Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85424
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor康敦彥(Dun-Yen Kang)
dc.contributor.authorHsin-Yu Tsaien
dc.contributor.author蔡心瑀zh_TW
dc.date.accessioned2023-03-19T23:16:26Z-
dc.date.copyright2022-07-26
dc.date.issued2022
dc.date.submitted2022-07-20
dc.identifier.citation1. Scholes, C. A.; Stevens, G. W.; Kentish, S. E., Membrane gas separation applications in natural gas processing. Fuel 2012, 96, 15-28. 2. Scholes, C. A.; Bacus, J.; Chen, G. Q.; Tao, W. X.; Li, G.; Qader, A.; Stevens, G. W.; Kentish, S. E., Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas. Journal of membrane science 2012, 389, 470-477. 3. Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M. J.; Brandani, S.; Mac Dowell, N.; Fernández, J. R.; Ferrari, M.-C.; Gross, R.; Hallett, J. P., Carbon capture and storage update. Energy & Environmental Science 2014, 7 (1), 130-189. 4. Qian, Q.; Asinger, P. A.; Lee, M. J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F. M.; Wu, A. X.; Chi, W. S.; Smith, Z. P., MOF-based membranes for gas separations. Chemical Reviews 2020, 120 (16), 8161-8266. 5. Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.; Baker, R. W.; Freeman, B. D., 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 2017, 50 (20), 7809-7843. 6. Bernhardsen, I. M.; Knuutila, H. K., A review of potential amine solvents for CO2 absorption process: Absorption capacity, cyclic capacity and pKa. International Journal of Greenhouse Gas Control 2017, 61, 27-48. 7. Bernardo, P.; Drioli, E.; Golemme, G., Membrane gas separation: a review/state of the art. Industrial & engineering chemistry research 2009, 48 (10), 4638-4663. 8. Kárászová, M.; Zach, B.; Petrusová, Z.; Červenka, V.; Bobák, M.; Šyc, M.; Izák, P., Post-combustion carbon capture by membrane separation, Review. Separation and purification technology 2020, 238, 116448. 9. National Academies of Sciences, E.; Medicine, A Research Agenda for Transforming Separation Science. National Academies Press: 2019. 10. Zhang, M.; Deng, L.; Xiang, D.; Cao, B.; Hosseini, S. S.; Li, P., Approaches to suppress CO2-induced plasticization of polyimide membranes in gas separation applications. Processes 2019, 7 (1), 51. 11. Liang, C. Z.; Chung, T.-S.; Lai, J.-Y., A review of polymeric composite membranes for gas separation and energy production. Progress in Polymer Science 2019, 97, 101141. 12. Jiao, W.; Ban, Y.; Shi, Z.; Jiang, X.; Li, Y.; Yang, W., Gas separation performance of supported carbon molecular sieve membranes based on soluble polybenzimidazole. Journal of Membrane Science 2017, 533, 1-10. 13. Fan, H.; Mundstock, A.; Gu, J.; Meng, H.; Caro, J., An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO 2/CH 4 separation. Journal of Materials Chemistry A 2018, 6 (35), 16849-16853. 14. Chew, T. L.; Yeong, Y. F.; Ho, C. D.; Ahmad, A. L., Ion-Exchanged Silicoaluminophosphate-34 Membrane for Efficient CO2/N2 Separation with Low CO2 Concentration in the Gas Mixture. Industrial & Engineering Chemistry Research 2019, 58 (2), 729-735. 15. Weng, Y.; Ji, W.; Ye, C.; Dong, H.; Gao, Z.; Li, J.; Luo, C.; Ma, X., Simultaneously enhanced CO2 permeability and CO2/N2 selectivity at sub-ambient temperature from two novel functionalized intrinsic microporous polymers. Journal of Membrane Science 2022, 644, 120086. 16. Rui, Z.; James, J. B.; Kasik, A.; Lin, Y., Metal‐organic framework membrane process for high purity CO2 production. AIChE Journal 2016, 62 (11), 3836-3841. 17. Hu, L.; Clark, K.; Alebrahim, T.; Lin, H., Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. Journal of Membrane Science 2022, 644, 120140. 18. Kamble, A. R.; Patel, C. M.; Murthy, Z., A review on the recent advances in mixed matrix membranes for gas separation processes. Renewable and Sustainable Energy Reviews 2021, 145, 111062. 19. Goh, S. H.; Lau, H. S.; Yong, W. F., Metal–Organic Frameworks (MOFs)‐Based Mixed Matrix Membranes (MMMs) for Gas Separation: A Review on Advanced Materials in Harsh Environmental Applications. Small 2022, 2107536. 20. Jeazet, H. B. T.; Staudt, C.; Janiak, C., Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Transactions 2012, 41 (46), 14003-14027. 21. Haldoupis, E.; Nair, S.; Sholl, D. S., Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations. Journal of the American Chemical Society 2010, 132 (21), 7528-7539. 22. Levin, M. L. v.; Miller, M. A. f., Maxwell's' Treatise on Electricity and Magnetism'. Soviet Physics Uspekhi 1981, 24 (11), 904. 23. Wang, S.; McGuirk, C. M.; d'Aquino, A.; Mason, J. A.; Mirkin, C. A., Metal–organic framework nanoparticles. Advanced Materials 2018, 30 (37), 1800202. 24. Heo, D. Y.; Do, H. H.; Ahn, S. H.; Kim, S. Y., Metal-organic framework materials for perovskite solar cells. Polymers 2020, 12 (9), 2061. 25. Gangu, K. K.; Maddila, S.; Mukkamala, S. B.; Jonnalagadda, S. B., A review on contemporary metal–organic framework materials. Inorganica Chimica Acta 2016, 446, 61-74. 26. Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S., Introduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks. John Wiley & Sons: 2019. 27. Uemura, K.; Matsuda, R.; Kitagawa, S., Flexible microporous coordination polymers. Journal of Solid State Chemistry 2005, 178 (8), 2420-2429. 28. Elsaidi, S. K.; Mohamed, M. H.; Banerjee, D.; Thallapally, P. K., Flexibility in metal–organic frameworks: a fundamental understanding. Coordination Chemistry Reviews 2018, 358, 125-152. 29. Boutin, A.; Coudert, F.-X.; Springuel-Huet, M.-A.; Neimark, A. V.; Férey, G.; Fuchs, A. H., The behavior of flexible MIL-53 (Al) upon CH4 and CO2 adsorption. The Journal of Physical Chemistry C 2010, 114 (50), 22237-22244. 30. Millward, A. R.; Yaghi, O. M., Metal− organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society 2005, 127 (51), 17998-17999. 31. Xiang, S.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B., Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nature communications 2012, 3 (1), 1-9. 32. Horike, S.; Kamitsubo, Y.; Inukai, M.; Fukushima, T.; Umeyama, D.; Itakura, T.; Kitagawa, S., Postsynthesis modification of a porous coordination polymer by LiCl to enhance H+ transport. Journal of the American Chemical Society 2013, 135 (12), 4612-4615. 33. Lin, R.-B.; Li, L.; Zhou, H.-L.; Wu, H.; He, C.; Li, S.; Krishna, R.; Li, J.; Zhou, W.; Chen, B., Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nature materials 2018, 17 (12), 1128-1133. 34. Tu, R.; Zhang, W.; Zhang, J.; Wang, M.; Zhang, F.; Yang, K.; Li, J.; Pan, H.; Bernards, M. T.; Xie, P., Squarate-calcium metal–organic framework for molecular sieving of CO2 from flue gas with high water vapor resistance. Energy & Fuels 2021, 35 (17), 13900-13907. 35. Shi, Y.; Liang, B.; Alsalme, A.; Lin, R.-B.; Chen, B., Mechanochemical synthesis of an ethylene sieve UTSA-280. Journal of Solid State Chemistry 2020, 287, 121321. 36. Chen, X.; Chen, G.; Liu, G.; Liu, G.; Jin, W., UTSA‐280 MOF incorporated 6FDA‐polyimide mixed‐matrix membranes for ethylene/ethane separation. AIChE Journal, e17688. 37. Cheng, Y.; Ying, Y.; Japip, S.; Jiang, S. D.; Chung, T. S.; Zhang, S.; Zhao, D., Advanced porous materials in mixed matrix membranes. Advanced Materials 2018, 30 (47), 1802401. 38. Wang, Y.; Wang, X.; Guan, J.; Yang, L.; Ren, Y.; Nasir, N.; Wu, H.; Chen, Z.; Jiang, Z., 110th anniversary: mixed matrix membranes with fillers of intrinsic nanopores for gas separation. Industrial & Engineering Chemistry Research 2019, 58 (19), 7706-7724. 39. Liu, Y.; Liu, G.; Zhang, C.; Qiu, W.; Yi, S.; Chernikova, V.; Chen, Z.; Belmabkhout, Y.; Shekhah, O.; Eddaoudi, M., Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF‐polymer formulations. Advanced Science 2018, 5 (9), 1800982. 40. Chi, W. S.; Sundell, B. J.; Zhang, K.; Harrigan, D. J.; Hayden, S. C.; Smith, Z. P., Mixed‐Matrix Membranes Formed from Multi‐Dimensional Metal–Organic Frameworks for Enhanced Gas Transport and Plasticization Resistance. ChemSusChem 2019, 12 (11), 2355-2360. 41. Amooghin, A. E.; Mashhadikhan, S.; Sanaeepur, H.; Moghadassi, A.; Matsuura, T.; Ramakrishna, S., Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Progress In Materials Science 2019, 102, 222-295. 42. Paul, D.; Kemp, D. In The diffusion time lag in polymer membranes containing adsorptive fillers, Journal of polymer science: polymer symposia, Wiley Online Library: 1973; pp 79-93. 43. Yehia, H.; Pisklak, T.; Ferraris, J.; Balkus, K.; Musselman, I. In Methane facilitated transport using copper (II) biphenyl dicarboxylate-triethylenediamine/poly (3-acetoxyethylthiophene) mixed matrix membranes, Abstracts of Papers of the American Chemical Society, AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA: 2004; pp U351-U351. 44. Buddin, M. S.; Ahmad, A., A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. Journal of CO2 Utilization 2021, 51, 101616. 45. Moreton, J. C.; Denny, M. S.; Cohen, S. M., High MOF loading in mixed-matrix membranes utilizing styrene/butadiene copolymers. Chemical Communications 2016, 52 (100), 14376-14379. 46. Shen, J.; Liu, G.; Huang, K.; Li, Q.; Guan, K.; Li, Y.; Jin, W., UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science 2016, 513, 155-165. 47. Benzaqui, M.; Pillai, R. S.; Sabetghadam, A.; Benoit, V.; Normand, P.; Marrot, J.; Menguy, N.; Montero, D.; Shepard, W.; Tissot, A., Revisiting the aluminum trimesate-based MOF (MIL-96): from structure determination to the processing of mixed matrix membranes for CO2 capture. Chemistry of Materials 2017, 29 (24), 10326-10338. 48. Thür, R.; Van Havere, D.; Van Velthoven, N.; Smolders, S.; Lamaire, A.; Wieme, J.; Van Speybroeck, V.; De Vos, D.; Vankelecom, I. F., Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO 2 permeation for a more rational MMM development. Journal of Materials Chemistry A 2021, 9 (21), 12782-12796. 49. Ma, L.; Svec, F.; Lv, Y.; Tan, T., In situ bottom–up growth of metal–organic frameworks in a crosslinked poly (ethylene oxide) layer with ultrahigh loading and superior uniform distribution. Journal of Materials Chemistry A 2019, 7 (35), 20293-20301. 50. Marti, A. M.; Venna, S. R.; Roth, E. A.; Culp, J. T.; Hopkinson, D. P., Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation. ACS applied materials & interfaces 2018, 10 (29), 24784-24790. 51. Hao, L.; Liao, K.-S.; Chung, T.-S., Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. Journal of Materials Chemistry A 2015, 3 (33), 17273-17281. 52. Loloei, M.; Kaliaguine, S.; Rodrigue, D., Mixed matrix membranes based on NH2-MIL-53 (Al) and 6FDA-ODA polyimide for CO2 separation: Effect of the processing route on improving MOF-polymer interfacial interaction. Separation and Purification Technology 2021, 270, 118786. 53. Hossain, I.; Al Munsur, A. Z.; Choi, O.; Kim, T.-H., Bisimidazolium PEG-mediated crosslinked 6FDA-durene polyimide membranes for CO2 separation. Separation and Purification Technology 2019, 224, 180-188. 54. Du, N.; Park, H. B.; Robertson, G. P.; Dal-Cin, M. M.; Visser, T.; Scoles, L.; Guiver, M. D., Polymer nanosieve membranes for CO2-capture applications. Nature materials 2011, 10 (5), 372-375. 55. Sun, W.-J.; Kothari, S.; Sun, C. C., The relationship among tensile strength, Young's modulus, and indentation hardness of pharmaceutical compacts. Powder Technology 2018, 331, 1-6. 56. Rodrigues, M. A.; Ribeiro, J. d. S.; Costa, E. d. S.; Miranda, J. L. d.; Ferraz, H. C., Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Separation and Purification Technology 2018, 192, 491-500. 57. Tahir, Z.; Aslam, M.; Gilani, M. A.; Bilad, M. R.; Anjum, M. W.; Zhu, L.-P.; Khan, A. L., SO3H functionalized UiO-66 nanocrystals in Polysulfone based mixed matrix membranes: Synthesis and application for efficient CO2 capture. Separation and Purification Technology 2019, 224, 524-533. 58. Chuah, C. Y.; Lee, J.; Song, J.; Bae, T.-H., CO2/N2 Separation Properties of Polyimide-Based Mixed-Matrix Membranes Comprising UiO-66 with Various Functionalities. Membranes 2020, 10 (7), 154. 59. Katayama, Y.; Bentz, K. C.; Cohen, S. M., Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. ACS Applied Materials & Interfaces 2019, 11 (13), 13029-13037. 60. Wang, H.; Ni, Y.; Dong, Z.; Zhao, Q., A mechanically enhanced metal-organic framework/PDMS membrane for CO2/N2 separation. Reactive and Functional Polymers 2021, 160, 104825. 61. Mubashir, M.; Yeong, Y. F.; Lau, K. K.; Chew, T. L.; Norwahyu, J., Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53(Al)/cellulose acetate (CA) mixed matrix membranes. Separation and Purification Technology 2018, 199, 140-151. 62. Fan, Y.; Li, C.; Zhang, X.; Yang, X.; Su, X.; Ye, H.; Li, N., Tröger 's base mixed matrix membranes for gas separation incorporating NH2-MIL-53(Al) nanocrystals. Journal of Membrane Science 2019, 573, 359-369. 63. Tang, P.-H.; So, P. B.; Li, W.-H.; Hui, Z.-Y.; Hu, C.-C.; Lin, C.-H., Carbon Dioxide Enrichment PEBAX/MOF Composite Membrane for CO2 Separation. Membranes 2021, 11 (6), 404. 64. Song, C.; Li, R.; Fan, Z.; Liu, Q.; Zhang, B.; Kitamura, Y., CO2/N2 separation performance of Pebax/MIL-101 and Pebax /NH2-MIL-101 mixed matrix membranes and intensification via sub-ambient operation. Separation and Purification Technology 2020, 238, 116500. 65. Gao, J.; Mao, H.; Jin, H.; Chen, C.; Feldhoff, A.; Li, Y., Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation. Microporous and Mesoporous Materials 2020, 297, 110030. 66. Feng, S.; Bu, M.; Pang, J.; Fan, W.; Fan, L.; Zhao, H.; Yang, G.; Guo, H.; Kong, G.; Sun, H.; Kang, Z.; Sun, D., Hydrothermal stable ZIF-67 nanosheets via morphology regulation strategy to construct mixed-matrix membrane for gas separation. Journal of Membrane Science 2020, 593, 117404. 67. van Essen, M.; van den Akker, L.; Thür, R.; Houben, M.; Vankelecom, I. F.; Borneman, Z.; Nijmeijer, K., Investigation of ZIF‐78 Morphology and Feed Composition on the Mixed Gas CO2/N2 Separation Performance in Mixed Matrix Membranes. Advanced Materials Interfaces 2021, 8 (5), 2001478. 68. Yuan, J.; Zhu, H.; Sun, J.; Mao, Y.; Liu, G.; Jin, W., Novel ZIF-300 Mixed-Matrix Membranes for Efficient CO2 Capture. ACS Applied Materials & Interfaces 2017, 9 (44), 38575-38583. 69. Nabais, A. R.; Ribeiro, R. P. P. L.; Mota, J. P. B.; Alves, V. D.; Esteves, I. A. A. C.; Neves, L. A., CO2/N2 gas separation using Fe(BTC)-based mixed matrix membranes: A view on the adsorptive and filler properties of metal-organic frameworks. Separation and Purification Technology 2018, 202, 174-184. 70. Prasetya, N.; Ladewig, B. P., New Azo-DMOF-1 MOF as a Photoresponsive Low-Energy CO2 Adsorbent and Its Exceptional CO2/N2 Separation Performance in Mixed Matrix Membranes. ACS Applied Materials & Interfaces 2018, 10 (40), 34291-34301. 71. Maserati, L.; Meckler, S. M.; Bachman, J. E.; Long, J. R.; Helms, B. A., Diamine-Appended Mg2(dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO2/N2 Separations. Nano Letters 2017, 17 (11), 6828-6832. 72. Arjmandi, M.; Pakizeh, M., Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment. Journal of Industrial and Engineering Chemistry 2014, 20 (5), 3857-3868. 73. Jiang, Y.; Liu, C.; Caro, J.; Huang, A., A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials 2019, 274, 203-211. 74. Thür, R.; Van Velthoven, N.; Slootmaekers, S.; Didden, J.; Verbeke, R.; Smolders, S.; Dickmann, M.; Egger, W.; De Vos, D.; Vankelecom, I. F. J., Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation. Journal of Membrane Science 2019, 576, 78-87. 75. Nuhnen, A.; Klopotowski, M.; Jeazet, H. B. T.; Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J.; Janiak, C., High performance MIL-101 (Cr)@ 6FDA-m PD and MOF-199@ 6FDA-m PD mixed-matrix membranes for CO 2/CH 4 separation. Dalton Transactions 2020, 49 (6), 1822-1829. 76. Suhaimi, N. H.; Yeong, Y. F.; Jusoh, N.; Chew, T. L.; Bustam, M. A.; Suleman, S., Separation of CO2 from CH4 using mixed matrix membranes incorporated with amine functionalized MIL-125 (Ti) nanofiller. Chemical Engineering Research and Design 2020, 159, 236-247. 77. Chen, X. Y.; Hoang, V.-T.; Rodrigue, D.; Kaliaguine, S., Optimization of continuous phase in amino-functionalized metal–organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO 2/CH 4 separation. Rsc Advances 2013, 3 (46), 24266-24279. 78. Safak Boroglu, M.; Yumru, A. B., Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation. Separation and Purification Technology 2017, 173, 269-279. 79. Mubashir, M.; Dumée, L. F.; Fong, Y. Y.; Jusoh, N.; Lukose, J.; Chai, W. S.; Show, P. L., Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. Journal of Hazardous Materials 2021, 415, 125639. 80. Ilicak, I.; Boroglu, M. S.; Durmus, A.; Boz, I., Influence of ZIF-95 on structure and gas separation properties of polyimide-based mixed matrix membranes. Journal of Natural Gas Science and Engineering 2021, 91, 103941. 81. Wang, Z.; Yuan, J.; Li, R.; Zhu, H.; Duan, J.; Guo, Y.; Liu, G.; Jin, W., ZIF-301 MOF/6FDA-DAM polyimide mixed-matrix membranes for CO2/CH4 separation. Separation and Purification Technology 2021, 264, 118431. 82. Bae, T. H.; Lee, J. S.; Qiu, W.; Koros, W. J.; Jones, C. W.; Nair, S., A high‐performance gas‐separation membrane containing submicrometer‐sized metal–organic framework crystals. Angewandte Chemie 2010, 122 (51), 10059-10062. 83. Japip, S.; Wang, H.; Xiao, Y.; Shung Chung, T., Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. Journal of Membrane Science 2014, 467, 162-174. 84. Boroglu, M. S.; Boz, I.; Kaya, B., Effect of new metal–organic framework (zeolitic imidazolate framework [ZIF-12]) in mixed matrix membranes on structure, morphology, and gas separation properties. Journal of Polymer Engineering 2021, 41 (4), 259-270. 85. Boroğlu, M. Ş., Structural characterization and gas permeation properties of polyetherimide (PEI)/zeolitic imidazolate (ZIF-11) mixed matrix membranes. Journal of the Turkish Chemical Society Section A: Chemistry 2016, 3 (2), 183-205. 86. Majumdar, S.; Tokay, B.; Martin-Gil, V.; Campbell, J.; Castro-Muñoz, R.; Ahmad, M. Z.; Fila, V., Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation. Separation and Purification Technology 2020, 238, 116411. 87. Dechnik, J.; Nuhnen, A.; Janiak, C., Mixed-Matrix Membranes of the Air-Stable MOF-5 Analogue [Co4(μ4-O)(Me2pzba)3] with a Mixed-Functional Pyrazolate-Carboxylate Linker for CO2/CH4 Separation. Crystal Growth & Design 2017, 17 (8), 4090-4099. 88. Aykac Ozen, H.; Ozturk, B., Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals. Separation and Purification Technology 2019, 211, 514-521. 89. Thür, R.; Van Velthoven, N.; Lemmens, V.; Bastin, M.; Smolders, S.; De Vos, D.; Vankelecom, I. F. J., Modulator-Mediated Functionalization of MOF-808 as a Platform Tool to Create High-Performance Mixed-Matrix Membranes. ACS Applied Materials & Interfaces 2019, 11 (47), 44792-44801. 90. Chen, K.; Xu, K.; Xiang, L.; Dong, X.; Han, Y.; Wang, C.; Sun, L.-B.; Pan, Y., Enhanced CO2/CH4 separation performance of mixed-matrix membranes through dispersion of sorption-selective MOF nanocrystals. Journal of Membrane Science 2018, 563, 360-370. 91. Liu, G.; Chernikova, V.; Liu, Y.; Zhang, K.; Belmabkhout, Y.; Shekhah, O.; Zhang, C.; Yi, S.; Eddaoudi, M.; Koros, W. J., Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature materials 2018, 17 (3), 283-289. 92. Liu, G.; Cadiau, A.; Liu, Y.; Adil, K.; Chernikova, V.; Carja, I. D.; Belmabkhout, Y.; Karunakaran, M.; Shekhah, O.; Zhang, C., Enabling fluorinated MOF‐based membranes for simultaneous removal of H2S and CO2 from natural gas. Angewandte Chemie International Edition 2018, 57 (45), 14811-14816. 93. Samarasinghe, S. A. S. C.; Chuah, C. Y.; Yang, Y.; Bae, T.-H., Tailoring CO2/CH4 separation properties of mixed-matrix membranes via combined use of two- and three-dimensional metal-organic frameworks. Journal of Membrane Science 2018, 557, 30-37. 94. Duan, C.; Kang, G.; Liu, D.; Wang, L.; Jiang, C.; Cao, Y.; Yuan, Q., Enhanced gas separation properties of metal organic frameworks/polyetherimide mixed matrix membranes. Journal of Applied Polymer Science 2014, 131 (17). 95. Fuoco, A.; Monteleone, M.; Esposito, E.; Bruno, R.; Ferrando-Soria, J.; Pardo, E.; Armentano, D.; Jansen, J. C., Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation 2020, 8 (2), 28. 96. Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M., Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials 2012, 149 (1), 134-141. 97. Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q., RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation 2016, 42 (2), 81-101. 98. Potoff, J. J.; Siepmann, J. I., Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE journal 2001, 47 (7), 1676-1682. 99. Widom, B., Some topics in the theory of fluids. The Journal of Chemical Physics 1963, 39 (11), 2808-2812. 100. Shin, J. H.; Kan, M.-Y.; Oh, J.-W.; Yu, H. J.; Lin, L.-C.; Kim, J.-H.; Kang, D.-Y.; Lee, J. S., Solubility selectivity-enhanced SIFSIX-3-Ni-containing mixed matrix membranes for improved CO2/CH4 separation efficiency. Journal of Membrane Science 2021, 633, 119390.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85424-
dc.description.abstract混合基質薄膜(mixed matrix membranes, MMMs)以多孔材料作為填充物分散於高分子基質當中,可作為氣體分離膜。MMMs同時保有高分子良好的加工性與多孔材料優異的分離效能,亦展現出優於高分子本身的通透率與選擇性,有機會打破高分子膜在氣體分離上的效能限制。金屬有機骨架是一具有結晶性的奈米孔洞材料,由於其可調控的通道大小及內部官能基,在氣體分離領域有良好的應用潛能。根據過去文獻的報導,UTSA-280對於CO2有很好的吸附能力,因此在本研究中我們選用UTSA-280作為填充物,將其混摻入聚醚酰亞胺(Polyetherimide, PEI)高分子基質中,製備出金屬有機骨架混合基質薄膜,並應用於CO2分離。UTSA-280作為填充物的材料,其尺寸及在高分子中的分散程度會直接影響薄膜分離的效能。為了控制UTSA-280的粒徑大小,我們使用不同溶劑(水、乙醇和甲醇)合成出三種粒徑不同的UTSA-280粉體,並將其與PEI混合。接著採用刮刀塗佈法製備出MMMs。我們發現用乙醇溶劑合成出的粉體(UTSA-280_E)粒徑小且分佈集中,所製備出的PEI_E MMMs的缺陷也較少。氣體分離的結果也顯示,PEI_E MMMs在CO2/N2和CO2/CH4的分離上有較為優異的表現,CO2/N2選擇率由純PEI薄膜的5.1提升至80.8;CO2/CH4 則由4.2提升至137.5。同時我們也由分子模擬結果得知,UTSA-280結構中的四環和鍵結水與CO2產生很強的作用力,導致MMMs的CO2/N2和CO2/CH4吸附選擇率相較於純PEI有顯著的增加。zh_TW
dc.description.abstractMixed matrix membranes (MMMs) containing porous materials as fillers dispersed in a polymer matrix can be used for membrane gas separation. MMMs combine the good processability of the polymers and superior separation ability of the porous materials, and can exhibit better permeability and selectivity than the pure polymeric membranes. Metal-organic frameworks (MOFs) are crystalline nanoporous materials, which have been widely applied in gas separations due to their tunable pore size and chemical diversity. According to a previous report, UTSA-280 has high affinity to CO. In this study, we incorporated UTSA-280 into a polyetherimide (PEI) matrix to prepare MMMs for CO2 separation. The particle size of the fillers may affect the dispersion in polymer, so we used different solvents (water, ethanol, and methanol) for the synthesis of UTSA-280 particles for the subsequent fabrication of MMMs. The powder synthesized with ethanol solvent (UTSA-280_E) had a smallest particle size and a narrowest size distribution, and the prepared PEI_E MMMs had a low quantity of defects. The gas separation results also show that PEI_E MMMs exhibited higher CO2 separation performance than the pure PEI membranes. Specifically, the introduction of UTSA-280 into PEI increased its CO2/N2 selectivity from 5.1 to 80.8, and CO2/CH4 selectivity from 4.2 to 137.5. Molecular simulations suggest that the linker and the guest molecule (water) in the UTSA-280 had strong interaction to CO2, which resulted in high CO2/N2 and CO2/CH4 adsorption selectivity.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:26Z (GMT). No. of bitstreams: 1
U0001-2007202212073700.pdf: 4681207 bytes, checksum: eda421ac4181cac98e3cf9ac9003affb (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員審定書 I 致謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 X 第1章 緒論與文獻回顧 1 1.1薄膜氣體分離 1 1.2 薄膜分離機制 5 1.3 金屬有機骨架之簡介 10 1.4 金屬有機骨架混合基質薄膜 14 1.5 金屬有機骨架混合基質薄膜之氣體分離效能 19 1.6 研究動機與目的 23 第2章 實驗方法 24 2.1 實驗藥品 24 2.2 UTSA-280粉體合成 25 2.3 純PEI薄膜的製備 26 2.4 UTSA-280/PEI MMMS薄膜製備 27 2.5 樣品檢測儀器 28 2.6 單一氣體通透量量測 29 2.7 UTSA-280模擬計算 32 第3章 實驗結果與討論 34 3.1 研究架構 34 3.2 UTSA-280粉體之結構鑑定與分析 35 3.3 UTSA-280混合基質薄膜之材料鑑定 39 3.4 UTSA-280混合基質薄膜之氣體分離效能 44 3.5 以分子模擬探討氣體在UTSA-280的輸送現象 50 第4章 結論與未來展望 54 參考文獻 56
dc.language.isozh-TW
dc.subject聚醚酰亞胺zh_TW
dc.subject金屬有機骨架zh_TW
dc.subject二氧化碳分離zh_TW
dc.subject薄膜氣體分離zh_TW
dc.subject金屬有機骨架混合基質薄膜zh_TW
dc.subjectcarbon dioxide separationsen
dc.subjectMetal-organic frameworksen
dc.subjectMOF-based mixed matrix membranesen
dc.subjectPolyetherimideen
dc.subjectmembrane gas separationsen
dc.title金屬有機骨架混合基質薄膜於二氧化碳分離之應用zh_TW
dc.titleMetal-Organic Framework Mixed Matrix Membranes for Carbon Dioxide Separationen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林立強(Li-Chiang Lin),林嘉和(Chia-Her Lin),羅世強(Shyh-Chyang Luo)
dc.subject.keyword金屬有機骨架,金屬有機骨架混合基質薄膜,聚醚酰亞胺,薄膜氣體分離,二氧化碳分離,zh_TW
dc.subject.keywordMetal-organic frameworks,MOF-based mixed matrix membranes,Polyetherimide,membrane gas separations,carbon dioxide separations,en
dc.relation.page68
dc.identifier.doi10.6342/NTU202201569
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2022-07-26-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2007202212073700.pdf4.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved