Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85414
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭彥甫(Yan-Fu Kuo)
dc.contributor.authorKuan-Ting Yehen
dc.contributor.author葉冠廷zh_TW
dc.date.accessioned2023-03-19T23:16:19Z-
dc.date.copyright2022-10-05
dc.date.issued2022
dc.date.submitted2022-07-21
dc.identifier.citationBalasaravanan, T., Chezhian, P., Kamalakannan, R., Yasodha, R., Varghese, M., Gurumurthi, K., & Ghosh, M. (2006). Identification of species-diagnostic ISSR markers for six Eucalyptus species. Silvae Genetica, 55(3), 119-122. Barmpoutis, P., Dimitropoulos, K., Barboutis, I., Grammalidis, N., & Lefakis, P. (2018). Wood species recognition through multidimensional texture analysis. Computers and electronics in agriculture, 144, 241-248. Bond, B. (2002). Wood identification for hardwood and softwood species native to Tennessee. Agricultural Extension Service, University of Tennessee. Chalmers, K., Waugh, R., Sprent, J., Simons, A., & Powell, W. (1992). Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity, 69(5), 465-472. Chen, J. (2014). 2003-2013臺灣主要林產品貿易統計. 林業叢刊, 258. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27. Da’u, A., & Salim, N. (2020). Recommendation system based on deep learning methods: a systematic review and new directions. Artificial Intelligence Review, 53(4), 2709-2748. De Stefano, C., Sansone, C., & Vento, M. (2000). To reject or not to reject: that is the question-an answer in case of neural classifiers. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 30(1), 84-94. Eisenman, B. (2015). Learning react native: Building native mobile apps with JavaScript. ' O'Reilly Media, Inc.'. Figueroa-Mata, G., Mata-Montero, E., Valverde-Otarola, J. C., & Arias-Aguilar, D. (2018). Using deep convolutional networks for species identification of xylotheque samples. 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), Figueroa-Mata, G., Mata-Montero, E., Valverde-Otárola, J. C., & Arias-Aguilar, D. (2018). Evaluating the significance of cutting planes of wood samples when training CNNs for forest species identification. 2018 IEEE 38th Central America and Panama Convention (CONCAPAN XXXVIII), Forestry Bureau, C., Taiwan. (1997). 臺灣森林經營管理方案. Retrieved from https://chiayi.forest.gov.tw/public-info/0000626 Grinberg, M. (2018). Flask web development: developing web applications with python. ' O'Reilly Media, Inc.'. Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural networks. International Conference on Machine Learning, Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics(6), 610-621. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, He, T., Lu, Y., Jiao, L., Zhang, Y., Jiang, X., & Yin, Y. (2020). Developing deep learning models to automate rosewood tree species identification for CITES designation and implementation. Holzforschung, 74(12), 1123-1133. Hu, S., Li, K., & Bao, X. (2015). Wood species recognition based on SIFT keypoint histogram. 2015 8Th international congress on image and signal processing (CISP), Hwang, S.-W., & Sugiyama, J. (2021). Computer vision-based wood identification and its expansion and contribution potentials in wood science: A review. Plant methods, 17(1), 1-21. Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning, I., & Simonyan, K. (2017). Population based training of neural networks. arXiv preprint arXiv:1711.09846. Jung, A. B., Wada, K., Crall, J., Tanaka, S., Graving, J., Yadav, S., Banerjee, J., Vecsei, G., Kraft, A., & Borovec, J. (2020). imgaug. GitHub: San Francisco, CA, USA. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25. Lacerda, D., Lemos, J., & Lovato, M. (2002). Molecular differentiation of two vicariant neotropical tree species, Plathymenia foliolosa and P. reticulata (Mimosoideae), inferred using RAPD markers. Plant Systematics and Evolution, 235(1), 67-77. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. Lin, C.-n. (2019, March 21st). Illegal logging cases dip to eight-year low: bureau. Taipei Times. https://www.taipeitimes.com/News/taiwan/archives/2019/03/21/2003711886 Lin, J.-C., Lee, J.-Y., Tsai, S.-F., & Lin, H.-H. (2014). Risk-alert index analysis for suspicious illegal wood productis imported in Taiwan. Quarterly Journal of Chinese Forestry, 47(3), 275-286. Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the seventh IEEE international conference on computer vision, Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux journal, 2014(239), 2. Naeini, M. P., Cooper, G., & Hauskrecht, M. (2015). Obtaining well calibrated probabilities using bayesian binning. Twenty-Ninth AAAI Conference on Artificial Intelligence, Ng, A. (2018). Machine Learning Yearning Ojansivu, V., Rahtu, E., & Heikkila, J. (2008). Rotation invariant local phase quantization for blur insensitive texture analysis. 2008 19th International conference on pattern recognition, Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., & Antiga, L. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32. Ravindran, P., Costa, A., Soares, R., & Wiedenhoeft, A. C. (2018). Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks. Plant methods, 14(1), 1-10. Rosa da Silva, N., De Ridder, M., Baetens, J. M., Van den Bulcke, J., Rousseau, M., Martinez Bruno, O., Beeckman, H., Van Acker, J., & De Baets, B. (2017). Automated classification of wood transverse cross-section micro-imagery from 77 commercial Central-African timber species. Annals of forest science, 74(2), 1-14. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., & Bernstein, M. (2015). Imagenet large scale visual recognition challenge. International journal of computer vision, 115(3), 211-252. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Singh, M., Sharma, M., & Sharma, C. (2015). Wood anatomy of some members of family Lauraceae with reference to their identification. Journal of the Indian Academy of Wood Science, 12(2), 137-144. Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. International conference on machine learning, Tang, X. J., Tay, Y. H., Siam, N. A., & Lim, S. C. (2018). MyWood-ID: Automated macroscopic wood identification system using smartphone and macro-lens. Proceedings of the 2018 International Conference on Computational Intelligence and Intelligent Systems, Timar, M. C., Gurău, L., & Porojan, M. (2012). WOOD SPECIES IDENTIFICATION, A CHALLENGE OF SCIENTIFIC CONSERVATION. International Journal of Conservation Science, 3(1). Tou, J. Y., Tay, Y. H., & Lau, P. Y. (2007). Gabor filters and grey-level co-occurrence matrices in texture classification. MMU International symposium on information and communications technologies, Tou, J. Y., Tay, Y. H., & Lau, P. Y. (2009). A comparative study for texture classification techniques on wood species recognition problem. 2009 Fifth international conference on natural computation, Villon, S., Mouillot, D., Chaumont, M., Subsol, G., Claverie, T., & Villéger, S. (2020). A new method to control error rates in automated species identification with deep learning algorithms. Scientific reports, 10(1), 1-13. Wan, E. A. (1990). Neural network classification: A Bayesian interpretation. IEEE Transactions on Neural Networks, 1(4), 303-305. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3), 37-52. Ziegenhagen, B., Fady, B., Kuhlenkamp, V., & Liepelt, S. (2005). Differentiating groups of Abies species with a simple molecular marker. Silvae Genetica, 54(3), 123-125.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85414-
dc.description.abstract在臺灣豐富的森林資源中,木材擁有最高的經濟價值,而正確的物種辨識為木材利用之始。傳統上,木材的物種辨識仰賴專家以組織染色將樣本染色於顯微鏡下進行辨識,既使辨識準確率高仍需要製備樣本的時間,以及仰賴專家的植物學知識與經驗。近年分子標記等方法被運用於辨識木材物種,儘管能夠準確辨識物種,此方法仍需要大量的時間、勞力成本、以及昂貴的設備。與之相比,影像辨識的方法則為相對高效率、低成本的物種辨識策略。因此,本研究提出使用深度學習中的卷積神經網路(Convolutional Neural Network)及一系列的資料處理步驟、搭配木材未染色之莖部橫切面樣本影像,辨識闊葉樹及針葉樹等41種台灣常見的商業木材之物種。本研究蒐集了大約三千片的木材標本影像並提出一個包含三步驟的資料處理流程:其一之物種分類模型以木材橫切面影像為輸入並輸出預測之物種及相對應的信心分數,其二之誤差控制模型用以剃除信心分數不足之輸入樣本,其三之可信度校正模型調整信心分數以符合準確率,以上三個模型都以掃描影像進行訓練並以手機影像測試。本研究亦開發了一款智慧型手機應用程式,包含圖形使用界面並與雲端辨識模型整合,進而提供使用者以攜帶裝置即時上傳影像進行木材物種之辨識。在結果方面,物種分類模型在訓練、驗證以及測試數據集上分別取得了94.50% ± 1.23%、89.71% ± 1.38%以及 74.24% ± 3.10%的辨識準確率;誤差辨識模型在拒絕0.321%、15.04%和48.36%的樣本下能有效提升0.45%、3.51%和13.72%的準確率;可信度校正則將期望校正誤差(Expected Calibration Error)從0.0826降低至0.0437。本研究提出之方法具備完整的系統架構且可全自動執行,結果則顯示本研究所提出之資料處理流程已能輔助第一線林業從業人員及海關人員查驗木材物種,透過本系統之開發與佈建將能消除以往木材辨識僅能在實驗室內進行之限制,並進一步降低木材辨識所需之專家人力與所需時間。zh_TW
dc.description.abstractForest resources in Taiwan are abundant. Among all forest resources, wood is the one that has the most economic values. Identification of wood species is conducted prior to the application and utilization of the materials. Conventionally, the species of wood specimens are identified through a series of histological treatment and microscopic observation. The process is still manual, time consuming, and it largely relies on experts’ experience. In recent decades, molecular marker-based methods have been frequently used for species identification with high accuracy; however, these methods are labor intensive, time consuming, and require high-end equipment investments. Image-based approaches, by contrast, are effective and efficient. Thus, this study proposed a solution of applying the convolutional neural network (CNN) model and a series of data processing methods to the wood species identification using the cross-section image collected from 41 commercial wood species in Taiwan. The images of approximately three thousand wood specimens were collected. A data processing pipeline containing three steps was proposed. The step of species classification model takes a cross-section image as input and output a classification result as well as a confidence score. The step of error rate control model ferried out the images that were not confident enough. The step of reliability calibration adjusts the confidence score to match the actual observed probability. All three models were trained using the images in the image database. A mobile application was developed to provide the service of wood species identification through a graphical user interface. The trained species classifier reached the training, validation, and test accuracy of 94.50% ± 1.23% (mean ± standard deviation), 89.71% ± 1.38%, and 74.24% ± 3.10%, respectively. The error rate control model improved the accuracy for 0.45%, 3.51%, and 13.73% while rejecting 0.32%, 15.04%, and 48.36% of the input images. Reliability calibration reduced the expected calibration error (ECE) to 0.0437, which indicates the identification model were well-calibrated. The proposed solution is complete and fully automatic. The results of the proposed pipeline indicate that the solution can assist first-line forestry workers and custom stuff in the task of wood identification. With the development and deployment of the proposed system, it eliminated the limitation of the wood identification that has to be conducted in laboratory. Thus, it can further reduce the time and effort of experienced experts to identify wood species.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:19Z (GMT). No. of bitstreams: 1
U0001-1507202219445300.pdf: 7401078 bytes, checksum: fe1b04ba895632ee5ee5f72312dcd823 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsACKNOWLEDGEMENTS I 摘要 II ABSTRACT III TABLE OF CONTENTS V LIST OF FIGURES VII LIST OF TABLES IX CHAPTER 1 INTRODUCTION 1 1.1 Background of the study 1 1.2 Research questions 2 1.3 Objectives 3 CHAPTER 2 LITERATURE REVIEW 4 2.1 Molecular marker-based approaches for wood identification 4 2.2 Image processing-based and machine learning-based approaches 4 2.3 Deep learning-based approaches for wood identification 5 CHAPTER 3 MATERIALS AND METHODS 8 3.1 Overview of the proposed system for wood species identification 8 3.2 Specimen preparation and image acquisition 9 3.3 Data augmentations 12 3.4 Training of the species classification model 13 3.5 Error analysis 14 3.6 Error rate control 16 3.7 Reliability calibration 17 3.8 Mobile application, cloud services and software tools 18 CHAPTER 4 RESULTS AND DISCUSSION 20 4.1 Performance of the trained CNN model 20 4.2 Effectiveness of data augmentation 25 4.3 Application of assessing the intra- and inter-specific similarity 26 4.4 Limitation of the identification model 28 4.5 Effect of image quality to identification performance 30 4.6 Error rate control 32 4.7 Reliability calibration 36 4.8 User interface of the smartphone application 37 CHAPTER 5 IMPLICATIONS 39 5.1 Practical implications 39 5.2 Limitations of the study 40 5.3 Recommendations for future research 41 CHAPTER 6 CONCLUSION 42 REFERENCE 43
dc.language.isoen
dc.subject手機影像zh_TW
dc.subject卷積神經網路zh_TW
dc.subject木材物種辨識zh_TW
dc.subject資料增強zh_TW
dc.subjectWood species identificationen
dc.subjectData augmentationen
dc.subjectSmartphone-based imagesen
dc.subjectConvolutional neural networken
dc.title利用卷積神經網路及木材橫切面影像辨識木材物種zh_TW
dc.titleWood Species identification using Cross-Section Images and Convolutional Neural Networken
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永耀(Yung-Yao Chen),Tofael Ahamed(Tofael Ahamed),石井 敦(Ishii Atsushi),粉川 美踏(Kokawa Mito),阿部 淳一 ピーター(Abe Junichi P.)
dc.subject.keyword卷積神經網路,木材物種辨識,資料增強,手機影像,zh_TW
dc.subject.keywordConvolutional neural network,Wood species identification,Data augmentation,Smartphone-based images,en
dc.relation.page46
dc.identifier.doi10.6342/NTU202201484
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
dc.date.embargo-lift2022-10-05-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-1507202219445300.pdf7.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved