Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85426
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor康敦彥(Dun-Yen Kang)
dc.contributor.authorHan-Lun Hungen
dc.contributor.author洪漢倫zh_TW
dc.date.accessioned2023-03-19T23:16:28Z-
dc.date.copyright2022-07-26
dc.date.issued2022
dc.date.submitted2022-07-20
dc.identifier.citation(1) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279. DOI: 10.1038/46248. (2) Chen, Y. W.; Zhang, X.; Mian, M. R.; Son, F. A.; Zhang, K.; Cao, R.; Chen, Z. J.; Lee, S. J.; Idrees, K. B.; Goetjen, T. A.; et al. Structural Diversity of Zirconium Metal-Organic Frameworks and Effect on Adsorption of Toxic Chemicals. J. Am. Chem. Soc. 2020, 142 (51), 21428-21438. DOI: 10.1021/jacs.0c10400. (3) Pascanu, V.; Miera, G. G.; Inge, A. K.; Martin-Matute, B. Metal-Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J. Am. Chem. Soc. 2019, 141 (18), 7223-7234. DOI: 10.1021/jacs.9b00733. (4) Han, Y. Q.; Xu, H. T.; Su, Y. Q.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. Journal of Catalysis 2019, 370, 70-78. DOI: 10.1016/j.jcat.2018.12.005. (5) Stassen, I.; Burtch, N. C.; Talin, A. A.; Falcaro, P.; Allendorf, M. D.; Ameloot, R. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chemical Society Reviews 2017, 46 (11), 3185-3241. DOI: 10.1039/c7cs00122c. (6) Zhan, W. W.; Kuang, Q.; Zhou, J. Z.; Kong, X. J.; Xie, Z. X.; Zheng, L. S. Semiconductor@Metal-Organic Framework Core-Shell Heterostructures: A Case of ZnO@ZIF-8 Nanorods with Selective Photoelectrochemical Response. J. Am. Chem. Soc. 2013, 135 (5), 1926-1933. DOI: 10.1021/ja311085e. (7) Lian, X. Z.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J. L.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (metal-organic framework) composites. Chemical Society Reviews 2017, 46 (11), 3386-3401. DOI: 10.1039/c7cs00058h. (8) Patra, S.; Crespo, T. H.; Permyakova, A.; Sicard, C.; Serre, C.; Chausse, A.; Steunou, N.; Legrand, L. Design of metal organic framework-enzyme based bioelectrodes as a novel and highly sensitive biosensing platform. Journal of Materials Chemistry B 2015, 3 (46), 8983-8992. DOI: 10.1039/c5tb01412c. (9) Mondal, T.; Haldar, D.; Ghosh, A.; Ghorai, U. K.; Saha, S. K. A MOF functionalized with CdTe quantum dots as an efficient white light emitting phosphor material for applications in displays. New Journal of Chemistry 2020, 44 (1), 55-63. DOI: 10.1039/c9nj04304g. (10) Aguilera-Sigalat, J.; Bradshaw, D. Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites. Coordination Chemistry Reviews 2016, 307, 267-291. DOI: 10.1016/j.ccr.2015.08.004. (11) Xie, Q. Y.; Ou, H.; Yang, Q. Y.; Lin, X. M.; Zeb, A.; Li, K.; Chen, X. L.; Ma, G. Z. A review on metal-organic framework-derived anode materials for potassium-ion batteries. Dalton Transactions 2021, 50 (28), 9669-9684. DOI: 10.1039/d1dt01482j. (12) Wang, L. Q.; Zhu, Y. Q.; Du, C. L.; Ma, X. L.; Cao, C. B. Advances and challenges in metal-organic framework derived porous materials for batteries and electrocatalysis. Journal of Materials Chemistry A 2020, 8 (47), 24895-24919. DOI: 10.1039/d0ta08311a. (13) Dawood, F.; Anda, M.; Shafiullah, G. M. Hydrogen production for energy: An overview. Int. J. Hydrog. Energy 2020, 45 (7), 3847-3869. DOI: 10.1016/j.ijhydene.2019.12.059. (14) Manoharan, Y.; Hosseini, S. E.; Butler, B.; Alzhahrani, H.; Fou, B. T.; Ashuri, T.; Krohn, J. Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Applied Sciences-Basel 2019, 9 (11). DOI: 10.3390/app9112296. (15) Sharaf, O. Z.; Orhan, M. F. An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews 2014, 32, 810-853. DOI: 10.1016/j.rser.2014.01.012. (16) Huang, A.; Wang, N.; Caro, J. Stepwise synthesis of sandwich-structured composite zeolite membranes with enhanced separation selectivity. Chem. Commun. 2012, 48 (29), 3542-3544. (17) Huang, A.; Wang, N.; Caro, J. Synthesis of multi-layer zeolite LTA membranes with enhanced gas separation performance by using 3-aminopropyltriethoxysilane as interlayer. Microporous and Mesoporous Materials 2012, 164, 294-301. (18) Tang, Z.; Dong, J.; Nenoff, T. M. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen. Langmuir 2009, 25 (9), 4848-4852. (19) Itta, A. K.; Tseng, H.-H.; Wey, M.-Y. Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. J. Membr. Sci. 2011, 372 (1-2), 387-395. (20) Berchtold, K. A.; Singh, R. P.; Young, J. S.; Dudeck, K. W. Polybenzimidazole composite membranes for high temperature synthesis gas separations. J. Membr. Sci. 2012, 415, 265-270. (21) Lau, C. H.; Low, B. T.; Shao, L.; Chung, T.-S. A vapor-phase surface modification method to enhance different types of hollow fiber membranes for industrial scale hydrogen separation. Int. J. Hydrog. Energy 2010, 35 (17), 8970-8982. (22) Shao, L.; Lau, C.-H.; Chung, T.-S. A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification. Int. J. Hydrog. Energy 2009, 34 (20), 8716-8722. (23) Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320 (1-2), 390-400. (24) Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62 (2), 165-185. (25) Phair, J.; Badwal, S. Materials for separation membranes in hydrogen and oxygen production and future power generation. Science and technology of advanced materials 2006, 7 (8), 792. (26) Das, J. K.; Das, N.; Bandyopadhyay, S. Highly oriented improved SAPO 34 membrane on low cost support for hydrogen gas separation. Journal of Materials Chemistry A 2013, 1 (16), 4966-4973. (27) Itta, A. K.; Tseng, H.-H.; Wey, M.-Y. Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived CMS membrane for H2/N2 separation. Int. J. Hydrog. Energy 2010, 35 (4), 1650-1658. (28) Koros, W. J.; Fleming, G. Membrane-based gas separation. J. Membr. Sci. 1993, 83 (1), 1-80. (29) Haldoupis, E.; Nair, S.; Sholl, D. S. Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations. J. Am. Chem. Soc. 2010, 132 (21), 7528-7539. (30) Li, W.; Zhang, Y.; Zhang, C.; Meng, Q.; Xu, Z.; Su, P.; Li, Q.; Shen, C.; Fan, Z.; Qin, L. Transformation of metal-organic frameworks for molecular sieving membranes. Nat. Commun. 2016, 7 (1), 1-9. (31) Zhang, F.; Zou, X.; Gao, X.; Fan, S.; Sun, F.; Ren, H.; Zhu, G. Hydrogen selective NH2‐MIL‐53 (Al) MOF membranes with high permeability. Adv. Funct. Mater. 2012, 22 (17), 3583-3590. (32) Hou, Q.; Wu, Y.; Zhou, S.; Wei, Y.; Caro, J.; Wang, H. Ultra‐tuning of the aperture size in stiffened ZIF‐8_Cm frameworks with mixed‐linker strategy for enhanced CO2/CH4 separation. Angewandte Chemie International Edition 2019, 58 (1), 327-331. (33) Babu, D. J.; He, G.; Hao, J.; Vahdat, M. T.; Schouwink, P. A.; Mensi, M.; Agrawal, K. V. Restricting lattice flexibility in polycrystalline metal–organic framework membranes for carbon capture. Adv. Mater. 2019, 31 (28), 1900855. (34) Sun, Y.; Liu, Y.; Caro, J.; Guo, X.; Song, C.; Liu, Y. In‐Plane Epitaxial Growth of Highly c‐Oriented NH2‐MIL‐125 (Ti) Membranes with Superior H2/CO2 Selectivity. Angewandte Chemie 2018, 130 (49), 16320-16325. (35) Chernikova, V.; Shekhah, O.; Belmabkhout, Y.; Eddaoudi, M. Nanoporous fluorinated metal–organic framework-based membranes for CO2 capture. ACS Applied Nano Materials 2020, 3 (7), 6432-6439. (36) Guo, J.-C.; Zou, C.; Chiang, C.-Y.; Chang, T.-A.; Chen, J.-J.; Lin, L.-C.; Kang, D.-Y. NaP1 zeolite membranes with high selectivity for water-alcohol pervaporation. J. Membr. Sci. 2021, 639, 119762. (37) Tao, T.-L.; Chang, C.-K.; Kang, Y.-H.; Chen, J.-J.; Kang, D.-Y. Enhanced pervaporation performance of zeolite membranes treated by atmospheric-pressure plasma. Journal of the Taiwan Institute of Chemical Engineers 2020, 116, 112-120. (38) Keskin, S.; Sholl, D. S. Screening Metal− Organic framework materials for membrane-based methane/carbon dioxide separations. The Journal of Physical Chemistry C 2007, 111 (38), 14055-14059. (39) Liu, Y.; Ng, Z.; Khan, E. A.; Jeong, H.-K.; Ching, C.-b.; Lai, Z. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous and Mesoporous Materials 2009, 118 (1-3), 296-301. (40) Qian, Q.; Asinger, P. A.; Lee, M. J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F. M.; Wu, A. X.; Chi, W. S.; Smith, Z. P. MOF-based membranes for gas separations. Chemical Reviews 2020, 120 (16), 8161-8266. (41) Chen, Z.; Xiang, S.; Zhao, D.; Chen, B. Reversible two-dimensional− three dimensional framework transformation within a prototype metal− organic framework. Crystal growth & design 2009, 9 (12), 5293-5296. (42) Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials 2012, 149 (1), 134-141. (43) Wang, X.; Chi, C.; Tao, J.; Peng, Y.; Ying, S.; Qian, Y.; Dong, J.; Hu, Z.; Gu, Y.; Zhao, D. Improving the hydrogen selectivity of graphene oxide membranes by reducing non-selective pores with intergrown ZIF-8 crystals. Chem. Commun. 2016, 52 (52), 8087-8090. (44) Kalaj, M.; Bentz, K. C.; Ayala Jr, S.; Palomba, J. M.; Barcus, K. S.; Katayama, Y.; Cohen, S. M. MOF-polymer hybrid materials: From simple composites to tailored architectures. Chemical reviews 2020, 120 (16), 8267-8302. (45) Schmidt, B. V. Metal‐organic frameworks in polymer science: polymerization catalysis, polymerization environment, and hybrid materials. Macromolecular Rapid Communications 2020, 41 (1), 1900333. (46) Kitao, T.; Zhang, Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridization of MOFs and polymers. Chemical Society Reviews 2017, 46 (11), 3108-3133. (47) Uemura, T.; Yanai, N.; Kitagawa, S. Polymerization reactions in porous coordination polymers. Chemical Society Reviews 2009, 38 (5), 1228-1236. (48) Le Ouay, B.; Watanabe, C.; Mochizuki, S.; Takayanagi, M.; Nagaoka, M.; Kitao, T.; Uemura, T. Selective sorting of polymers with different terminal groups using metal-organic frameworks. Nat. Commun. 2018, 9 (1), 1-8. (49) Mizutani, N.; Hosono, N.; Le Ouay, B.; Kitao, T.; Matsuura, R.; Kubo, T.; Uemura, T. Recognition of Polymer Terminus by Metal–Organic Frameworks Enabling Chromatographic Separation of Polymers. J. Am. Chem. Soc. 2020, 142 (8), 3701-3705. (50) Uemura, T.; Washino, G.; Kitagawa, S.; Takahashi, H.; Yoshida, A.; Takeyasu, K.; Takayanagi, M.; Nagaoka, M. Molecular-level studies on dynamic behavior of oligomeric chain molecules in porous coordination polymers. The Journal of Physical Chemistry C 2015, 119 (37), 21504-21514. (51) Oe, N.; Hosono, N.; Uemura, T. Revisiting molecular adsorption: unconventional uptake of polymer chains from solution into sub-nanoporous media. Chemical science 2021, 12 (38), 12576-12586. (52) Chun, H.; Dybtsev, D. N.; Kim, H.; Kim, K. Synthesis, X‐ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle‐wheel motifs: Implications for hydrogen storage in porous materials. Chemistry–A European Journal 2005, 11 (12), 3521-3529. (53) Hsieh, Y.-J.; Zou, C.; Chen, J.-J.; Lin, L.-C.; Kang, D.-Y. Pillared-bilayer metal-organic framework membranes for dehydration of isopropanol. Microporous and Mesoporous Materials 2021, 326, 111344. (54) Dybtsev, D. N.; Chun, H.; Kim, K. Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angew. Chem.-Int. Edit. 2004, 43 (38), 5033-5036. DOI: 10.1002/anie.200460712. (55) Peng, L.; Wu, S.; Yang, X.; Hu, J.; Fu, X.; Huo, Q.; Guan, J. Application of metal organic frameworks M (bdc)(ted) 0.5 (M= Co, Zn, Ni, Cu) in the oxidation of benzyl alcohol. RSC Adv. 2016, 6 (76), 72433-72438. (56) Kan, M.-Y.; Shin, J. H.; Yang, C.-T.; Chang, C.-K.; Lee, L.-W.; Chen, B.-H.; Lu, K.-L.; Lee, J. S.; Lin, L.-C.; Kang, D.-Y. Activation-controlled structure deformation of pillared-bilayer metal–organic framework membranes for gas separations. Chem. Mat. 2019, 31 (18), 7666-7677. (57) Giovine, R.; Volkringer, C.; Trébosc, J.; Amoureux, J.-P.; Loiseau, T.; Lafon, O.; Pourpoint, F. NMR crystallography to probe the breathing effect of the MIL-53 (Al) metal–organic framework using solid-state NMR measurements of 13C–27Al distances. Acta Crystallographica Section C: Structural Chemistry 2017, 73 (3), 176-183. (58) Kyakuno, H.; Fukasawa, M.; Ichimura, R.; Matsuda, K.; Nakai, Y.; Miyata, Y.; Saito, T.; Maniwa, Y. Diameter-dependent hydrophobicity in carbon nanotubes. The Journal of Chemical Physics 2016, 145 (6), 064514. (59) Kang, D.-Y.; Zang, J.; Wright, E. R.; McCanna, A. L.; Jones, C. W.; Nair, S. Dehydration, dehydroxylation, and rehydroxylation of single-walled aluminosilicate nanotubes. Acs Nano 2010, 4 (8), 4897-4907. (60) Friebe, S.; Geppert, B.; Steinbach, F.; Caro, J. r. Metal–organic framework UiO-66 layer: a highly oriented membrane with good selectivity and hydrogen permeance. ACS Applied Materials & Interfaces 2017, 9 (14), 12878-12885. (61) Velioglu, S.; Keskin, S. Simulation of H 2/CH 4 mixture permeation through MOF membranes using non-equilibrium molecular dynamics. Journal of Materials Chemistry A 2019, 7 (5), 2301-2314. (62) Keskin, S. Comparing performance of CPO and IRMOF membranes for gas separations using atomistic models. Industrial & engineering chemistry research 2010, 49 (22), 11689-11696. (63) Kan, M.-Y.; Lyu, Q.; Chu, Y.-H.; Hsu, C.-C.; Lu, K.-L.; Lin, L.-C.; Kang, D.-Y. Suppressing Defect Formation in Metal–Organic Framework Membranes via Plasma-Assisted Synthesis for Gas Separations. ACS Applied Materials & Interfaces 2021, 13 (35), 41904-41915. (64) Chiou, D. S.; Yu, H. J.; Hung, T. H.; Lyu, Q.; Chang, C. K.; Lee, J. S.; Lin, L. C.; Kang, D. Y. Highly CO2 selective metal–organic framework membranes with favorable coulombic effect. Adv. Funct. Mater. 2021, 31 (4), 2006924. (65) Rong, R.; Sun, Y.; Ji, T.; Liu, Y. Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth. J. Membr. Sci. 2020, 610, 118275. (66) Yin, H.; Wang, J.; Xie, Z.; Yang, J.; Bai, J.; Lu, J.; Zhang, Y.; Yin, D.; Lin, J. Y. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO 2–N 2 separation. Chem. Commun. 2014, 50 (28), 3699-3701. (67) Rui, Z.; James, J. B.; Kasik, A.; Lin, Y. Metal‐organic framework membrane process for high purity CO2 production. AIChE Journal 2016, 62 (11), 3836-3841. (68) Keskin, S.; Sholl, D. S. Assessment of a metal− organic framework membrane for gas separations using atomically detailed calculations: CO2, CH4, N2, H2 mixtures in MOF-5. Industrial & Engineering Chemistry Research 2009, 48 (2), 914-922. (69) Swaidan, R.; Ghanem, B.; Pinnau, I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Publications: 2015. (70) Robeson, L.; Burgoyne, W.; Langsam, M.; Savoca, A.; Tien, C. High performance polymers for membrane separation. Polymer 1994, 35 (23), 4970-4978. (71) Sun, Y. W.; Liu, Y.; Caro, J.; Guo, X. W.; Song, C. S.; Liu, Y. In-Plane Epitaxial Growth of Highly c-Oriented NH2-MIL-125(Ti) Membranes with Superior H-2/CO2 Selectivity. Angew. Chem.-Int. Edit. 2018, 57 (49), 16088-16093, Article. DOI: 10.1002/anie.201810088. (72) Zhang, F.; Zou, X. Q.; Gao, X.; Fan, S. J.; Sun, F. X.; Ren, H.; Zhu, G. S. Hydrogen Selective NH2-MIL-53(Al) MOF Membranes with High Permeability. Adv. Funct. Mater. 2012, 22 (17), 3583-3590, Article. DOI: 10.1002/adfm.201200084. (73) Zhou, S. Y.; Zou, X. Q.; Sun, F. X.; Ren, H.; Liu, J.; Zhang, F.; Zhao, N.; Zhu, G. S. Development of hydrogen-selective CAU-1 MOF membranes for hydrogen purification by 'dual-metal-source' approach. Int. J. Hydrog. Energy 2013, 38 (13), 5338-5347, Article. DOI: 10.1016/j.ijhydene.2013.02.074. (74) Wang, N. Y.; Mundstock, A.; Liu, Y.; Huang, A. S.; Caro, J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H-2/CO2 separation. Chem. Eng. Sci. 2015, 124, 27-36, Article. DOI: 10.1016/j.ces.2014.10.037. (75) Sun, Y. W.; Song, C. S.; Guo, X. W.; Hong, S. W.; Choi, J. Y.; Liu, Y. Microstructural optimization of NH2-MIL-125 membranes with superior H-2/CO2 separation performance by innovating metal sources and heating modes. J. Membr. Sci. 2020, 616, 10, Article. DOI: 10.1016/j.memsci.2020.118615. (76) Guo, H. L.; Zhu, G. S.; Hewitt, I. J.; Qiu, S. L. 'Twin Copper Source' Growth of Metal-Organic Framework Membrane: Cu-3(BTC)(2) with High Permeability and Selectivity for Recycling H-2. J. Am. Chem. Soc. 2009, 131 (5), 1646-+, Article. DOI: 10.1021/ja8074874. (77) Kong, L. Y.; Zhang, X. F.; Liu, H. O.; Qiu, J. S. Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer. J. Membr. Sci. 2015, 490, 354-363, Article. DOI: 10.1016/j.memsci.2015.05.006. (78) Peng, Y.; Li, Y. S.; Ban, Y. J.; Yang, W. S. Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation. Angew. Chem.-Int. Edit. 2017, 56 (33), 9757-9761, Article. DOI: 10.1002/anie.201703959. (79) Wang, X. R.; Chi, C. L.; Zhang, K.; Qian, Y. H.; Gupta, K. M.; Kang, Z. X.; Jiang, J. W.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 2017, 8, 10, Article. DOI: 10.1038/ncomms14460. (80) Huang, A. S.; Caro, J. Covalent Post-Functionalization of Zeolitic Imidazolate Framework ZIF-90 Membrane for Enhanced Hydrogen Selectivity. Angew. Chem.-Int. Edit. 2011, 50 (21), 4979-4982, Article. DOI: 10.1002/anie.201007861. (81) Kan, M. Y.; Shin, J. H.; Yang, C. T.; Chang, C. K.; Lee, L. W.; Chen, B. H.; Lu, K. L.; Lee, J. S.; Lin, L. C.; Kang, D. Y. Activation-Controlled Structure Deformation of Pillared-Bilayer Metal-Organic Framework Membranes for Gas Separations. Chem. Mat. 2019, 31 (18), 7666-7677, Article. DOI: 10.1021/acs.chemmater.9b02539. (82) Jin, H.; Wollbrink, A.; Yao, R.; Li, Y. S.; Caro, J.; Yang, W. S. A novel CAU-10-H MOF membrane for hydrogen separation under hydrothermal conditions. J. Membr. Sci. 2016, 513, 40-46, Article. DOI: 10.1016/j.memsci.2016.04.017. (83) Li, W. B.; Zhang, Y. F.; Zhang, C. Y.; Meng, Q.; Xu, Z. H.; Su, P. C.; Li, Q. B.; Shen, C.; Fan, Z.; Qin, L.; et al. Transformation of metal-organic frameworks for molecular sieving membranes. Nat. Commun. 2016, 7, 9, Article. DOI: 10.1038/ncomms11315. (84) Wang, Y. H.; Fin, H.; Ma, Q.; Mo, K.; Mao, H. Z.; Feldhoff, A.; Cao, X. Z.; Li, Y. S.; Pan, F. S.; Jiang, Z. Y. A MOF Glass Membrane for Gas Separation. Angew. Chem.-Int. Edit. 2020, 59 (11), 4365-4369, Article. DOI: 10.1002/anie.201915807. (85) Rong, R.; Sun, Y. W.; Ji, T. T.; Liu, Y. Fabrication of highly CO2/N-2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via solvothermal. J. Membr. Sci. 2020, 610, 9, Article. DOI: 10.1016/j.memsci.2020.118275. (86) Huang, A. S.; Dou, W.; Caro, J. Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization. J. Am. Chem. Soc. 2010, 132 (44), 15562-15564, Article. DOI: 10.1021/ja108774v. (87) Babu, D. J.; He, G. W.; Hao, J.; Vandat, M. T.; Schouwink, P. A.; Mensi, M.; Agrawal, K. V. Restricting Lattice Flexibility in Polycrystalline Metal-Organic Framework Membranes for Carbon Capture. Adv. Mater. 2019, 31 (28), 6, Article. DOI: 10.1002/adma.201900855. (88) Huang, A. S.; Chen, Y. F.; Wang, N. Y.; Hu, Z. Q.; Jiang, J. W.; Caro, J. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H-2/CO2 separation. Chem. Commun. 2012, 48 (89), 10981-10983, Article. DOI: 10.1039/c2cc35691k. (89) Takamizawa, S.; Takasaki, Y.; Miyake, R. Single-Crystal Membrane for Anisotropic and Efficient Gas Permeation. J. Am. Chem. Soc. 2010, 132 (9), 2862-+, Article. DOI: 10.1021/ja910492d. (90) Yin, H. M.; Wang, J. Q.; Xie, Z.; Yang, J. H.; Bai, J.; Lu, J. M.; Zhang, Y.; Yin, D. H.; Lin, J. Y. S. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2-N-2 separation. Chem. Commun. 2014, 50 (28), 3699-3701, Article. DOI: 10.1039/c4cc00068d. (91) Fan, S. J.; Wu, S.; Liu, J. H.; Liu, D. Fabrication of MIL-120 membranes supported by a-Al2O3 hollow ceramic fibers for H-2 separation. RSC Adv. 2015, 5 (67), 54757-54761, Article. DOI: 10.1039/c5ra09792d. (92) Wang, X.; Chi, C.; Zhang, K.; Qian, Y.; Gupta, K. M.; Kang, Z.; Jiang, J.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 2017, 8 (1), 1-10. (93) Peng, Y.; Li, Y.; Ban, Y.; Yang, W. Two‐dimensional metal–organic framework nanosheets for membrane‐based gas separation. Angewandte Chemie 2017, 129 (33), 9889-9893. (94) Cacho-Bailo, F.; Etxeberría-Benavides, M.; Karvan, O.; Téllez, C.; Coronas, J. Sequential amine functionalization inducing structural transition in an aldehyde-containing zeolitic imidazolate framework: application to gas separation membranes. CrystEngComm 2017, 19 (11), 1545-1554. (95) Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Metal–organic framework membranes with layered structure prepared within the porous support. RSC Adv. 2013, 3 (34), 14233-14236. (96) Huang, A.; Wang, N.; Kong, C.; Caro, J. Organosilica‐functionalized zeolitic imidazolate framework ZIF‐90 membrane with high gas‐separation performance. Angewandte Chemie 2012, 124 (42), 10703-10707. (97) Kang, Z.; Xue, M.; Fan, L.; Huang, L.; Guo, L.; Wei, G.; Chen, B.; Qiu, S. Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane. Energy & Environmental Science 2014, 7 (12), 4053-4060. (98) Huang, K.; Liu, S.; Li, Q.; Jin, W. Preparation of novel metal-carboxylate system MOF membrane for gas separation. Separation and Purification Technology 2013, 119, 94-101. (99) Li, Y.; Liang, F.; Bux, H.; Yang, W.; Caro, J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 2010, 354 (1-2), 48-54. (100) Zhou, S.; Zou, X.; Sun, F.; Ren, H.; Liu, J.; Zhang, F.; Zhao, N.; Zhu, G. Development of hydrogen-selective CAU-1 MOF membranes for hydrogen purification by ‘dual-metal-source’approach. Int. J. Hydrog. Energy 2013, 38 (13), 5338-5347. (101) Hu, Y.; Wu, Y.; Devendran, C.; Wei, J.; Liang, Y.; Matsukata, M.; Shen, W.; Neild, A.; Huang, H.; Wang, H. Preparation of nanoporous graphene oxide by nanocrystal-masked etching: toward a nacre-mimetic metal–organic framework molecular sieving membrane. Journal of Materials Chemistry A 2017, 5 (31), 16255-16262. (102) Kong, L.; Zhang, X.; Liu, H.; Qiu, J. Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer. J. Membr. Sci. 2015, 490, 354-363.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85426-
dc.description.abstract金屬有機骨架(Metal-organic frameworks, MOFs)因具有結構多樣性、化學功能性以及良好的吸附性質等特性,在薄膜分離領域被廣泛利用並具有高度發展潛力,尤其是在薄膜氣體分離與薄膜滲透蒸發等應用領域中。根據分子篩理論,具有氣體分離效能的MOF,其孔徑大小理想上將會介於兩種氣體的動態直徑之間,只要成功將其製備成為薄膜,便可有效對此氣體混合物進行分離。對於孔洞過大的MOF來說,其薄膜則難以對氣體混合物產生分子篩效應。本研究參考先前文獻,提出利用高分子嵌入MOF孔洞的方法來縮小其孔洞大小,盼利用此方法來提高薄膜氣體分離選擇性。在本論文研究中,我們選擇了名為Zn-BDC-TED的MOF(ZnMOF)材料來進行研究,其孔徑大小為0.75 nm。並將其製備為薄膜進行研究。接著我們使用分子量20,000 Da的聚乙二醇(PEG)摻入此ZnMOF薄膜,並利用傅立葉轉換紅外線光譜以及X光繞射技術來檢測PEG在ZnMOF中的分布情形。從臨場X光分析中,我們觀測到PEG在ZnMOF中吸、脫附的可逆變化。此外,我們得知PEG在ZnMOF不同軸向孔洞間的分布情形。透過薄膜氣體滲透的實驗,我們發現摻入PEG的ZnMOF薄膜具有良好的氫氣滲透率以及氫氣/二氧化碳選擇率。摻入PEG後選擇率從4提高到了18。zh_TW
dc.description.abstractMetal-organic frameworks (MOFs) are promising materials for membrane gas separation due to their structural diversity, chemical functionality, and good adsorption properties. Base on the concept of size exclusion, an ideal MOF structure for membrane gas separation should possess an aperture size in between the dimensions of the two gas molecules to be separated. Therefore, MOFs with a pore size beyond the ultramicropore region (i.e. > 0.7 nm) is not ideal for for membrane gas separations. Herein we propose a method to narrow the pore size of MOFs via polymer insertion. Specifically, Zn-BDC-TED (ZnMOF) with a pore size of about 0.75 nm is investigated in this work. Polyethylene glycol (PEG) with molecular weight of 20,000 Da is inserted into ZnMOF membranes for the pore engineering. The resulting ZnMOF membranes with PEG were characterized via Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffractometer (XRD). The reversibility of PEG adsorption in ZnMOF was assessed by the in situ XRD analysis with a synchrotron X-ray source. The gas permeation results show that the insertion of PEG can effectively improve the gas separation performance of the ZnMOF membranes, especially for the mixture of H2/CO2. The optimized ZnMOF membrane achieves an ideal H2/CO2 selectivity of 18 with a high H2 permeability of about 3×105 barrer.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:28Z (GMT). No. of bitstreams: 1
U0001-2007202212400500.pdf: 5641132 bytes, checksum: 27b0e84df99ce2088447f7d063d6d4f4 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 i 致謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 x 第1 章 緒論及文獻回顧 1 1.1. 金屬有機骨架 1 1.2. 薄膜氫氣純化技術 2 1.3. 金屬有機骨架氣體分離膜 5 1.4. 金屬有機骨架薄膜於氫氣/二氧化碳分離之發展現況 7 1.5. 高分子嵌入金屬有機骨架孔洞的過往研究 9 1.6. 研究動機及架構 12 第2章 實驗方法 14 2.1. 合成Zn-BDC-TED之化學品 14 2.2. 合成Zn-BDC-TED粉體 14 2.3. Zn-BDC-TED薄膜生長 14 2.4. PEG嵌入Zn-BDC-TED薄膜之製備 16 2.6 Zn-BDC-TED樣品鑑定 17 2.7. 薄膜效能檢測及計算方法 19 第3章 高分子嵌入MOF之粉體及薄膜樣品鑑定與分析 22 3.1. ZnMOF粉體之合成與鑑定 22 3.2. 乙醇進入MOF孔洞中所造成之結構改變 23 3.3. 高分子嵌入MOF孔洞中所造成之結構改變 25 3.4. 高分子嵌入MOF孔洞中之晶面特徵峰強度變化 26 3.5. 高分子嵌入MOF薄膜之形貌與官能基鑑定 29 3.6. 高分子嵌入MOF薄膜之結構鑑定 33 第4章 金屬有機骨架薄膜效能測試及討論 35 4.1. 薄膜氣體滲透性質 35 4.2. 薄膜氣體分離選擇率 37 4-3. 薄膜之穩定性探討及測試 46 第5章 結論與未來展望 48 參考文獻 49
dc.language.isozh-TW
dc.subject薄膜氣體分離zh_TW
dc.subject金屬有機骨架zh_TW
dc.subject金屬有機骨架薄膜zh_TW
dc.subjectMembrane gas separationen
dc.subjectMetal-organic framework membraneen
dc.subjectMetal-organic frameworken
dc.title利用嵌入高分子調控金屬有機骨架薄膜之孔洞特性與氣體分離效能zh_TW
dc.titlePore Engineering of Metal-organic Frameworks via Polymer Insertion for Membrane Gas Separationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林嘉和(Chia-Her Lin),羅世強(Shyh-Chyang Luo),林立強(Li-Chiang Lin)
dc.subject.keyword金屬有機骨架,金屬有機骨架薄膜,薄膜氣體分離,zh_TW
dc.subject.keywordMetal-organic framework,Metal-organic framework membrane,Membrane gas separation,en
dc.relation.page57
dc.identifier.doi10.6342/NTU202201571
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2022-07-26-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2007202212400500.pdf5.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved