Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85392
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊達zh_TW
dc.contributor.advisorGuin-Dar Linen
dc.contributor.author吳鈞季zh_TW
dc.contributor.authorChun-Chi Wuen
dc.date.accessioned2023-03-19T23:16:04Z-
dc.date.available2023-11-10-
dc.date.copyright2022-08-15-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] M. Saffman and T. G. Walker. Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped rydberg atoms. Physical Review A, 72(2):022347, aug 2005.
[2] Thad G. Walker and M. Saffman. Consequences of zeeman degeneracy for the van der waals blockade between rydberg atoms. Physical Review A, 77(3):032723, mar 2008.
[3] M. Saffman, T. G. Walker, and K. Mølmer. Quantum information with Rydberg atoms. Reviews of Modern Physics, 82(3):2313–2363, aug 2010.
[4] M Saffman. Quantum computing with atomic qubits and rydberg interactions: progress and challenges. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(20):202001, oct 2016.
[5] J. T. Wilson, S. Saskin, Y. Meng, S. Ma, R. Dilip, A. P. Burgers, and J. D. Thompson. Trapping alkaline earth rydberg atoms optical tweezer arrays. Physical Review Letters, 128(3):033201, jan 2022.
[6] S. Zhang, F. Robicheaux, and M. Saffman. Magic-wavelength optical traps for rydberg atoms. Physical Review A, 84(4):043408, oct 2011.
[7] Sepehr Ebadi, Tout T. Wang, Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho, Soonwon Choi, Subir Sachdev, Markus Greiner, Vladan Vuletic, and Mikhail D. ´ Lukin. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature, 595(7866):227–232, jul 2021.
[8] F. M. Gambetta, W. Li, F. Schmidt-Kaler, and I. Lesanovsky. Engineering NonBinary rydberg interactions via phonons in an optical lattice. Physical Review Letters, 124(4):043402, jan 2020.
[9] H. Schempp, G. GÃijnter, S. WÃijster, M. WeidemÃijller, and S. Whitlock. Correlated exciton transport in rydberg-dressed-atom spin chains. Physical Review Letters, 115(9):093002, aug 2015.
[10] Johannes Zeiher, Jae yoon Choi, Antonio Rubio-Abadal, Thomas Pohl, Rick van Bijnen, Immanuel Bloch, and Christian Gross. Coherent many-body spin dynamics in a long-range interacting ising chain. Physical Review X, 7(4):041063, dec 2017.
[11] Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T. Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletic, Hannes Pichler, ´ and Mikhail D. Lukin. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett., 123:170503, Oct 2019.
[12] T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman. Rydberg-mediated entanglement in a two dimensional neutral atom qubit array. Physical Review Letters, 123(23):230501, dec 2019.
[13] Ivaylo S. Madjarov, Jacob P. Covey, Adam L. Shaw, Joonhee Choi, Anant Kale, Alexandre Cooper, Hannes Pichler, Vladimir Schkolnik, Jason R. Williams, and Manuel Endres. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nature Physics, 16(8):857–861, may 2020.
[14] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt, B. Rogers, T. Noel, and M. Saffman. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature, 604(7906):457–462, apr 2022.
[15] Antoine Browaeys, Daniel Barredo, and Thierry Lahaye. Experimental investigations of dipole–dipole interactions between a few rydberg atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(15):152001, jun 2016.
[16] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman. Observation of rydberg blockade between two atoms. Nature Physics, 5(2):110–114, jan 2009.
[17] Alpha GaÃntan, Yevhen Miroshnychenko, Tatjana Wilk, Amodsen Chotia, Matthieu ´ Viteau, Daniel Comparat, Pierre Pillet, Antoine Browaeys, and Philippe Grangier. Observation of collective excitation of two individual atoms in the rydberg blockade regime. Nature Physics, 5(2):115–118, jan 2009.
[18] D. Barredo, S. Ravets, H. Labuhn, L. Béguin, A. Vernier, F. Nogrette, T. Lahaye, and A. Browaeys. Demonstration of a strong rydberg blockade in three-atom systems with anisotropic interactions. Physical Review Letters, 112(18):183002, may 2014.
[19] Alexey V. Gorshkov, Johannes Otterbach, Michael Fleischhauer, Thomas Pohl, and Mikhail D. Lukin. Photon-photon interactions via rydberg blockade. Physical Review Letters, 107(13):133602, sep 2011.
[20] Daniel Tiarks, Steffen Schmidt-Eberle, Thomas Stolz, Gerhard Rempe, and Stephan DÃijrr. A photon–photon quantum gate based on rydberg interactions. Nature Physics, 15(2):124–126, oct 2018.
[21] X. X. Li, J. B. You, X. Q. Shao, and Weibin Li. Coherent ground-state transport of neutral atoms. Physical Review A, 105(3):032417, mar 2022.
[22] V. Subrahmanyam. Entanglement dynamics and quantum-state transport in spin chains. Physical Review A, 69(3):034304, mar 2004.
[23] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, Vladan Vuletic, and Mikhail D. Lukin. A quantum processor based on coherent transport of entangled atom arrays, 2021.
[24] Ryan Cardman and Georg Raithel. Circularizing rydberg atoms with time-dependent optical traps. Physical Review A, 101(1):013434, jan 2020.
[25] Cheng Sheng, Xiaodong He, Peng Xu, Ruijun Guo, Kunpeng Wang, Zongyuan Xiong, Min Liu, Jin Wang, and Mingsheng Zhan. High-fidelity single-qubit gates on neutral atoms in a two-dimensional magic-intensity optical dipole trap array. Physical Review Letters, 121(24):240501, dec 2018.
[26] Thomas F. Gallagher. Rydberg Atoms. Cambridge University Press, sep 1994.
[27] G. T. Hickman and M. Saffman. Speed, retention loss, and motional heating of atoms in an optical conveyor belt. Physical Review A, 101(6):063411, jun 2020.
[28] T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz, L. Isenhower, and M. Saffman. Randomized benchmarking of single-qubit gates in a 2d array of neutral-atom qubits. Physical Review Letters, 114(10):100503, mar 2015.
[29] M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman. Two-dimensional lattice of blue-detuned atom traps using a projected gaussian beam array. Physical Review A, 88(1):013420, jul 2013.
[30] S. K. Dutta, J. R. Guest, D. Feldbaum, A. Walz-Flannigan, and G. Raithel. Ponderomotive optical lattice for rydberg atoms. Physical Review Letters, 85(26):5551–5554, dec 2000.
[31] R Cardman, J L MacLennan, S E Anderson, Y-J Chen, and G Raithel. Photoionization of rydberg atoms in optical lattices. New Journal of Physics, 23(6):063074, jun 2021.
[32] K. C. Younge, B. Knuffman, S. E. Anderson, and G. Raithel. State-dependent energy shifts of rydberg atoms in a ponderomotive optical lattice. Physical Review Letters, 104(17):173001, apr 2010.
[33] I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, and E. A. Yakshina. Doppler- and recoil-free laser excitation of rydberg states via three-photon transitions. Physical Review A, 84(5):053409, nov 2011.
[34] Xiao-Feng Shi. Suppressing motional dephasing of ground-rydberg transition for high-fidelity quantum control with neutral atoms. Physical Review Applied, 13(2):024008, feb 2020.
[35] Tyler Keating, Robert L. Cook, Aaron M. Hankin, Yuan-Yu Jau, Grant W. Biedermann, and Ivan H. Deutsch. Robust quantum logic in neutral atoms via adiabatic rydberg dressing. Physical Review A, 91(1):012337, jan 2015.
[36] A. M. Kaufman, B. J. Lester, and C. A. Regal. Cooling a single atom in an optical tweezer to its quantum ground state. Physical Review X, 2(4):041014, nov 2012.
[37] J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin. Coherence ´ and raman sideband cooling of a single atom in an optical tweezer. Physical Review Letters, 110(13):133001, mar 2013.
[38] R. Reichle, D. Leibfried, R.B. Blakestad, J. Britton, J.D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, and D.J. Wineland. Transport dynamics of single ions in segmented microstructured paul trap arrays. Fortschritte der Physik, 54(8-10):666–685, aug 2006.
[39] Hoi-Kwan Lau and Daniel F. V. James. Decoherence and dephasing errors caused by the dc stark effect in rapid ion transport. Physical Review A, 83(6):062330, jun 2011.
[40] L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman. High-fidelity rydbergblockade entangling gate using shaped, analytic pulses. Physical Review A, 94(3):032306, sep 2016.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85392-
dc.description.abstract中性原子是易於發展可擴展的量子訊息處理平台的物理系統之一。本論文主要提出一個新穎的方案:用於量子訊息處理系統的原子被由一維光學晶格(optical lattice)和拉蓋爾-高斯光束(Laguerre-Gaussian beam)組成的光阱(opticaltrap)傳輸。此研究成果展示了在中性原子平台的量子訊息處理系統實現連結性(connectivity)的潛能。我們首先研究此新穎光阱的性質,並展示雙量子位元糾纏閘(two-qubit entangling gate)作用於一顆靜止的原子和另一顆被此傳輸的原子(被稱為Drive-Through方法)。在雙量子位元糾纏閘中,其中一顆移動的原子被藍頻失諧(blue-detuned)一維光學晶格和拉蓋爾-高斯光束捕捉和傳輸,另一顆靜止的原子僅被光鑷捕捉。此Drive-Through方法被應用於兩個雙量子位元糾纏方案:雷德堡阻礙(Rydberg blockade)方案和全耦合(global coupling)方案。當原子溫度達到10 微開爾文(microkelvin)時,兩種方案的保真度階分別可以達到0 .99和
0 .999。主要的誤差來源如原子溫度,都卜勒效應(Doppler effect)和雷射強度誤差也在此論文中被分析。本論文亦研究策畫移動原子的行徑以避免加熱原子。伴隨著適當的傳輸軌跡,此過程僅激發少於0.001個聲子(phonon)。
zh_TW
dc.description.abstractIn this work, we theoretically investigate a novel scheme of quantum information processing via atom transportation. The scheme is based on a one-dimensional blue-detuned optical lattice and a blue-detuned Laguerre-Gaussian beam. We first studied the property of the relevant optical trap architecture. The implementation of two-qubit entangling gates on one stationary atom and one flying atom transported by a moving optical lattice, called as Drive-Through (DT) method, is also demonstrated. The DT method is implemented with two two-qubit entangling gate schemes, the Rydberg blockade scheme and the global coupling scheme, with gate fidelity 0. 99 and 0. 999, respectively, when the atomic temperature is about 10 microkelvin. Error sources like finite temperature, the Doppler effect, and laser intensity deviation are analyzed. Movement manipulation of the flying atom to avoid heating while accelerating is also studied. After atomic movement are optimized, <0.001 phonons are excited.en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:04Z (GMT). No. of bitstreams: 1
U0001-1907202216120700.pdf: 2846963 bytes, checksum: 5363cd4ed1d1c81525252e0701606b8d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsCertificate of thesis approval from the oral defense committee i
Acknowledgments iii
Abstract (Mandarin) v
Abstract (English) vii
1 Introduction 1
1.1 Atomic qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Rydberg atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Mechanism of optical traps and laser beams . . . . . . . . . . . . . . . . 6
1.3.1 Optical tweezers and gradient force . . . . . . . . . . . . . . . . 6
1.3.2 Ponderomotive potential . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Lauguerre-Gaussian beam . . . . . . . . . . . . . . . . . . . . . 8
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Quantum computation with neutral atoms 11
2.1 Interaction between atoms . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Dipole-dipole inteaction . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Van der Waals interaction . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Rydberg blockade . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Quantum computing with Rydberg atoms . . . . . . . . . . . . . . . . . 15
2.2.1 Rydberg blockade scheme . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Global coupling scheme . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Experimental progress in neutral atom quantum information processing . 20
3 Two-qubit gate implementation with the drive-through method 23
3.1 Blue-detuned optical traps . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Blue-detune one-dimensional optical lattice . . . . . . . . . . . . 24
3.1.2 Additional Laguerre-Gaussian beam on optical lattice . . . . . . . 25
3.2 Optical trap properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Trap properties for ground state atoms . . . . . . . . . . . . . . . 26
3.2.2 Trap properties for Rydberg-state atoms . . . . . . . . . . . . . . 27
3.3 Quantum gate scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Rydberg blockade scheme . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Global coupling scheme . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Error analysis and gate fidelity . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Position fluctuation of atoms in optical traps . . . . . . . . . . . . 32
3.4.2 Doppler dephasing error . . . . . . . . . . . . . . . . . . . . . . 34
3.4.3 Spontaneous emission and lifetime factors . . . . . . . . . . . . . 35
3.4.4 Laser intensity error . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Heating effect from acceleration 37
4.1 Phonon generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Acceleration process optimaization . . . . . . . . . . . . . . . . . . . . . 38
5 Conclusion 41
A Derivation 45
A.1 Average fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.1.1 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.1.2 Average fidelity over atomic positions . . . . . . . . . . . . . . . 45
A.1.3 Average fidelity over atomic doppler velocity . . . . . . . . . . . 46
Bibliography 47
-
dc.language.isoen-
dc.subject擴充的架構zh_TW
dc.subject原子傳輸zh_TW
dc.subject雷德堡原子zh_TW
dc.subject量子電腦zh_TW
dc.subjectatom transporten
dc.subjectquantum computeren
dc.subjectscalable architectureen
dc.subjectRydebrg atomsen
dc.title固定原子與傳輸原子量子位元的雙量子位元糾纏閘zh_TW
dc.titleBypass entangling gate between a stationary and a flying neutral atom qubitsen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張銘顯;任祥華zh_TW
dc.contributor.oralexamcommitteeMing-Shien Chang;Hsiang-Hua Jenen
dc.subject.keyword擴充的架構,量子電腦,雷德堡原子,原子傳輸,zh_TW
dc.subject.keywordscalable architecture,quantum computer,Rydebrg atoms,atom transport,en
dc.relation.page52-
dc.identifier.doi10.6342/NTU202201550-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-07-25-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2023-07-31-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf2.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved