Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85436Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林國峰(Gwo-Fong Lin) | |
| dc.contributor.author | Chia-Yu Chang | en |
| dc.contributor.author | 張家瑜 | zh_TW |
| dc.date.accessioned | 2023-03-19T23:16:35Z | - |
| dc.date.copyright | 2022-07-22 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-19 | |
| dc.identifier.citation | 1. Alvioli, M., Melillo, M., Guzzetti, F., Rossi, M., Palazzi, E., Von Hardenberg, J., Brunetti, M.T. and Peruccacci, S. (2018). Implications of climate change on landslide hazard in Central Italy. Sci. Total Environ 630, 1528–1543. 2. Ayalew, L. and Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1-2), 15–31. 3. Bai, S. B., Lu, G. N. Wang, J. A. Zhou, P. G. and Ding, L. A. (2011). GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environmental Earth Sciences 62(1), 139–149. 4. Brownlee, J. (2021). Ensemble Learning Algorithms With Python: Make Better Predictions with Bagging, Boosting, and Stacking. Machine Learning Mastery. 5. Capitani, M., Ribolini, A. and Bini, M., 2013. The slope aspect: a predisposing factor for landsliding? C.R. Geosci. 345 (11), 427–438. 6. Carrara, A. and Merenda, L (1974). Methodology for an inventory of slope instability events in Calabria (southern Italy) Geologia Applicata e Idrogeologica 9, 237–255. 7. Chen, S. C., Chang, C. C. Chan, H. C. Huang, L. M. and Lin, L. L. (2013). Modeling typhoon event-induced landslides using GIS-based logistic regression, A case study of Alishan forestry railway, Taiwan. Mathematical Problems in Engineering, 9. 8. Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, United States, Association for Computing Machinery. 9. Chen, W. and Zhang, S. (2021). GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling. Catena 203, 105344. 10. Chikalamo, E. E., Mavrouli, O. C., Ettema, J., Van Westen, C. J., Muntohar, A. S. and Mustofa, A. (2020). Satellite-derived rainfall thresholds for landslide early warning in Bogowonto Catchment, Central Java, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 89, 102093. 11. Ching, J., Phoon, K. K. (2018). Constructing site-specific multivariate probability distribution model using Bayesian machine learning. J. Eng. Mech. 145 (1) 04018126. 12. Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. 13. Dai, J. and Xu, Q. (2013). Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification. Appl. Soft Comput 13, 211–221. 14. Demir, G. (2019). GIS-based landslide susceptibility mapping for a part of the North Anatolian Fault Zone between Reşadiye and Koyulhisar (Turkey). Catena 183, 104211. 15. Devkota, K. C., A. D. Regmi, H. R. Pourghasemi, K. Yoshida, B. Pradhan, I. C. Ryu, M. R. Dhital and O. F. Althuwaynee (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards 65(1), 135–165. 16. Dou, J., Yunus, A. P., Merghadi, A., Shirzadi, A., Nguyen, H., Hussain, Y., Avtar, R., Chen, Y., Pham, B. T. and Yamagishi, H. (2020). Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci. Total Environ. 720, 137320. 17. Đurić, U., Marjanović, M., Radić, Z. and Abolmasov, B. (2019). Machine learning based landslide assessment of the Belgrade metropolitan area, Pixel resolution effects and a cross-scaling concept. Engineering Geology 256, 23–38. 18. Finn, C., Goodfellow, I., and Levine, S. (2016). Unsupervised learning for physical interaction through video prediction. 19. Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S. R., Tiede, D. and Aryal, J. (2019). Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens, 11(2), 196. 20. Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M. and Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews 112, 42–66. 21. Hansen, A. (1984). Landslide hazard analysis. In, D. Brunsden and D.B. Prior (eds.), Slope Instability. John Wiley & Sons, New York, NY, USA. 22. Hong, H., Jaafari, A. and Zenner, E.K. (2019). Predicting spatial patterns of wildfire susceptibility in the Huichang County, China, An integrated model to analysis of landscape indicators. Ecol. Ind. 101, 878–891. 23. Hosmer, D. W. and Lemeshow, S. (2000). Applied logistic regression (2nd Ed.). Wiley-Interscience Publication. 24. Ives, J. D. and M. J. Bovis (1978). Natural hazards maps for land-use planning, San Juan Mountains, Colorado, U.S.A. Arctic and Alpine Research 10(2), 185–212. 25. Jebur, M. N., Pradhan, B. and Tehrany, M. S. (2014). Detection of vertical slope movement in highly vegetated tropical area of Gunung pass landslide, Malaysia, using L-band InSAR technique. Geosciences Journal 18(1), 61–68. 26. Jenks, G. F. and Caspall, F. C. (1971). Error on choroplethic maps, definition, measurement, reduction. Ann Assoc Am Geogr 61(2), 217–244. 27. Kakavas, M. P. and Nikolakopoulos, K. G. (2021). Digital Elevation Models of Rockfalls and Landslides,A Review and Meta-Analysis. Geosciences 256. 28. Kavzoglu, T., Sahin, E. K. and Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3), 425–439. 29. Kienholz, H. (1978). Maps of geomorphology and natural hazards of Grindelwald, Switzerland, scale 1,10,000 Arctic and Alpine Research 10(2), 169–184. 30. Ko, F.W.Y. and Lo, F.L.C. (2016). Rainfall-based landslide susceptibility analysis for natural terrain in Hong Kong - a direct stock-taking approach. Eng. Geol 215, 95–107. 31. Kohavi, R. and Provost, F. (1998). On Applied Research in Machine Learning, In Editorial for the Special Issue on Applications of Machine Learning and the Knowledge Discovery Process, Columbia University, New York. 32. Lee, C. T. (2014). Statistical seismic landslide hazard analysis, An example from Taiwan. Engineering Geology 182, 201–212. 33. Lee, S. W., Cheng, J. D., Ho , C.W., Chiang, Y. C., Chen, H. H. and Tsai , K. J. (1990). An Assessment of Landslide Problems and Watershed Management in Taiwan. In, Proceedings of the Fiji Symposium on Research Needs and Applications to Reduce Erosion and Sedimentation in Tropical Steeplands, IAHS Publication 192, 238–246. 34. Lin, G. F., Chen, G. R., and Huang, P. Y. (2010), “Effective typhoon characteristics and their effects on hourly reservoir inflow forecasting,” Advances in Water Resources, Vol. 33, No. 8, 887–898. 35. Lin, G. F., Chen, G. R., Huang, P. Y., and Chou, Y. C. (2009a), “Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods,” Journal of Hydrology, Vol. 372, No. 1-4, pp. 17–29. 36. Lin, G. F., Chen, G. R., Wu, M. C., and Chou, Y. C. (2009b), “Effective forecasting of hourly typhoon rainfall using support vector machines,” Water Resources Research, Vol. 45, No. 8. 37. Lo, M. K. and Leung, A. Y. (2019). Bayesian updating of subsurface spatial variability for improved prediction of braced excavation response. Can. Geotech. J. 56 (8), 1169–1183. 38. Luzi, L. and Pergalani, F. (1996). Soil Dynamics & EarthquakeEngineering, 15(2), pp 83–94. 39. Papaioannou, I. and Straub, D. (2017). Learning soil parameters and updating geotechnical reliability estimates under spatial variability–theory and application to shallow foundations. Georisk 11 (1), 116–128. 40. Paudel, U., Oguchi, T. and Hayakawa, Y. (2016). Multi-Resolution Landslide Susceptibility Analysis Using a DEM and Random Forest. International Journal of Geosciences, 726–743. 41. Polykretis, C., Ferentinou, M., and Chalkias, C. (2015). A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece). Bulletin of Engineering Geology and the Environment, Vol. 74, No. 1, pp. 27-45 (2015). 42. Pradhan, B. and Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides 7(1), 13–30. 43. Qiu, H., Regmi, A. D., Cui, P., Hu, S., Wang, Y. and He, Y. (2017). Slope aspect effects of loess slides and its spatial differentiation in different geomorphologic types. Arabian J. Geosci. 10 (15), 344. 44. Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning Internal Representations by Error Propagation. 45. Sidle, R. C., Pearce, A. J. and O'Loughlin, C. L. (1985). Hillslope stability and land use Water Resources Monograph 11, 140. 46. Stevenson, P. C. (1977). An Empirical Method for the Evaluation of Relative Landslide Risk. Bulletin of International Association of Engineering Geology 16, 69–72. 47. Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N. and Tehrany, M. S. (2014). 'Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia.' Catena 118: 124–135. 48. Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. 49. Varnes, D. J. (1978). Slope movements and type and processes in, Landslide Analysis and Control. Transportation Research Board National Academy of Science, Washington Special Report 176, 11–13. 50. Varnes, D. J. (1984). Landslides Hazard Zonation, A Review of Principles and Practice. Unesco Press, Paris, France. 51. Wang, H., Zhang, L., Luo, H., He, J. and Cheung, R. W. M. (2021). AI-powered landslide susceptibility assessment in Hong Kong. Engineering Geology 288, 106103. 52. Wang, H. J., Xiao, T., Li, X. Y., Zhang, L. L. and Zhang, L. M. (2019). A novel physically-based model for updating landslide susceptibility. Engineering Geology 251, 71–80. 53. Wang, Y., Fang, Z. and Hong, H. (2019). Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of the Total Environment 666, 975–993. 54. Wang, Y., Wu, X., Chen, Z., Ren, F., Feng, L. and Du, Q. (2019). Optimizing the predictive ability of machine learning methods for landslide susceptibility mapping using SMOTE for Lishui City in Zhejiang Province, China. Int. J. Environ. Res. Public Health 16 (3), 368. 55. Wilson, J. P. and Gallant, J. C. (2000). Terrain Analysis, Principles and Applications. John Wiley & Sons, New York, NY, USA. 56. Yao, X., Tham L. G. and Dai F. C. (2008). 'Landslide susceptibility mapping based on Support Vector Machine, A case study on natural slopes of Hong Kong, China.' Geomorphology 101(4), 572–582. 57. Yi, Y., Zhang, Z., Zhang, W., Jia, H. and Zhang, J. (2020). Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network, A case study in Jiuzhaigou region. Catena 195, 104851. 58. Yin, J. H., Chen, J., Xu, X. W., Wang, X. L. and Zheng, Y. G. (2010). The characteristics of the landslides triggered by the Wenchuan M-s 8.0 earthquake from Anxian to Beichuan. Journal of Asian Earth Sciences 37(5-6), 452–459. 59. Youssef, A. M. and Pourghasemi, H. R. (2021). Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 12 (2), 639–655. 60. Youssef, A. M., Pradhan, B., Dikshit, A., Al‑Katheri, M. M., Matar, S. S. and Mahdi, A. M. (2022). Landslide susceptibility mapping using CNN‑1D and 2D deep learning algorithms, comparison of their performance at Asir Region, KSA. Bulletin of Engineering Geology and the Environment 81, 165. 61. Zhang, W., Li, H., Han, L., Chen, L. and Wang, L. (2022). Slope stability prediction using ensemble learning techniques: A case study in Yunyang County, Chongqing, China. Journal of Rock Mechanics and Geotechnical Engineering. 62. 行政院農業委員會行政院農業委員會水土保持局,「104年土砂災害空間資訊建置分析(1/3)」,2017。 63. 行政院農業委員會行政院農業委員會水土保持局,「102年多尺度遙測空間資訊資料建置及擴充維護計畫」,2013。 64. 行政院農業委員會行政院農業委員會水土保持局,「運用衛星影像於全島崩塌地判釋與災害分析」,2010。 65. 沈哲緯,劉時宏,陳毅青,邱昱嘉,劉格非,2015,「全臺流域集水區崩塌土砂收支研究與探討-以莫拉克颱風前後期間(2008~2012 年)為例」,農業工程學報,第62卷第3期。 66. 林政侑,林昭遠,2018,「因應坡地災害山坡地土地可利用限度分類之劃定研究」,國立中興大學水土保持學系所碩士論文。 67. 林恩如,劉正千,張智華,鄭依凡,柯明勳,2013,「運用福衛二號高時空分辨率多光譜影像於台灣全島崩塌地判釋與災害分析」,航測及遙測學刊 第十七卷,第 1期,第31-51。 68. 經濟部水利署,尺度遙測空間資訊蒐集與災害展示遙測空間平臺建置,2013。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85436 | - |
| dc.description.abstract | 現今極端氣候加劇,自然災害頻傳,全球逐漸重視氣候變遷衝擊調適策略。臺灣位於西太平洋颱風路徑要衝,根據中央氣象局資料顯示,臺灣近十年平均有4.1個颱風侵襲,颱風挾帶強風豪雨,易引發山區坡地嚴重的崩塌災害,進而衝擊保全對象,並導致生命財產損失及交通道路阻斷。 本研究提出一個崩塌潛勢評估模式,藉由機器學習及深度學習法建立潛在環境因子及動態誘發因子與崩塌發生之非線性關係,本模式能有效評估由降雨引起之大範圍淺層崩塌。其中,潛在環境因子可分為地形、地質和區位因子,而臺灣崩塌地主要由降雨導致的淺層崩塌,因此本研究採用累積降雨作為動態誘發因子。引起崩塌因子眾多且複雜,各因子間又具有高度非線性之關係,在參考過去文獻中,證實機器學習在處理非線性問題表現優異,故本研究在機器學習法採用近年較新穎之極限梯度提升演算法(Extreme gradient boosting, Xgboost)、多層感知機(Multilayer perceptron, MLP)及支援向量機(Support vector machine, SVM),在深度學習法採用卷積神經網路(Convolution neural networks, CNN)二維圖像分析,由於崩塌範圍、分布及地文因子等差異性,網格解析度對崩塌潛勢模式準確度有一定的影響,因此本研究選定解析度為5 m及40 m之網格,搭配上述4種方法,並採用評鑑指標評估模式表現及其最佳化網格解析度。 本研究提出Xgboost搭配網格解析度40 m之模式(Xgboost-40m)及CNN搭配網格解析度5m之模式(CNN-2D5m),選用宜蘭蘭陽溪流域驗證模式準確度。結果顯示Xgboost-40m模式測試指標ACC、TPR、TNR和AUC分別為78.4%、 85.7%、71.1%和0.86,表現優良且Xgboost-40m模式推估快,適用於大範圍崩塌潛勢評估;而CNN-2D5m模式測試指標ACC、TPR和TNR分別為86.3%、87.3%、 85.4%,其中AUC值也高達0.93,顯示模式對崩塌潛勢評估有良好之表現,CNN-2D5m模式建議用於高解析度需求的應用,如河道、道路等,可評估較細緻之崩塌及非崩塌潛勢值。 本研究根據不同解析度和模式所映射之崩塌潛勢地圖,能有效推估蘭陽溪流域崩塌發生區域,可供未來崩塌預警系統之參考、相關單位政策施行之依據,以達到災害預防之目的。 | zh_TW |
| dc.description.abstract | In recent years, extreme climate has led to many environmental problems and increased risks of natural disasters. As a result, the researchers around the world are gradually attaching importance to adaptation strategy to climate change. Taiwan is located on the main track of western Pacific typhoons. According to Central Weather Bureau in Taiwan, an average of 4.1 typhoons have hit Taiwan per year in the last decade. Typhoons accompanied by heavy rainfall are prone to causing destructive landslide disasters in the slope area. Meanwhile, landslide causes enormous losses of human life, property, and devastations to environment. Therefore, landslide susceptibility models can efficiently mitigate the disasters are desired. In this study, three novel machine learnings and convolutional neural network (CNN-2D) deep learning algorithms are employed to construct landslide susceptibility models, which can estimate the large area of shallow-seated landslide susceptibility triggered by rainfall. The three novel machine learnings include the extreme gradient boosting (Xgboost), multilayer perceptron (MLP) and support vector machine (SVM). Moreover, eleven landslide conditioning factors are used in the landslide susceptibility analysis, such as topographic factors (elevation, slope, aspect, curvature, profile curvature, plan curvature and topographic wetness index), geological factor (lithology), regional factors (distance to river and distance to road), and triggering factor (24h maximum accumulated rainfall). However, the distribution of landslides and topographic factor heterogeneity still impose challenges in selecting an appropriate spatial resolution for landslide susceptibility analysis. In order to identify the optimum spatial resolutions, the performances of above-mentioned four algorithms togethering with eleven landslide conditioning factors extracted from 5 m and 40 m digital elevation model (DEM) are checked by the accuracy and the area under the receiver operating characteristic curve (AUC). The Xgboost with 40m spatial resolution (Xgboost-40m) model and the CNN with 5m spatial resolution (CNN-2D5m) model outperform over the other models in the Lanyang river. The results in test phase show that optimized models based on Xgboost-40m (ACC = 78.4%, AUC = 0.86) and CNN-2D5m (ACC = 86.3%, AUC = 0.93) have good consistency between the correctly prediction and actual landslide susceptibility maps. By referring to the landslide susceptibility maps, Xgboost-40m which can estimate landslide susceptibility quickly is suitable for the large study area and CNN-2D5m is able to produce more accurate landslide or non-labdslide susceptibility indexs like rivers, roads and so on. Landslide susceptibility maps obtained from the proposed models are expected to be helpful to local administrations and decision makers in disaster planning. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:35Z (GMT). No. of bitstreams: 1 U0001-1507202222005000.pdf: 28742330 bytes, checksum: 7b6b0f0404fed48fbff3f8339d39bc0a (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 中文摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 崩塌之定義 3 1.2.2 崩塌潛勢分析模式 4 1.2.3 崩塌網格解析度 7 1.2.4 崩塌影響因子 8 1.3 論文架構 10 第二章 研究區域與資料 11 2.1 研究區域 11 2.2 研究區域資料 13 2.2.1 崩塌網格資料 13 2.2.2 崩塌影響因子 19 第三章 研究方法 31 3.1 崩塌資料萃取 31 3.2 因子篩選的方法 34 3.3 機器學習法 35 3.4 深度學習法 38 第四章 模式建立與應用 40 4.1 研究流程 40 4.2 建模階段 41 4.3 評鑑指標 43 4.3.1 混淆矩陣 43 4.3.2 ROC曲線與AUC 45 第五章 結果與討論 47 5.1 因子篩選 47 5.2 網格解析度對模式之影響 48 5.2.1 機器學習法 49 5.2.2 深度學習法 52 5.2.3 綜合比較與模式應用 54 5.3 崩塌潛勢圖 57 5.4 潛在環境因子的重要性 62 第六章 結論與建議 66 6.1 結論 66 6.2 建議 68 參考文獻 69 附錄A 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 崩塌 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 崩塌潛勢評估模式 | zh_TW |
| dc.subject | 多重空間解析度 | zh_TW |
| dc.subject | convolutional neural network | en |
| dc.subject | multiple spatial resolutions | en |
| dc.subject | landslide susceptibility model | en |
| dc.subject | landslide | en |
| dc.title | 二維卷積神經網路建置高解析度崩塌潛勢圖之研究 | zh_TW |
| dc.title | Landslide susceptibility mapping using 2D-CNN deep learning algorithm with high spatial resolution | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴進松(Jihn-Sung Lai), 李方中(Fang-Chung Lee) | |
| dc.subject.keyword | 崩塌,崩塌潛勢評估模式,多重空間解析度,卷積神經網路, | zh_TW |
| dc.subject.keyword | landslide,landslide susceptibility model,multiple spatial resolutions,convolutional neural network, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU202201490 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-22 | - |
| Appears in Collections: | 土木工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1507202222005000.pdf | 28.07 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
