Biology, 2008. 12(2): p. 197-206. 14. Tumer, Z. and L.B. Moller, Menkes disease. European Journal of Human Genetics, 2010. 18(5): p. 511-518. 15. Kepp, K.P. and R. Squitti, Copper imbalance in Alzheimer's disease: Convergence of the chemistry and the clinic. Coordination Chemistry Reviews, 2019. 397: p. 168-187. 16. Miotto, M.C., et al., Copper Binding to the N-Terminally Acetylated, Naturally Occurring Form of Alpha-Synuclein Induces Local Helical Folding. Journal of the American Chemical Society, 2015. 137(20): p. 6444-6447. 17. Santini, C., et al., Advances in Copper Complexes as Anticancer Agents. Chemical Reviews, 2014. 114(1): p. 815-862. 18. Xie, H.Q. and Y.J. Kang, Role of Copper in Angiogenesis and Its Medicinal Implications. Current Medicinal Chemistry, 2009. 16(10): p. 1304-1314. 19. Adams, J., Development of the proteasome inhibitor PS-341. Oncologist, 2002. 7(1): p. 9-16. 20. Daniel, K.G., et al., Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochemical Pharmacology, 2004. 67(6): p. 1139-1151. 21. Vavere, A.L. and J.S. Lewis, Cu-ATSM: A radiopharmaceutical for the PET imaging of hypoxia. Dalton Transactions, 2007(43): p. 4893-4902. 22. Wadas, T.J., et al., Copper chelation chemistry and its role in copper radiopharmaceuticals. Current Pharmaceutical Design, 2007. 13(1): p. 3-16. 23. Blower, P.J., et al., Towards new transition metal-based hypoxic selective agents for therapy and imaging. Journal of Inorganic Biochemistry, 2001. 85(1): p. 15-22. 24. Silva, V.L., et al., Enhanced selectivity, cellular uptake, and in vitro activity of an intrinsically fluorescent copper-tirapazamine nanocomplex for hypoxia targeted therapy in prostate cancer. Biomaterials Science, 2020. 8(9): p. 2420-2433. 25. Sahoo, S.K. and V. Labhasetwar, Nanotech approaches to delivery and imaging drug. Drug Discovery Today, 2003. 8(24): p. 1112-1120. 26. Wang, A.Z., R. Langer, and O.C. Farokhzad, Nanoparticle Delivery of Cancer Drugs, in Annual Review of Medicine, Vol 63, C.T. Caskey, C.P. Austin, and J.A. Hoxie, Editors. 2012. p. 185-198. 27. Hong, S., et al., Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics, 2020. 12(7). 28. Elzoghby, A.O., W.M. Samy, and N.A. Elgindy, Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 2012. 157(2): p. 168-182. 29. Vandelli, M.A., et al., Gelatin microspheres crosslinked with D,L-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. International Journal of Pharmaceutics, 2001. 215(1-2): p. 175-184. 30. Sahin, S., et al., Preparation, characterization and in vivo distribution of terbutaline sulfate loaded albumin microspheres. Journal of Controlled Release, 2002. 82(2-3): p. 345-358. 31. Kratz, F., Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 2008. 132(3): p. 171-183. 32. Irache, J.M., et al., Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini-Reviews in Medicinal Chemistry, 2005. 5(3): p. 293-305. 33. Yoo, J., et al., Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems. Cancers, 2019. 11(5). 34. Spada, A., et al., The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Molecular Pharmaceutics, 2021. 18(5): p. 1862-1894. 35. Miele, E., et al., Albumin-bound formulation of paclitaxel (Abraxane (R) ABI-007) in the treatment of breast cancer. International Journal of Nanomedicine, 2009. 4(1): p. 99-105. 36. Weber, C., et al., Desolvation process and surface characterisation of protein nanoparticles. International Journal of Pharmaceutics, 2000. 194(1): p. 91-102. 37. Kim, B., et al., Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer. Asian Journal of Pharmaceutical Sciences, 2016. 11(6): p. 708-714. 38. Galisteo-Gonzalez, F. and J.A. Molina-Bolivar, Systematic study on the preparation of BSA nanoparticles. Colloids and Surfaces B-Biointerfaces, 2014. 123: p. 286-292. 39. Bidkar, A.P., P. Sanpui, and S.S. Ghosh, Red Blood Cell-Membrane-Coated Poly(Lactic-co-glycolic Acid) Nanoparticles for Enhanced Chemo- and Hypoxia-Activated Therapy. Acs Applied Bio Materials, 2019. 2(9): p. 4077-4086. 40. Zhang, K., et al., Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials, 2018. 185: p. 301-309. 41. Silva, V., Development of Novel Cupric-Tirapazamine Liposomes for Hypoxia Selective Therapy. 2018, University of East Anglia. 42. Migneault, I., et al., Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 2004. 37(5): p. 790-802. 43. Wertheimer, C.M., et al., Enhancing Rose Bengal-Photosensitized Protein Crosslinking in the Cornea. Investigative Ophthalmology & Visual Science, 2019. 60(6): p. 1845-1852. 44. Gao, Y., et al., A novel preparative method for nanoparticle albumin-bound paclitaxel with high drug loading and its evaluation both in vitro and in vivo. Plos One, 2021. 16(4). 45. Bagchi, B., The hydrophobic effect, in Water in Biological and Chemical Processes: From Structure and Dynamics to Function, B. Bagchi, Editor. 2013, Cambridge University Press: Cambridge. p. 215-242. 46. Danaei, M., et al., Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 2018. 10(2). 47. Lee, R.-m. and P.-s. Lin, Induction of tumor hypoxia for cancer therapy. 2013, U.S. Patent No. 8,591,921. 48. Alotaibi, M.R., et al., Stilbene 5c, a microtubule poison with vascular disrupting properties that induces multiple modes of growth arrest and cell death. Biochemical Pharmacology, 2013. 86(12): p. 1688-1698. 49. Durrant, D., et al., cis-3,4 ',5-Trimethoxy-3 '-aminostilbene disrupts tumor vascular perfusion without damaging normal organ perfusion. Cancer Chemotherapy and Pharmacology, 2009. 63(2): p. 191-200. 50. Sun, X.K., et al., Ce6-C6-TPZ co-loaded albumin nanoparticles for synergistic combined PDT-chemotherapy of cancer. Journal of Materials Chemistry B, 2019. 7(38): p. 5797-5807. 51. Hay, M.P., et al., Structure-activity relationships of 1,2,4-benzotriazine 1,4-dioxides as hypoxia-selective analogues of tirapazamine. Journal of Medicinal Chemistry, 2003. 46(1): p. 169-182. 52. Hicks, K.O., et al., Pharmacokinetic/Pharmacodynamic Modeling Identifies SN30000 and SN29751 as Tirapazamine Analogues with Improved Tissue Penetration and Hypoxic Cell Killing in Tumors. Clinical Cancer Research, 2010. 16(20): p. 4946-4957. 53. Zhao, J., et al., Zwitterionic Block Copolymer Prodrug Micelles for pH Responsive Drug Delivery and Hypoxia-Specific Chemotherapy. Molecular Pharmaceutics, 2022. 19(6): p. 1766-1777. 54. Urquiola, C., et al., New copper-based complexes with quinoxaline N-1,N-4-dioxide derivatives, potential antitumoral agents. Journal of Inorganic Biochemistry, 2008. 102(1): p. 119-126. 55. Torre, M.H., et al., Novel Cu(II) quinoxaline N-1,N-4-dioxide as selective hypoxic cytotoxins. European Journal of Medicinal Chemistry, 2005. 40(5): p. 473-480. 56. Naik, D.V., C.F. Jewell, and S.G. Schulman, BINDING OF CUPRIC IONS TO BOVINE SERUM-ALBUMIN. Journal of Pharmaceutical Sciences, 1975. 64(7): p. 1243-1245. 57. Bal, W., et al., Binding of transition metal ions to albumin: Sites, affinities and rates. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013. 1830(12): p. 5444-5455. 58. Merodio, M., et al., Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. European Journal of Pharmaceutical Sciences, 2001. 12(3): p. 251-259. 59. Li, F.Q., et al., Ciprofloxacin-loaded bovine serum albumin microspheres: preparation and drug-release in vitro. Journal of Microencapsulation, 2001. 18(6): p. 825-829. 60. Oryan, A., et al., Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. International Journal of Biological Macromolecules, 2018. 107: p. 678-688. 61. Luo, H., et al., Non-covalent assembly of albumin nanoparticles by hydroxyl radical: A possible mechanism of the nab technology and a one-step green method to produce protein nanocarriers. Chemical Engineering Journal, 2021. 404. 62. Wang, Z.J., et al., Size and Dynamics of Caveolae Studied Using Nanoparticles in Living Endothelial Cells. Acs Nano, 2009. 3(12): p. 4110-4116. 63. Manzanares, D. and V. Cena, Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell. Pharmaceutics, 2020. 12(4). 64. Chatterjee, M., et al., Caveolae-Mediated Endocytosis Is Critical for Albumin Cellular Uptake and Response to Albumin-Bound Chemotherapy. Cancer Research, 2017. 77(21): p. 5925-5937. 65. Broekgaarden, M., et al., Photodynamic Therapy with Liposomal Zinc Phthalocyanine and Tirapazamine Increases Tumor Cell Death via DNA Damage. Journal of Biomedical Nanotechnology, 2017. 13(2): p. 204-220. 66. Liu, Y.Y., et al., Hypoxia Induced by Upconversion-Based Photodynamic Therapy: Towards Highly Effective Synergistic Bioreductive Therapy in Tumors. Angewandte Chemie-International Edition, 2015. 54(28): p. 8105-8109. 67. McMahon, K.S., et al., Effects of photodynamic therapy using mono-L-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer research, 1994. 54(20): p. 5374-5379. 68. Lin, W.H., et al., Hypoxia-activated cytotoxic agent tirapazamine enhances hepatic artery ligation-induced killing of liver tumor in HBx transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(42): p. 11937-11942. 69. Brown, J.M., Tumor microenvironment and the response to anticancer therapy. Cancer Biology & Therapy, 2002. 1(5): p. 453-458. 70. Sachet, M., Y.Y. Liang, and R. Oehler, The immune response to secondary necrotic cells. Apoptosis, 2017. 22(10): p. 1189-1204. 71. Avendaño, C. and J.C. Menéndez, Chapter 4 - Anticancer Drugs Acting via Radical Species, Photosensitizers and Photodynamic Therapy of Cancer, in Medicinal Chemistry of Anticancer Drugs, C. Avendaño and J.C. Menéndez, Editors. 2008, Elsevier: Amsterdam. p. 93-138.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85447-
dc.description.abstract腫瘤缺氧(tumor hypoxia)在癌症進展中扮演關鍵角色,並且是造成腫瘤細胞抗藥性的重要機制之一,這不但是目前癌症治療的一大挑戰,也是預後不良的指標。由於腫瘤缺氧區域氧氣含量不足、癌細胞生長緩慢且血流供應較差,傳統的化學療法、放射線療法對於缺氧的腫瘤細胞往往療效有限,因此發展針對缺氧區域的治療方式有其必要性。缺氧活化前驅藥物(hypoxia-activated prodrug)能針對缺氧細胞產生選擇性毒性,而Tirapazamine (TPZ)即為其中一種,其在缺氧環境下能活化產生自由基,造成DNA斷裂而引發細胞死亡,此特性使TPZ被廣泛研究作為對抗腫瘤缺氧的治療方式。然而,TPZ在體內的半衰期短、容易被代謝,且在腫瘤中的累積量不足,因此臨床效果不如預期。因此在本研究中,以發展改善TPZ在體內的穩定性,增加腫瘤累積藥量,並且有利於臨床使用的劑型為目標。 本研究中利用銅離子與TPZ進行錯合,以促進TPZ的包覆。銅離子TPZ錯合物[Cu(TPZ)2]為疏水性物質,為增加Cu(TPZ)2的溶解度,我們進一步選用白蛋白(albumin)與Cu(TPZ)2形成奈米粒子(nanoparticles),並優化白蛋白奈米粒子的製備過程,接著於in vitro實驗分析其儲存穩定性、血清穩定性、以及細胞毒殺效果。之後我們進一步以戊二醛(glutaraldehyde)將白蛋白奈米粒子交聯,改善其血清穩定性。最後在in vivo中初步探討ANP-Cu(TPZ)2的療效。zh_TW
dc.description.abstractTumor hypoxia remains one major challenge in treating solid tumor as it contributes to cancer progression and drug resistance. Conventional radiotherapy and chemotherapy have shown limited efficacy in treating hypoxia regions within solid tumor, indicating the importance of tumor hypoxia in cancer therapy. Tirapazamine (TPZ), a hypoxia-activated prodrug (HAP), produces toxic radicals that cause DNA breaks under hypoxic conditions. Despite its potential in selective cytotoxicity against hypoxic cells in tumor, clinical efficacy of TPZ is unsatisfactory due to its short half-life and rapid metabolism, rendering insufficient tumor accumulation. These obstacles indicate the need of better drug delivery system. Herein, we developed cupric-TPZ albumin nanoparticles [ANP-Cu (TPZ)2] with size of approximately 130 nm and high entrapment efficiency. Cupric ions were used to complex with TPZ to increase its hydrophobicity. Hydrophobic Cu(TPZ)2 was then encapsulated with albumin. In vitro analyses have shown that ANP-Cu(TPZ)2 display good storage stability and cytotoxicity. The serum stability of ANP-Cu(TPZ)2 was further improved by glutaraldehyde crosslinking. The therapeutic efficacy was further evaluated in mice bearing synergistic C26 tumor.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:44Z (GMT). No. of bitstreams: 1
U0001-1307202217351200.pdf: 2084770 bytes, checksum: 3e33c6c0d71839e9de6a07ae235e6fe8 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents目錄 致謝 i 中文摘要 ii Abstract iii 目錄 iv 表目錄 vii 圖目錄 viii 附圖表目錄 ix 第一章 緒論 1 1.1 腫瘤缺氧 (tumor hypoxia) 1 1.1.1 腫瘤缺氧與抗藥性 2 1.2 缺氧活化前驅藥物 (hypoxia-activated prodrugs, HAPs) 2 1.2.1 Tirapazamine (TPZ) 3 1.3 金屬與金屬化合物 4 1.3.1 銅離子與銅離子化合物 5 1.4 蛋白質奈米傳輸系統 (protein-based nanoparticulate delivery system) 6 1.4.1 白蛋白奈米粒子(albumin nanoparticle, ANP) 7 1.5 研究動機與目的 8 第二章 材料與方法 10 2.1 藥品 10 2.2 儀器 11 2.3 細胞培養 (Cell culture) 13 2.3.1 細胞株 13 2.3.2 細胞培養液 13 2.3.3 繼代培養方法 13 2.3.4 細胞解凍與冷凍方法 13 2.3.5 細胞計數 14 2.4 ANP-Cu(TPZ)2製備與純化 14 2.5 ANP-Cu(TPZ)2交聯(Crosslinking) 15 2.5.1 戊二醛(Glutaraldehyde, GLA)交聯 15 2.5.2 孟加拉玫瑰紅(Rose Bengal)交聯 15 2.6 白蛋白奈米粒子內TPZ定量 15 2.7 ANP-Cu(TPZ)2儲存穩定性分析 16 2.8 ANP-Cu(TPZ)2血清穩定性分析(serum stability) 16 2.9 細胞存活率檢測 – MTT assay 17 2.10 活體動物實驗 17 2.10.1 動物與腫瘤模式 17 2.10.2 TPZ合併Ce6光動力治療 18 2.10.3 TPZ合併Stilbene 5C 18 2.11 統計分析 18 第三章 結果 19 3.1 製備包覆Cu(TPZ)2的白蛋白奈米粒子 19 3.2 以熟成方式穩定ANP- Cu(TPZ)2 20 3.3 ANP-Cu(TPZ)2性質分析 21 3.4 ANP-Cu(TPZ)2儲存安定性分析 21 3.5 ANP-Cu(TPZ)2血清穩定性分析 21 3.6 In vitro毒殺效果分析 22 3.7 交聯白蛋白粒子 23 3.7.1 交聯後血清穩定性 23 3.7.2 交聯後in vitro毒殺效果 24 3.8 In vivo療效分析 24 3.8.1 ANP-Cu(TPZ)2與Ce6光動力治療併用 25 3.8.2 ANP-Cu(TPZ)2與Stilbene 5C併用 26 第四章 討論 27 4.1 以Cu2+與TPZ錯合形成Cu(TPZ)2 27 4.2 製備與優化ANP-Cu(TPZ)2 28 4.3 ANP-Cu(TPZ)2穩定性分析與優化 29 4.4 In vitro之ANP-Cu(TPZ)2療效初步分析 30 4.5 In vivo之ANP-Cu(TPZ)2療效分析 31 4.5.1 ANP-Cu(TPZ)2與Ce6 光動力治療併用 32 4.5.2 ANP-Cu(TPZ)2與Stilbene 5C併用 32 第五章 結論 36 第六章 未來展望 37 參考文獻 57 表目錄 表一 以TPZ:BSA不同莫耳比攪拌製備之ANP粒徑、PDI、外觀 38 表二 以不同混合方式製備之ANP粒徑、PDI、外觀 39 表三 ANP-Cu(TPZ)2與150 mM PBS共培養後之粒徑、PDI變化 40 表四  ANP-Cu(TPZ)2的性質分析 41 表五 以Rose Bengal或Glutaraldehyde交聯後之ANP-Cu(TPZ)2的性質分析 42 圖目錄 圖一 熟成溫度與時間對於ANP-Cu(TPZ)2粒徑的影響 43 圖二 熟成溫度與時間對於ANP-Cu(TPZ)2在150 mM PBS中培養 (A)2小時 (B)20小時後粒徑大小的影響44 圖三 ANP-Cu(TPZ)2於4℃下儲存30天內之 (A)粒徑與PDI (B)藥物留存率(%) 45 圖四 ANP-Cu(TPZ)2於10%與60% FBS中之血清穩定性分析 46 圖五 ANP-Cu(TPZ)2於 (A)Normoxia (B)Hypoxia下之細胞毒殺效果分析 47 圖六 ANP-Cu(TPZ)2於(A)Normoxia (B)Hypoxia下處理4小時之毒殺效果分析 48 圖七 ANP-Cu(TPZ)2於不同交聯處理後之血清穩定性分析 49 圖八 GLA-ANP-Cu(TPZ)2於(A)Normoxia (B)Hypoxia之細胞毒殺效果分析 50 圖九 TPZ與Ce6光動力治療併用後之 (A)小鼠腫瘤大小 (B)小鼠體重 51 圖十 TPZ與Stilbene 5C併用治療之 (A)小鼠腫瘤大小 (B)小鼠體重 52 附圖表目錄 附表一 GLA-ANP-Cu(TPZ)2 於in vivo 研究中之腫瘤外觀 (第一次給藥後8天) 53 附圖一 TPZ作用機制 54 附圖二 TPZ與Cu2+錯合結構 55 附圖三 ANP-Cu(TPZ)2製備與純化流程 56
dc.language.isozh-TW
dc.subject缺氧zh_TW
dc.subjectTirapazaminezh_TW
dc.subject白蛋白奈米粒子zh_TW
dc.subjectTumor hypoxiaen
dc.subjectTirapazamineen
dc.subjectAlbumin nanoparticlesen
dc.title開發用於遞送Tirapazamine之白蛋白奈米載體zh_TW
dc.titleDevelopment of Tirapazamine-Loaded Albumin Nanoparticlesen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡翠敏(Tsuimin Tsai),吳亘承(Hsuan-Chen Wu)
dc.subject.keywordTirapazamine,白蛋白奈米粒子,缺氧,zh_TW
dc.subject.keywordTirapazamine,Albumin nanoparticles,Tumor hypoxia,en
dc.relation.page62
dc.identifier.doi10.6342/NTU202201451
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
dc.date.embargo-lift2022-07-22-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-1307202217351200.pdf2.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved