Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85399
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴飛羆(Feipei Lai)
dc.contributor.authorDing-Shan Liuen
dc.contributor.author劉定山zh_TW
dc.date.accessioned2023-03-19T23:16:09Z-
dc.date.copyright2022-07-27
dc.date.issued2022
dc.date.submitted2022-07-22
dc.identifier.citation[1] Miklowitz, D. J., & Johnson, S. L. (2006). The psychopathology and treatment of bipolar disorder. Annual review of clinical psychology, 2, 199–235. https://doi.org/10.1146/annurev.clinpsy.2.022305.095332 [2] Merikangas, K. R., Jin, R., He, J. P., Kessler, R. C., Lee, S., Sampson, N. A., Viana, M. C., Andrade, L. H., Hu, C., Karam, E. G., Ladea, M., Medina-Mora, M. E., Ono, Y., Posada-Villa, J., Sagar, R., Wells, J. E., & Zarkov, Z. (2011). Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Archives of general psychiatry, 68(3), 241–251. https://doi.org/10.1001/archgenpsychiatry.2011.12 [3] Simon G. E. (2003). Social and economic burden of mood disorders. Biological psychiatry, 54(3), 208–215. https://doi.org/10.1016/s0006-3223(03)00420-7 [4] Kessing, L. V., Vradi, E., & Andersen, P. K. (2015). Life expectancy in bipolar disorder. Bipolar disorders, 17(5), 543–548. https://doi.org/10.1111/bdi.12296 [5] Miller, J. N., & Black, D. W. (2020). Bipolar Disorder and Suicide: a Review. Current psychiatry reports, 22(2), 6. https://doi.org/10.1007/s11920-020-1130-0 [6] Amerio, A., Stubbs, B., Odone, A., Tonna, M., Marchesi, C., & Ghaemi, S. N. (2015). The prevalence and predictors of comorbid bipolar disorder and obsessive-compulsive disorder: A systematic review and meta-analysis. Journal of affective disorders, 186, 99–109. https://doi.org/10.1016/j.jad.2015.06.005 [7] Grant, B. F., Saha, T. D., Ruan, W. J., Goldstein, R. B., Chou, S. P., Jung, J., Zhang, H., Smith, S. M., Pickering, R. P., Huang, B., & Hasin, D. S. (2016). Epidemiology of DSM-5 Drug Use Disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions-III. JAMA psychiatry, 73(1), 39–47. https://doi.org/10.1001/jamapsychiatry.2015.2132 [8] Pavlova, B., Perlis, R. H., Alda, M., & Uher, R. (2015). Lifetime prevalence of anxiety disorders in people with bipolar disorder: a systematic review and meta-analysis. The lancet. Psychiatry, 2(8), 710–717. https://doi.org/10.1016/S2215-0366(15)00112-1 [9] Priya, A.S., Garg, S., & Tigga, N.P. (2020). Predicting Anxiety, Depression, and Stress in Modern Life using Machine Learning Algorithms. Procedia Computer Science, 167, 1258-1267. [10] Sau, A., & Bhakta, I. (2017). Predicting anxiety and depression in elderly patients using machine learning technology. Healthcare technology letters, 4, 238-243. [11] Nardelli, M., Lanata, A., Bertschy, G. et al. (2017). Heartbeat Complexity Modulation in Bipolar Disorder during Daytime and Nighttime. Sci Rep 7, 17920 [12] Thomson, D., Turner, A., Lauder, S., Gigler, M. E., Berk, L., Singh, A. B., Pasco, J. A., Berk, M., & Sylvia, L. (2015). A brief review of exercise, bipolar disorder, and mechanistic pathways. Frontiers in psychology, 6, 147. https://doi.org/10.3389/fpsyg.2015.00147 [13] Cretu, J. B., Culver, J. L., Goffin, K. C., Shah, S., & Ketter, T. A. (2016). Sleep, residual mood symptoms, and time to relapse in recovered patients with bipolar disorder. Journal of affective disorders, 190, 162–166. https://doi.org/10.1016/j.jad.2015.09.076 [14] Li, D. C., Liu, C. W., & Hu, S. C. (2010). A learning method for the class imbalance problem with medical data sets. Computers in biology and medicine, 40(5), 509–518. [15] Zhao, Y., Wong, Z.S., & Tsui, K. (2018). A Framework of Rebalancing Imbalanced Healthcare Data for Rare Events' Classification: A Case of Look-Alike Sound-Alike Mix-Up Incident Detection. Journal of Healthcare Engineering, 2018. [16] Chawla, N., Bowyer, K., Hall, L.O., & Kegelmeyer, W.P. (2002). SMOTE: Synthetic Minority Over-sampling. J. Artif. Intell. Res., 16, 321-357. [17] Sharma, H., & Kumar, S. (20 Technique 16). A Survey on Decision Tree Algorithms of Classification in Data Mining. [18] N. S. Altman (1992) An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression, The American Statistician, 46:3, 175-185, DOI: 10.1080/00031305.1992.10475879 [19] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). [20] Freund, Y., & Schapire, R.E. (1999). A Short Introduction to Boosting. [21] Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). [22] Raschka, S. (2018). Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. ArXiv, abs/1811.12808. [23] Probst, P., Boulesteix, A., & Bischl, B. (2019). Tunability: Importance of Hyperparameters of Machine Learning Algorithms. J. Mach. Learn. Res., 20, 53:1-53:32. [24] Bradley, A.P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit., 30, 1145-1159. [25] Saito, T., & Rehmsmeier, M. (2015). The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE, 10. [26] Lundberg, S.M., & Lee, S. (2017). A Unified Approach to Interpreting Model Predictions. ArXiv, abs/1705.07874. [27] Schiweck C, Lutin E, De Raedt W, Cools O, Coppens V, Morrens M, Van Hoof C, Vrieze E and Claes S (2021) Twenty-Four-Hour Heart Rate Is a Trait but Not State Marker for Depression in a Pilot Randomized Controlled Trial with a Single Infusion of Ketamine. Front. Psychiatry 12:696170. doi: 10.3389/fpsyt.2021.696170 [28] Schiweck C, Lutin E, Raedt W, Morrens M, Coppens V, Van Hoof C, Reif A, Vrieze E, Claes, S (2020). P.257 Heart rate and heart rate variability as trait or state marker for depression? Insights from a ketamine treatment paradigm. European Neuropsychopharmacology. 40. S145-S146. 10.1016/j.euroneuro.2020.09.192 [29] Craft LL, Perna FM. The Benefits of Exercise for the Clinically Depressed. Prim Care Companion J Clin Psychiatry. 2004;6(3):104-111. doi:10.4088/pcc.v06n0301 [30] Schuch, F. and Stubbs, B., 2022. The Role of Exercise in Preventing and Treating Depression. Current Sports Medicine Reports: August 2019 - Volume 18 - Issue 8 - p 299-304 doi: 10.1249/JSR.0000000000000620 [31] Li, W., Yin, J., Cai, X., Cheng, X., & Wang, Y. (2020). Association between sleep duration and quality and depressive symptoms among university students: A cross-sectional study. PLOS one, 15(9), e0238811 [32] Zhai, L., Zhang, H. and Zhang, D. (2015), SLEEP DURATION AND DEPRESSION AMONG ADULTS: A META-ANALYSIS OF PROSPECTIVE STUDIES. Depress Anxiety, 32: 664-670. [33] Cook, J. D., Prairie, M. L., & Plante, D. T. (2017). Utility of the Fitbit Flex to evaluate sleep in major depressive disorder: A comparison against polysomnography and wrist-worn actigraphy. Journal of affective disorders, 217, 299–305. https://doi.org/10.1016/j.jad.2017.04.030 [34] Lee, S., Kim, H., Park, M. J., & Jeon, H. J. (2021). Current Advances in Wearable Devices and Their Sensors in Patients with Depression. Frontiers in psychiatry, 12, 672347. https://doi.org/10.3389/fpsyt.2021.672347 [35] Rykov, Y., Thach, T. Q., Bojic, I., Christopoulos, G., & Car, J. (2021). Digital Biomarkers for Depression Screening with Wearable Devices: Cross-sectional Study with Machine Learning Modeling. JMIR mHealth and uHealth, 9(10), e24872. https://doi.org/10.2196/24872 [36] Cho, C. H., Lee, T., Kim, M. G., In, H. P., Kim, L., & Lee, H. J. (2019). Mood Prediction of Patients with Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study. Journal of medical Internet research, 21(4), e11029. https://doi.org/10.2196/11029
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85399-
dc.description.abstract在本研究中,我們將使用穿戴式裝置 (Garmin Vivosmart 4) 收集到的數位生物標誌物,其中包含心率、活動和睡眠狀態,通過機器學習演算法建立雙相情緒障礙症的預測模型。我們可以根據可解釋模型得出的見解提出治療建議或防止複發。 參與者為 20 至 65 歲被診斷為雙相情緒障礙症的患者,而雙相情緒障礙症在美國精神病學協會的精神疾病診斷和統計手冊 (Diagnostic and Statistical Manual of Mental Disorders)第五版中的描述為一種導致人的情緒、能量和功能能力極度波動的腦部疾病。使用到的數據包含兩部分:問卷數據和數位生物標誌物。問卷數據包含貝克憂鬱量表(Beck Depression Inventory)和楊氏躁症量表(Young Mania Rating Scale),它們分別用於評估鬱症和躁症的發作,數位生物標誌物則用於模型構建。我們使用了六種機器學習演算法來構建預測模型。 本研究共招募了24名參與者。鬱症的預測模型在測試集上達到了準確率86%、Area Under the Receiver Operating Characteristic curve 0.85和F1 score 0.56。通過可解釋模型 Shapely Additive exPlanations,我們發現相對較高的靜止心率、低活動和睡眠不足與鬱症相關,可能可以預測鬱症的發生。然而,相較於鬱症的發作,躁症的發作預測準確度較低。 總結來說,在本研究中,我們使用了從穿戴設備收集的數位生物標誌物來構建機器學習模型,該模型可以預測幾天後自我報告的憂鬱和躁症症狀。除此之外,我們還可以利用從可解釋模型中獲得的資訊來更早地提供臨床評估和治療,以降低復發風險。zh_TW
dc.description.abstractIn this study, we would use digital biomarkers collected by wearable devices (Garmin Vivosmart 4), including heart rate, activity, and sleep status, to build prediction models for the recurrence of manic or depressive symptoms in bipolar disorder with machine learning algorithms. Moreover, we could make treatment recommendations or prevent recurrence based on insights derived from the interpretable model. Participants were 20-65 years old patients diagnosed with bipolar disorder (BD), as described by the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Data contained two parts: questionnaire data and digital biomarkers. Questionnaire data of the Beck Depression Inventory (BDI) and Young Mania Rating Scale (YMRS) were used to evaluate depressive and manic symptoms, respectively, and digital biomarkers were for model building. Six machine learning algorithms were used to construct prediction models. A total of 24 participants with BD were recruited. The prediction model for depressive symptoms achieved 86% accuracy, 0.85 AUROC, and 0.56 F1 score on testing data. With interpretable model Shapely Additive exPlanations (SHAP), we found that relatively high resting heart rate, low activity, and lack of sleep were associated with and may predict depressive symptoms. However, compared with predicting a depressive episode, the accuracy of predicting a manic episode was lower. In this study, we used digital biomarkers collected from wearable devices to construct machine learning models which could predict self-report depressive and manic symptoms several days later. Furthermore, important features derived from the interpretable model may provide insight for early detection of mood symptoms recurrence and reduce the risk of recurrence.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:09Z (GMT). No. of bitstreams: 1
U0001-2107202223063800.pdf: 1920866 bytes, checksum: 47237e32575736e096326deff31ae2cd (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Related Works 1 1.3 Objective 2 Chapter 2 Method 3 2.1 Participants 3 2.2 Workflow Architecture 3 2.3 Data Collection 4 2.3.1 Questionnaire Data 4 2.3.2 Digital Biomarkers 4 2.4 Data Preprocessing 4 2.5 Imbalanced Data 6 2.6 Prediction Model 7 2.6.1 Logistic Regression 7 2.6.2 Decision Tree 8 2.6.3 K-Nearest Neighbors 8 2.6.4 Random Forest 9 2.6.5 Adaptive Boosting 10 2.6.6 Extreme Gradient Boosting 10 2.7 K-Fold Cross-Validation 10 2.8 Hyperparameter Selection 11 2.9 Model Assessment 11 2.10 Explainable Machine Learning Model 13 Chapter 3 Result 14 3.1 Patient Characteristics 14 3.2 Prediction Model 16 3.3 Explanation of Prediction Model 21 Chapter 4 Discussion 24 4.1 Principal Findings 24 4.2 Comparison with Prior Works 25 Chapter 5 Limitation 27 Chapter 6 Conclusion and Future Works 28 REFERENCE 29
dc.language.isoen
dc.subject穿戴式裝置zh_TW
dc.subject可解釋模型zh_TW
dc.subject機器學習zh_TW
dc.subject預測zh_TW
dc.subject雙相情緒障礙症zh_TW
dc.subjectmachine learningen
dc.subjectwearable deviceen
dc.subjectbipolar disorderen
dc.subjectpredictionen
dc.subjectexplainable modelen
dc.title使用穿戴式裝置資料運用人工智慧模型預測雙相情緒障礙症病患之情緒徵兆zh_TW
dc.titleUsing Wearable Device and AI to Predict Mood Symptoms in Bipolar Disorderen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.coadvisor簡意玲(Yi-Ling Chien)
dc.contributor.oralexamcommittee阮聖彰(Shanq-Jang Ruan),郭律成(Lu-Cheng Kuo),劉宏輝(Horng-Huei Liou)
dc.subject.keyword雙相情緒障礙症,穿戴式裝置,機器學習,預測,可解釋模型,zh_TW
dc.subject.keywordbipolar disorder,wearable device,machine learning,prediction,explainable model,en
dc.relation.page33
dc.identifier.doi10.6342/NTU202201621
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-07-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
dc.date.embargo-lift2022-07-27-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-2107202223063800.pdf1.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved