Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85438
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李宗璘(Tsung-Lin Li)
dc.contributor.authorMei-Hua Chenen
dc.contributor.author陳玫華zh_TW
dc.date.accessioned2023-03-19T23:16:36Z-
dc.date.copyright2022-08-22
dc.date.issued2022
dc.date.submitted2022-07-19
dc.identifier.citation1. Ganesan, A., Natural products as a hunting ground for combinatorial chemistry. Curr Opin Biotechnol 2004, 15 (6), 584-90. 2. He, H.; Williamson, R. T.; Shen, B.; Graziani, E. I.; Yang, H. Y.; Sakya, S. M.; Petersen, P. J.; Carter, G. T., Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J Am Chem Soc 2002, 124 (33), 9729-36. 3. Hedges, J. B.; Ryan, K. S., Biosynthetic Pathways to Nonproteinogenic alpha-Amino Acids. Chem Rev 2020, 120 (6), 3161-3209. 4. Kong, D.; Zou, Y.; Zhang, Z.; Xu, F.; Brock, N. L.; Zhang, L.; Deng, Z.; Lin, S., Identification of (2S,3S)-beta-Methyltryptophan as the Real Biosynthetic Intermediate of Antitumor Agent Streptonigrin. Sci Rep 2016, 6, 20273. 5. Petersen, P. J.; Wang, T. Z.; Dushin, R. G.; Bradford, P. A., Comparative in vitro activities of AC98-6446, a novel semisynthetic glycopeptide derivative of the natural product mannopeptimycin alpha, and other antimicrobial agents against gram-positive clinical isolates. Antimicrob Agents Chemother 2004, 48 (3), 739-46. 6. Fuse, S.; Koinuma, H.; Kimbara, A.; Izumikawa, M.; Mifune, Y.; He, H.; Shin-ya, K.; Takahashi, T.; Doi, T., Total synthesis and stereochemistry revision of mannopeptimycin aglycone. J Am Chem Soc 2014, 136 (34), 12011-7. 7. Bergonzini, G.; Melchiorre, P., Dioxindole in Asymmetric Catalytic Synthesis: Routes to Enantioenriched 3-Substituted 3-Hydroxyoxindoles and the Preparation of Maremycin A. Angew Chem Int Edit 2012, 51 (4), 971-974. 8. Boger, D. L.; Yasuda, M.; Mitscher, L. A.; Drake, S. D.; Kitos, P. A.; Thompson, S. C., Streptonigrin and lavendamycin partial structures. Probes for the minimum, potent pharmacophore of streptonigrin, lavendamycin, and synthetic quinoline-5,8-diones. J Med Chem 1987, 30 (10), 1918-28. 9. Xu, F.; Kong, D.; He, X.; Zhang, Z.; Han, M.; Xie, X.; Wang, P.; Cheng, H.; Tao, M.; Zhang, L.; Deng, Z.; Lin, S., Characterization of streptonigrin biosynthesis reveals a cryptic carboxyl methylation and an unusual oxidative cleavage of a N-C bond. J Am Chem Soc 2013, 135 (5), 1739-48. 10. Balitz, D. M.; Bush, J. A.; Bradner, W. T.; Doyle, T. W.; Oherron, F. A.; Nettleton, D. E., Isolation of Lavendamycin a New Antibiotic from Streptomyces-Lavendulae. J Antibiot 1982, 35 (3), 259-265. 11. Chen, M. H.; Li, Y. S.; Hsu, N. S.; Lin, K. H.; Wang, Y. L.; Wang, Z. C.; Chang, C. F.; Lin, J. P.; Chang, C. Y.; Li, T. L., Structural and Mechanistic Bases for StnK3 and Its Mutant-Mediated Lewis-Acid-Dependent Epimerization and Retro-Aldol Reactions. Acs Catal 2022. 12. Huang, Y. T.; Lyu, S. Y.; Chuang, P. H.; Hsu, N. S.; Li, Y. S.; Chan, H. C.; Huang, C. J.; Liu, Y. C.; Wu, C. J.; Yang, W. B.; Li, T. L., In vitro characterization of enzymes involved in the synthesis of nonproteinogenic residue (2S,3S)-beta-methylphenylalanine in glycopeptide antibiotic mannopeptimycin. Chembiochem 2009, 10 (15), 2480-7. 13. Zou, X. W.; Liu, Y. C.; Hsu, N. S.; Huang, C. J.; Lyu, S. Y.; Chan, H. C.; Chang, C. Y.; Yeh, H. W.; Lin, K. H.; Wu, C. J.; Tsai, M. D.; Li, T. L., Structure and mechanism of a nonhaem-iron SAM-dependent C-methyltransferase and its engineering to a hydratase and an O-methyltransferase. Acta Crystallogr D Biol Crystallogr 2014, 70 (Pt 6), 1549-60. 14. Qian, T.; Wo, J.; Zhang, Y.; Song, Q.; Feng, G.; Luo, R.; Lin, S.; Wu, G.; Chen, H. F., Crystal Structure of StnA for the Biosynthesis of Antitumor Drug Streptonigrin Reveals a Unique Substrate Binding Mode. Sci Rep 2017, 7, 40254. 15. Zou, Y.; Fang, Q.; Yin, H.; Liang, Z.; Kong, D.; Bai, L.; Deng, Z.; Lin, S., Stereospecific biosynthesis of beta-methyltryptophan from (L)-tryptophan features a stereochemical switch. Angew Chem Int Ed Engl 2013, 52 (49), 12951-5. 16. Liu, B.; Hou, Y.; Wang, X.; Ma, X.; Fang, S.; Huang, T.; Chen, Y.; Bai, Z.; Lin, S.; Zhang, R.; Hu, K., Structural basis of the mechanism of beta-methyl epimerization by enzyme MarH. Org Biomol Chem 2019, 17 (44), 9605-9614. 17. Dunwell, J. M.; Purvis, A.; Khuri, S., Cupins: the most functionally diverse protein superfamily? Phytochemistry 2004, 65 (1), 7-17. 18. Axelrod, H. L.; Kozbial, P.; McMullan, D.; Krishna, S. S.; Miller, M. D.; Abdubek, P.; Acosta, C.; Astakhova, T.; Carlton, D.; Caruthers, J.; Chiu, H. J.; Clayton, T.; Deller, M. C.; Duan, L.; Elias, Y.; Feuerhelm, J.; Grzechnik, S. K.; Grant, J. C.; Han, G. W.; Jaroszewski, L.; Jin, K. K.; Klock, H. E.; Knuth, M. W.; Kumar, A.; Marciano, D.; Morse, A. T.; Murphy, K. D.; Nigoghossian, E.; Okach, L.; Oommachen, S.; Paulsen, J.; Reyes, R.; Rife, C. L.; Tien, H. J.; Trout, C. V.; van den Bedem, H.; Weekes, D.; White, A.; Xu, Q.; Zubieta, C.; Hodgson, K. O.; Wooley, J.; Elsliger, M. A.; Deacon, A. M.; Godzik, A.; Lesley, S. A.; Wilson, I. A., Conformational changes associated with the binding of zinc acetate at the putative active site of XcTcmJ, a cupin from Xanthomonas campestris pv. campestris. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010, 66 (Pt 10), 1347-53. 19. Dunwell, J. M.; Culham, A.; Carter, C. E.; Sosa-Aguirre, C. R.; Goodenough, P. W., Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 2001, 26 (12), 740-6. 20. Khuri, S.; Bakker, F. T.; Dunwell, J. M., Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol 2001, 18 (4), 593-605. 21. Matsuda, Y.; Bai, T.; Phippen, C. B. W.; Nodvig, C. S.; Kjaerbolling, I.; Vesth, T. C.; Andersen, M. R.; Mortensen, U. H.; Gotfredsen, C. H.; Abe, I.; Larsen, T. O., Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation. Nat Commun 2018, 9 (1), 2587. 22. Fukuzumi, S.; Ohkubo, K., Metal ion-coupled and decoupled electron transfer. Coordin Chem Rev 2010, 254 (3-4), 372-385. 23. Fukuzumi, S.; Ohkubo, K.; D'Souza, F.; Sessler, J. L., Supramolecular electron transfer by anion binding. Chem Commun (Camb) 2012, 48 (79), 9801-15. 24. Soukup, R. W.; Schmid, R., Metal-Complexes as Color Indicators for Solvent Parameters. J Chem Educ 1985, 62 (6), 459-462. 25. Soukup, R. W.; Schmid, R., Metal-Complexes as Color Indicators for Solvent Parameters. J Chem Educ 1987, 64 (10), 904-904. 26. Armstrong, R. N., Mechanistic diversity in a metalloenzyme superfamily. Biochemistry 2000, 39 (45), 13625-32. 27. Decker, A.; Solomon, E. I., Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities. Curr Opin Chem Biol 2005, 9 (2), 152-63. 28. Gerlt, J. A.; Kreevoy, M. M.; Cleland, W.; Frey, P. A., Understanding enzymic catalysis: the importance of short, strong hydrogen bonds. Chem Biol 1997, 4 (4), 259-67. 29. Tanner, M. E., Understanding nature's strategies for enzyme-catalyzed racemization and epimerization. Acc Chem Res 2002, 35 (4), 237-46. 30. Guthrie, J. P., Short strong hydrogen bonds: can they explain enzymic catalysis? Chem Biol 1996, 3 (3), 163-70. 31. Dai, S.; Funk, L. M.; von Pappenheim, F. R.; Sautner, V.; Paulikat, M.; Schroder, B.; Uranga, J.; Mata, R. A.; Tittmann, K., Low-barrier hydrogen bonds in enzyme cooperativity. Nature 2019, 573 (7775), 609-+. 32. Nixon, T. D.; Whittlesey, M. K.; Williams, J. M. J., Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton T 2009, (5), 753-762. 33. Gerlt, J. A.; Babbitt, P. C.; Rayment, I., Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Arch Biochem Biophys 2005, 433 (1), 59-70. 34. Reed, G. H.; Poyner, R. R.; Larsen, T. M.; Wedekind, J. E.; Rayment, I., Structural and mechanistic studies of enolase. Curr Opin Struc Biol 1996, 6 (6), 736-743. 35. Han, M.; Yin, H. X.; Zou, Y.; Brock, N. L.; Huang, T. T.; Deng, Z. X.; Chu, Y. W.; Lin, S. J., An Acyl Transfer Reaction Catalyzed by an Epimerase MarH. Acs Catal 2016, 6 (2), 788-792.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85438-
dc.description.abstract生物體中的活性物質,通常是由小分子化合物作為起始物,在酵素的催化之下,經由一系列化學反應組裝而成。β-甲基胺基酸就是一個例子,其為增加天然物多樣性的重要組成單元,而其中立體選擇性扮演著重要的角色。酵素StnK3掌理合成過程中的立體選擇性,可催化(3R)-β-MeInPy翻轉成另一個掌性對稱的異構物(3S)-β-MeInPy。 在此篇論文發現StnK3是一個鐵離子依賴型的異構酶,催化反應進行時,鐵離子會被拱活化位的中心點,和3-His-1-Glu四聯體以及β-MeInPy上的α-酮酸形成六配位雙四角錐體,這種特殊的幾何形狀,可以一邊辨識基質(3R)-β-MeInPy,一邊啟動路易士酸導入烯醇化(enolization),催動異構化發生。StnK3催化的異構化反應是透過前所未有的隱藏版雙鹼基機制達成的,經由活化位的配位轉換,中間體的構造從雙四角錐體變成雙三角體,讓其中一邊脫去的質子,可以從另一側逆向重新接上質子,產生翻轉的異構物(3S)-β-MeInPy。這個質子化的逆向反應,是由質子的內部回歸達成的。 此外,StnK3表現出了一種意料之外的事前校正活性,它會將上游未成熟的基質indolepyruvate,經由逆醛醇縮合(retro-aldol reaction)反應,分裂成吲哚醛(indole aldehyde)和乙醇酸(glycolic acid),從而避免無謂的循環,將反應效率投注在完成最終產物。在此基礎上,突變體H27A將StnK3從異構酶完全轉化成全功能的逆醛縮酶,可在催化範圍內將β-MeInPy的C-C鍵結打斷形成3-acetylindole。 在這次的研究中,新反應的發現以及機制的闡明不僅有助於破解立體和鏡像選擇性的實驗操作方式,而且可以幫助設計用於生物合成或藥用化學的新生物催化劑。透過催化劑的設計與活性調控,可為新藥開發提供有潛力的先導化合物。zh_TW
dc.description.abstractβ-Amino acids have long been recognized as important components in a lot of clinically important natural products and contribute to the diversity of small molecules. StnK3 is the key enzyme which control the stereoselectivity of β-methyltryptophan, mediating the chirality-inversion from (2S,3R) to (2S,3S) β-methyltryptophan. In this research, we indicate that StnK3 is a new type of ferric iron dependent epimerase, in which four important residues His64, His66, Glu70, and His109 form a 3-His-1-Glu tetrad motif, providing a scaffold to connect Fe3+ in active site. The 3-His-1-Glu tetrad and an α-keto acid bidentate of β-methylindolepyruvate form a six-coordinate octahedral complex. This particular coordination increases the β-carbon acidity of β-methylindolepyruvate, promoting its enolization, then epimerization is accomplished through an unusual hidden two base internal return mechanism. Furthermore, StnK3 displays an extra proofreading activity to cleavage the immature upstream substrate β-indolepyruvate into indole aldehyde and glycolic acid by retro aldol cleavage reaction. This proofreading activity avoids excess futile cycles but ensures fidelity of the reaction to produce the mature final product. Interestingly, mutant H27A becomes a full-duty retro-aldolase and completely loses its epimerization activity, cleaving the putatively unfavorable C-C bond of (3R)-β-methylindolepyruvate to 3-acetylindole and glycolic acid. Finally, the discovery of a novel reaction and catalytic mechanism of stnk3 not only helps to decipher the code for the stereoselectivity of biosynthesis of (2S,3S)-β-methyltryptophan from L-tryptophan, but also provides the foundation to help design new biocatalysts for the synthesis of industrial or medicinal chemicals.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:36Z (GMT). No. of bitstreams: 1
U0001-1807202219281000.pdf: 7750415 bytes, checksum: 8c3d94c5b771d571f52ca0be8dc8ce4c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝…………………………………………………………………………………………………………………………i 摘要…………………………………………………………………………………………………………………………ii Abstract……………………………………………………………………………………………………………………iii Contents…………………………………………………………………………………………………………………v List of Figures…………………………………………………………………………………………………………vii List of Tables…………………………………………………………………………………………………………viii Chapter 1. Introduction……………………………………………………………………………………………1 1.1 β-Methyl amino acids…………………………………………………………………………………1 1.2 Biosynthesis of β-methyl amino-acid building units………………………………………2 1.3 Cupin superfamily……………………………………………………………………………………4 1.4 MarH…………………………………………………………………………………………………………6 Chapter 2. Materials and Methods 8 2.1 Cloning and protein purification…………………………………………………………………8 2.2 Site-directed mutagenesis……………………………………………………………………………9 2.3 Crystallization and data collection………………………………………………………………11 2.4 Structure determination and refinement……………………………………………………12 2.5 Enzymatic reactions…………………………………………………………………………………12 2.6 Isotope-labelling experiment………………………………………………………………………14 2.7 Kinetics Assay……………………………………………………………………………………………15 2.8 Dynamic light scattering……………………………………………………………………………16 2.9 EPR spectroscopy……………………………………………………………………………………16 2.10 X-ray absorption spectroscopy…………………………………………………………………17 2.11 Expression of StnK3 in Streptomyces lividans 1326…………………………………17 2.12 Enzyme products characterization……………………………………………………………18 Chapter 3. Results and Discussion…………………………………………………………………………21 3.1 Metal ion identification………………………………………………………………………………21 3.2 Protein crystallization and overall structure…………………………………………………25 3.3 Metal and substrate binding site…………………………………………………………………29 3.4 Mechanism of epimerization………………………………………………………………………35 3.5 Mechanism of retro aldol cleavage……………………………………………………………51 Chapter 4. Conclusion……………………………………………………………………………………………58 Reference………………………………………………………………………………………………………………60 Appendixes……………………………………………………………………………………………………………67
dc.language.isoen
dc.subjectβ-甲基胺基酸zh_TW
dc.subject異構酶zh_TW
dc.subject鐵離子依賴型酵素zh_TW
dc.subject異構化zh_TW
dc.subject逆醛醇縮合反應zh_TW
dc.subjectferric ion-dependent enzymeen
dc.subjectepimeraseen
dc.subjectretro-aldol cleavageen
dc.subjectβ-methyl amino acidsen
dc.subjectepimerizationen
dc.titleStnK3及其突變株於路易斯酸依賴性表異構化反應與逆醛醇反應之蛋白結構解析及反應機轉zh_TW
dc.titleStructures and mechanisms of Lewis-acid-dependent epimerization and retro aldol cleavage reactions catalyzed by StnK3 and its mutantsen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree博士
dc.contributor.coadvisor林俊宏(Chun-Hung Lin)
dc.contributor.oralexamcommittee梁博煌(Po-Huang Liang),林曉青(Hsiao-Ching Lin),王宗興(Tsung-Shing Wang)
dc.subject.keyword異構酶,逆醛醇縮合反應,β-甲基胺基酸,異構化,鐵離子依賴型酵素,zh_TW
dc.subject.keywordepimerase,retro-aldol cleavage,β-methyl amino acids,epimerization,ferric ion-dependent enzyme,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202201535
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
dc.date.embargo-lift2022-08-22-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-1807202219281000.pdf7.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved