請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85390完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅世強 | zh_TW |
| dc.contributor.advisor | Shyh-Chyang Luo | en |
| dc.contributor.author | 胡采甯 | zh_TW |
| dc.contributor.author | Tsai-Ning Hu | en |
| dc.date.accessioned | 2023-03-19T23:16:03Z | - |
| dc.date.available | 2023-12-26 | - |
| dc.date.copyright | 2022-08-02 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Zhu, L., et al., Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018. 5(3): p. 323-343. 2. Li, Z.T., et al., Fast-Growing Field of Interfacial Solar Steam Generation: Evolutional Materials, Engineered Architectures, and Synergistic Applications. Solar Rrl, 2019. 3(3). 3. Li, Z., et al., Solar-Powered Sustainable Water Production: State-of-the-Art Technologies for Sunlight–Energy–Water Nexus. ACS Nano, 2021. 15(8): p. 12535-12566. 4. Ni, G., et al., Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016. 1(9): p. 16126. 5. Zhao, F., et al., Materials for solar-powered water evaporation. Nature Reviews Materials, 2020. 5(5): p. 388-401. 6. Xiong, Z.-C., et al., Flexible Fire-Resistant Photothermal Paper Comprising Ultralong Hydroxyapatite Nanowires and Carbon Nanotubes for Solar Energy-Driven Water Purification. Small, 2018. 14(50): p. 1803387. 7. Mu, P., et al., Superwetting Monolithic Hollow-Carbon-Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation. Advanced Energy Materials, 2019. 9(1): p. 1802158. 8. Wang, Z., et al., Pathways and challenges for efficient solar-thermal desalination. Science Advances, 2019. 5(7): p. eaax0763. 9. Cahill, D.G., et al., Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014. 1(1): p. 011305. 10. Han, S., et al., Cellulose-Conducting Polymer Aerogels for Efficient Solar Steam Generation. Advanced Sustainable Systems, 2020. 4(7): p. 2000004. 11. Salehi, A.A., et al., Hydrogel materials as an emerging platform for desalination and the production of purified water. Separation and Purification Reviews, 2021. 50(4): p. 380-399. 12. Zhou, X.Y., et al., Topology-Controlled Hydration of Polymer Network in Hydrogels for Solar-Driven Wastewater Treatment. Advanced Materials, 2020. 32(52). 13. Zhao, F., et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018. 13(6): p. 489-+. 14. Zhou, X.Y., et al., Architecting highly hydratable polymer networks to tune the water state for solar water purification. Science Advances, 2019. 5(6). 15. Zhou, X.Y., et al., A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy & Environmental Science, 2018. 11(8): p. 1985-1992. 16. Guo, Y.H., et al., Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination. Acs Nano, 2019. 13(7): p. 7913-7919. 17. Lu, Y., et al., Turning Trash into Treasure: Pencil Waste-Derived Materials for Solar-Powered Water Evaporation. Energy Technology, 2020. 8(10). 18. Zhao, F., et al., Materials for solar-powered water evaporation. Nature Reviews Materials, 2020. 5(5): p. 388-401. 19. Zhao, X., et al., Janus Polypyrrole Nanobelt@Polyvinyl Alcohol Hydrogel Evaporator for Robust Solar-Thermal Seawater Desalination and Sewage Purification. Acs Applied Materials & Interfaces, 2021. 13(39): p. 46717-46726. 20. Xu, W.Z., et al., Efficient Water Transport and Solar Steam Generation via Radially, Hierarchically Structured Aerogels. Acs Nano, 2019. 13(7): p. 7930-7938. 21. Hu, X.Z., et al., Tailoring Graphene Oxide-Based Aerogels for Efficient Solar Steam Generation under One Sun. Advanced Materials, 2017. 29(5). 22. Zhao, L.Y., et al., A novel composite hydrogel for solar evaporation enhancement at air-water interface. Science of the Total Environment, 2019. 668: p. 153-160. 23. He, J.X., et al., Fe3O4/PPy-Coated Superhydrophilic Polymer Porous Foam: A Double Layered Photothermal Material with a Synergistic Light-to-Thermal Conversion Effect toward Desalination. Langmuir, 2021. 37(42): p. 12397-12408. 24. Zhang, M.R., et al., Antibacterial evaporator based on reduced graphene oxide/polypyrrole aerogel for solar-driven desalination. Nano Research, 2022. 25. Dong, X.Y., et al., Reed Leaves Inspired Silica Nanofibrous Aerogels with Parallel-Arranged Vessels for Salt-Resistant Solar Desalination. Acs Nano, 2021. 15(7): p. 12256-12266. 26. Zheng, Z.H., et al., Polyimide/MXene hybrid aerogel-based phase-change composites for solar-driven seawater desalination. Chemical Engineering Journal, 2022. 440. 27. Zhang, Q., et al., Flexible and Mildew-Resistant Wood-Derived Aerogel for Stable and Efficient Solar Desalination. Acs Applied Materials & Interfaces, 2020. 12(25): p. 28179-28187. 28. Ma, S., et al., Metal-organic framework derived porous carbon of light trapping structures for efficient solar steam generation. Solar Energy Materials and Solar Cells, 2019. 196: p. 36-42. 29. Marco-Lozar, J.P., et al., MOF-5 and activated carbons as adsorbents for gas storage. International Journal of Hydrogen Energy, 2012. 37(3): p. 2370-2381. 30. Li, H., et al., Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019. 1(1): p. 100006. 31. Kunowsky, M., F. Suárez-García, and Á. Linares-Solano, Adsorbent density impact on gas storage capacities. Microporous and Mesoporous Materials, 2013. 173: p. 47-52. 32. Mahmoud, E., et al., Implementing Metal-Organic Frameworks for Natural Gas Storage. Crystals, 2019. 9(8): p. 406. 33. Mileo, P.G.M., et al., Molecular simulation of natural gas storage in Cu-BTC metal–organic framework. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 462: p. 194-201. 34. Li, B., et al., Nanospace within metal–organic frameworks for gas storage and separation. Materials Today Nano, 2018. 2: p. 21-49. 35. Altintas, C., et al., Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation. Journal of Chemical Information and Modeling, 2021. 61(5): p. 2131-2146. 36. Xiang, F., A.M. Marti, and D.P. Hopkinson, Layer-by-layer assembled polymer/MOF membrane for H2/CO2 separation. Journal of Membrane Science, 2018. 556: p. 146-153. 37. Stolar, T., et al., Scalable Mechanochemical Amorphization of Bimetallic Cu−Zn MOF-74 Catalyst for Selective CO2 Reduction Reaction to Methanol. ACS Applied Materials & Interfaces, 2021. 13(2): p. 3070-3077. 38. Chiou, D.-S., et al., Highly CO2 Selective Metal–Organic Framework Membranes with Favorable Coulombic Effect. Advanced Functional Materials, 2021. 31(4): p. 2006924. 39. Qasem, N.A.A., R. Ben-Mansour, and M.A. Habib, An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Applied Energy, 2018. 210: p. 317-326. 40. Lo, Y. and D.-Y. Kang, Pseudopolymorphic seeding for the rational synthesis of hybrid membranes with a zeolitic imidazolate framework for enhanced molecular separation performance. Journal of Materials Chemistry A, 2016. 4(11): p. 4172-4179. 41. Kan, M.-Y., et al., Activation-Controlled Structure Deformation of Pillared-Bilayer Metal–Organic Framework Membranes for Gas Separations. Chemistry of Materials, 2019. 31(18): p. 7666-7677. 42. Ting, H., et al., High-permeance metal–organic framework-based membrane adsorber for the removal of dye molecules in aqueous phase. Environmental Science: Nano, 2017. 4(11): p. 2205-2214. 43. Jabbari, V., et al., Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chemical Engineering Journal, 2016. 304: p. 774-783. 44. Ding, S., et al., Targeted degradation of dimethyl phthalate by activating persulfate using molecularly imprinted Fe-MOF-74. Chemosphere, 2021. 270: p. 128620. 45. Liu, J., Y. Li, and Z. Lou, Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. Sustainability, 2022. 14(10): p. 5768. 46. Yang, W., et al., Facile fabrication of robust MOF membranes on cloth via a CMC macromolecule bridge for highly efficient Pb(II) removal. Chemical Engineering Journal, 2018. 339: p. 230-239. 47. Rego, R.M., et al., Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. Journal of Hazardous Materials, 2021. 416: p. 125941. 48. Rego, R.M., et al., MOF based engineered materials in water remediation: Recent trends. Journal of Hazardous Materials, 2021. 403: p. 123605. 49. Ahsan, M.A., et al., Sustainable synthesis and remarkable adsorption capacity of MOF/graphene oxide and MOF/CNT based hybrid nanocomposites for the removal of Bisphenol A from water. Science of The Total Environment, 2019. 673: p. 306-317. 50. Chen, Y.-R., T. Tsuru, and D.-Y. Kang, Simulation and design of catalytic membrane reactor for hydrogen production via methylcyclohexane dehydrogenation. International Journal of Hydrogen Energy, 2017. 42(42): p. 26296-26307. 51. Leo, P., et al., Direct α-arylation of ketones efficiently catalyzed by Cu-MOF-74. Catalysis Today, 2020. 345: p. 251-257. 52. Hong, D.H., et al., MOF-on-MOF Architectures: Applications in Separation, Catalysis, and Sensing. Bulletin of the Korean Chemical Society, 2021. 42(7): p. 956-969. 53. Zhang, M., et al., Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling Reaction. Catalysis Letters, 2012. 142(3): p. 313-318. 54. Han, X., et al., Intensifying Heat Using MOF-Isolated Graphene for Solar-Driven Seawater Desalination at 98% Solar-to-Thermal Efficiency. Advanced Functional Materials, 2021. 31(13): p. 2008904. 55. Chen, G., et al., Cu-based MOF-derived porous carbon with highly efficient photothermal conversion performance for solar steam evaporation. Journal of Materials Chemistry A, 2021. 9(31): p. 16805-16813. 56. Li, Z., et al., Polyaniline-Coated MOFs Nanorod Arrays for Efficient Evaporation-Driven Electricity Generation and Solar Steam Desalination. Advanced Science, 2021. 8(7): p. 2004552. 57. Ma, Q., et al., MOF-Based Hierarchical Structures for Solar-Thermal Clean Water Production. Advanced Materials, 2019. 31(17): p. 1808249. 58. Wang, J., et al., A salt-free superhydrophilic metal-organic framework photothermal textile for portable and efficient solar evaporator. Solar Energy Materials and Solar Cells, 2021. 231: p. 111329. 59. Le, T.H., Y. Kim, and H. Yoon, Electrical and Electrochemical Properties of Conducting Polymers. Polymers, 2017. 9(4). 60. Nezakati, T., et al., Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chemical Reviews, 2018. 118(14): p. 6766-6843. 61. Wang, Y., et al., A highly stretchable, transparent, and conductive polymer. Science Advances, 2017. 3(3). 62. Nyholm, L., et al., Toward Flexible Polymer and Paper-Based Energy Storage Devices. Advanced Materials, 2011. 23(33): p. 3751-3769. 63. Zhao, Q.B., et al., Photothermal converting polypyrrole/polyurethane composite foams for effective solar desalination. Desalination, 2022. 527. 64. Sharma, N., et al., Efficient solar steam generator using black SnOx cored PANI polymeric mesh under one Sun illumination. Journal of Industrial and Engineering Chemistry, 2022. 107: p. 45-52. 65. Peng, Y.B., et al., Bio-inspired vertically aligned polyaniline nanofiber layers enabling extremely high-efficiency solar membrane distillation for water purification. Journal of Materials Chemistry A, 2021. 9(17): p. 10678-10684. 66. Zhang, Y.X., et al., Guaranteeing Complete Salt Rejection by Channeling Saline Water through Fluidic Photothermal Structure toward Synergistic Zero Energy Clean Water Production and In Situ Energy Generation. Acs Energy Letters, 2020. 5(11): p. 3397-3404. 67. Li, S., et al., Cellulose Nanofibril-Stabilized Pickering Emulsion and In Situ Polymerization Lead to Hybrid Aerogel for High-Efficiency Solar Steam Generation. Acs Applied Polymer Materials, 2020. 2(11): p. 4581-4591. 68. Zou, Y., et al., Flexible and Robust Polyaniline Composites for Highly Efficient and Durable Solar Desalination. Acs Applied Energy Materials, 2020. 3(3): p. 2634-2642. 69. Yin, X.Y., et al., Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination. Acs Applied Materials & Interfaces, 2018. 10(13): p. 10998-11007. 70. Baig, U. and A. Waheed, Fabrication of polypyrrole-graphitic carbon nitride nanocomposite containing hyper-cross-linked polyamide photoresponsive membrane with self-cleaning properties for water decontamination and desalination applications. Journal of Water Process Engineering, 2022. 47. 71. Li, M., et al., Polymer-decorated daikon-based solar evaporators for efficient interfacial water evaporation. International Journal of Energy Research, 2022. 72. Sun, Y., et al., Porous biomass foam of polypyrrole-coated cattail fibers for efficient photothermal evaporation. Industrial Crops and Products, 2022. 178. 73. Wang, J.P., et al., In situ polymerized Fe2O3@PPy/chitosan hydrogels as a hydratable skeleton for solar-driven evaporation. Journal of the American Ceramic Society, 2022. 105(8): p. 5325-5335. 74. Wu, M.M., et al., PPy nanotubes-enabled in-situ heating nanofibrous composite membrane for solar-driven membrane distillation. Separation and Purification Technology, 2022. 281. 75. Peng, Y.J., et al., A High Strength Hydrogel with a Core-Shell Structure Simultaneously Serving as Strain Sensor and Solar Water Evaporator. Macromolecular Materials and Engineering, 2021. 306(10). 76. Liu, C.K., et al., Enhancing solar desalination performance based on restricted salt ions transport. Journal of Environmental Chemical Engineering, 2021. 9(4). 77. Zhao, X.Z. and C.K. Liu, Overcoming salt crystallization with ionic hydrogel for accelerating solar evaporation. Desalination, 2020. 482. 78. Han, S.B., et al., Cellulose-Conducting Polymer Aerogels for Efficient Solar Steam Generation. Advanced Sustainable Systems, 2020. 4(7). 79. Liu, C.K., C.J. Cai, and X.Z. Zhao, Overcoming Salt Crystallization During Solar Desalination Based on Diatomite-Regulated Water Supply. ACS Sustainable Chemistry & Engineering, 2020. 8(3): p. 1548-1554. 80. Bi, D.G., et al., Preparation and characterizations of flexible photothermal Ti2O3-PVA nanocomposites. Journal of Alloys and Compounds, 2020. 825. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85390 | - |
| dc.description.abstract | 隨著工業的發展和現代科技的進步,世界面臨著水污染和水資源匱乏的問題。近年來,太陽能蒸汽生成、太陽能純化水因其不會額外耗能的優點而備受關注。不同於傳統的淨水方式,其利用太陽能轉化為熱能,通過蒸發後獲得純水,在這個過程中,所有的鹽和雜質都會從蒸汽中分離,蒸汽被冷凝成純水並收集。水純化過程中不會產生污染物、脫鹽膜可以重複使用等優勢,提供了環境友善的水純化方法。純化薄膜或脫鹽膜必須滿足兩項主要性質:1.可吸收太陽光並轉化成熱能,提供水蒸發的吸收熱。2.多孔隙、具有連續的微孔結構,提供水分子藉由毛細現象向上傳輸的途徑。另外,熱能須集中在表面,避免熱傳導分散到膜內及底下的水,以達到最高的水蒸發、純化水效率。在此研究中,我們利用三氧化二鈦(Ti2O3)及羥基官能化聚(3,4-亞乙基二氧噻吩) (PEDOT-OH)作為光熱轉換材料,並在親水的官能化聚四氟乙烯(polytetrafluoroethylene, PTFE)過濾薄膜上合成原位生長(in-situ)的金屬有機骨架(metal-organic framework, MOF) CAU-10-H,藉由PTFE基材的孔洞吸收下方的鹽水,再經由MOF中的結構孔洞及晶隙傳輸至吸光層,吸收熱能並蒸發。研究中,探討了PEDOT-OH和不同比例的PEDOT-OH包覆Ti2O3奈米複合材料的光吸收量及光熱轉換效果,而重量比例1:1的PEDOT-OH包覆Ti2O3複合材料能良好塗佈在MOF薄膜上又具有最高的吸光量、光熱轉換量。同時,我們合成不同晶體厚度的in-situ CAU-10-H,晶體厚度不但影響水傳輸路徑長短,也會造成絕熱效果的改變。研究結果以厚度13 μm的CAU-10-H達到兩種機制的平衡,其塗佈薄膜具有最高的水蒸發速率,達2.17 kg.m-2.h-1,而光熱轉換要率達98%。有別於其他太陽能純化水的發表,緻密in-situ CAU-10-H 的低熱傳導率有利於熱能集中在表面,而此裝置中的脫鹽膜也無須額外的隔熱層以避免熱能分散至水體。結果證明,PEDOT-OH包覆Ti2O3奈米複合材料塗佈CAU-10-H薄膜在太陽能蒸氣生成及海水淡化等永續能源領域具有巨大的優勢。 | zh_TW |
| dc.description.abstract | With the advancement of modern technology, the world is facing the issues of water pollution and scarcity of water resources. Solar steam generation and desalination have attracted much attention due to their intrinsic advantages. In the purification process, salts and impurities are separated from the steam, which is condensed into pure water and collected. Moreover, no pollutants are produced during the water purification process. Desalination membranes are also repeatable, providing an environmentally friendly water purification method. In this research, we successfully fabricated titanium trioxide coated with poly(hydroxymethyl EDOT) (Ti2O3@PEDOT-OH) nanocomposites as a photothermal conversion material, and well synthesized in-situ metal-organic framework (MOF), CAU-10-H based membranes. Ti2O3@PEDOT-OH coating 13 μm CAU-10-H self-floating on the water achieves the highest water evaporation rate of 2.17 kg.m-2.h-1 with an efficient thermal insulating ability and an evaporation efficiency of 98%. Also, the ion concentrations of collected water tremendously decrease and are much lower than drinkable water standards by WHO. The results have shown that Ti2O3@PEDOT-OH nanocomposites on CAU-10-H films possess excellent potential in the fields of sustainable energy such as solar steam generation and seawater desalination. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:03Z (GMT). No. of bitstreams: 1 U0001-2107202216001100.pdf: 4481969 bytes, checksum: fa8be3df84ef32ab8fc25bf6f5b9b12b (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Desalination Materials 3 1.2 Metal-organic Framework for Solar Desalination 5 1.3 Conducting Polymer Composite as Solar Absorber 6 1.4 Research Goal 7 Chapter 2 Materials and Methods 9 2.1 Materials and Instruments 9 2.1.1 Materials and Chemicals 9 2.1.2 Instruments and Measurements 10 2.2 Nanoparticles and Nanocomposites Fabrication 10 2.2.1 Ball-milling Process of Ti2O3 Nanoparticles 10 2.2.2 Synthesis of PEDOT-OH and Ti2O3@PEDOT-OH 11 2.3 Synthesis of CAU-10-H 12 2.3.1 Synthesis of CAU-10-H in Powder Form 12 2.3.2 Synthesis of in-situ CAU-10-H Membranes 12 2.4 Coating Composites on CAU-10-H Membranes 13 2.5 Characterization 14 2.5.1 Scanning Electron Microscope (SEM) 14 2.5.2 UV-VIS Spectrophotometer 14 2.5.3 Contact Angle Measurements 14 2.5.4 X-ray Powder Diffraction (XRD) 14 2.5.5 X-ray Diffraction (XRD) 15 2.5.6 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 15 2.6 Evaporation and Purification Tests 15 2.6.1 Device Setup of Evaporation Tests 15 2.6.2 Device to Collect Condensed Water 16 Chapter 3 Result and Discussion 18 3.1 Photothermal Composites 18 3.1.1 Comparison between PEDOT-OH and Ti2O3@PEDOT-OH 18 3.1.2 Comparison between As-received Ti2O3 and Ti2O3 Nanoparticles 20 3.1.3 Ti2O3@PEDOT-OH Nanocomposites with Different Ratios 22 3.1.4 The Dispersity of Nanocomposites 27 3.2 CAU-10-H Membranes 29 3.2.1 Surface Morphology and Thickness 29 3.2.2 Crystal Analysis 34 3.3 Surface Analysis of Coating Membranes 35 3.3.1 Contact Angle 35 3.3.2 Surface and Cross-Section Morphology 37 3.3.3 Device Setup 38 3.4 Solar Desalination Tests 40 3.4.1 Photothermal Capacity 40 3.4.2 Evaporation Tests 43 3.4.3 Evaporation Efficiency 47 3.4.4 Practical Application and Purification Analysis 48 Chapter 4 Conclusion 50 Chapter 5 Future Work 51 REFERENCE 52 | - |
| dc.language.iso | en | - |
| dc.subject | 太陽純化水 | zh_TW |
| dc.subject | 金屬有機骨架 | zh_TW |
| dc.subject | 太陽純化水 | zh_TW |
| dc.subject | 導電高分子 | zh_TW |
| dc.subject | 金屬有機骨架 | zh_TW |
| dc.subject | 導電高分子 | zh_TW |
| dc.subject | Conducting polymer | en |
| dc.subject | PEDOT | en |
| dc.subject | metal-organic framework | en |
| dc.subject | solar steam generation | en |
| dc.subject | solar desalination | en |
| dc.subject | metal-organic framework | en |
| dc.subject | PEDOT | en |
| dc.subject | Conducting polymer | en |
| dc.subject | solar steam generation | en |
| dc.subject | solar desalination | en |
| dc.title | 導電高分子奈米複合材料塗佈金屬有機骨架薄膜用於太陽能水純化 | zh_TW |
| dc.title | Metal-Organic Framework (MOF) Based Membranes Coated with Conducting Polymer Nanocomposites for Solar Steam Generation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 康敦彥;陳建甫 | zh_TW |
| dc.contributor.oralexamcommittee | Dun-Yen Kang;Chien-Fu Chen | en |
| dc.subject.keyword | 導電高分子,太陽純化水,金屬有機骨架, | zh_TW |
| dc.subject.keyword | Conducting polymer,PEDOT,metal-organic framework,solar steam generation,solar desalination, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202201614 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-07-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2024-07-30 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 4.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
