請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85389
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張靜貞(Ching-Cheng Chang) | |
dc.contributor.author | Gerome Carl Lasco Retamal | en |
dc.contributor.author | 李傑榮 | zh_TW |
dc.date.accessioned | 2023-03-19T23:16:03Z | - |
dc.date.copyright | 2022-07-26 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2022-07-22 | |
dc.identifier.citation | Aldaya, M. M., Allan, J. A., & Hoekstra, A. Y. (2010). Strategic importance of green water in international crop trade. Ecological Economics, 69(4), 887-894. https://doi.org/10.1016/j.ecolecon.2009.11.001 Alexoaei, A. P., Cojanu, V., & Coman, C.-I. (2021). On Sustainable Consumption: The Implications of Trade in Virtual Water for the EU’s Food Security. Sustainability, 13(21), 11952. https://doi.org/10.3390/su132111952 Allan, J. A. (1993). Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible. Priorities for water resources allocation and management, 13(4), 26. Allan, J. A. (1996). Policy responses to the closure of water resources: regional and global issues. Water policy: Allocation and management in practice, 228-234. Ansink, E. (2010). Refuting two claims about virtual water trade. Ecological Economics, 69(10), 2027-2032. https://doi.org/https://doi.org/10.1016/j.ecolecon.2010.06.001 Antonelli, M., Laio, F., & Tamea, S. (2017). Water Resources, Food Security and the Role of Virtual Water Trade in the MENA Region. In (pp. 199-217). Springer International Publishing. https://doi.org/10.1007/978-3-319-45648-5_11 Arto, I., Andreoni, V., & Rueda-Cantuche, J. M. (2016). Global use of water resources: A multiregional analysis of water use, water footprint and water trade balance. Water Resources and Economics, 15, 1-14. https://doi.org/10.1016/j.wre.2016.04.002 Bouët, A., & Laborde, D. (2017). Agriculture, Development, and the Global Trading System: 2000-2015. International Food Policy Research Institute. https://doi.org/http://dx.doi.org/10.2499/9780896292499 Cazcarro, I., Schyns, J. F., Arto, I., & Sanz, M. J. (2022). Nations’ water footprints and virtual water trade of wood products. Advances in Water Resources, 164, 104188. https://doi.org/https://doi.org/10.1016/j.advwatres.2022.104188 Chang, I. C. (2020). A case study for identifying the potential challenges of water resources in the Yilan area of Taiwan: using an adaptive water footprint approach. Environmental Science and Pollution Research, 27(11), 12725-12745. https://doi.org/10.1007/s11356-020-07656-0 Chaudhuri, C. (2018). Energy Input–Output Analysis for Household Sector of India. In (pp. 157-181). Springer. https://EconPapers.repec.org/RePEc:spr:prbchp:978-981-13-1507-7_7 Chen, C.-C., Shih, J.-C., Chang, C.-C., & Hsu, S.-H. (2015). Trade Liberalization and Food Security: A Case Study of Taiwan using Global Food Security Index (GFSI). 2015 AAEA & WAEA Joint Annual Meeting, San Francisco, California. https://dx.doi.org/10.22004/ag.econ.205700 Chen, Z.-M., & Chen, G. Q. (2013). Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecological Indicators, 28, 142-149. https://doi.org/10.1016/j.ecolind.2012.07.024 Chini, C. M., & Peer, R. A. M. (2021). The traded water footprint of global energy from 2010 to 2018. Scientific Data, 8(1). https://doi.org/10.1038/s41597-020-00795-6 Chu, T.-Y., & Huang, W.-C. (2020). Application of Empirical Mode Decomposition Method to Synthesize Flow Data: A Case Study of Hushan Reservoir in Taiwan. Water, 12(4), 927. https://doi.org/10.3390/w12040927 Clapp, J. (2017). Food self-sufficiency: Making sense of it, and when it makes sense. Food Policy, 66, 88-96. https://doi.org/https://doi.org/10.1016/j.foodpol.2016.12.001 Fader, M., Gerten, D., Krause, M., Lucht, W., & Cramer, W. (2013). Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints. Environment Research Letters, 8(1), 014046. https://doi.org/10.1088/1748-9326/8/1/014046 Feng, K., Chapagain, A., Suh, S., Pfister, S., & Hubacek, K. (2011). Comparison of Bottom-up and Top-down Approaches to Calculating the Water Footprint of Nations. Economic Systems Research, 23(4), 371-385. https://doi.org/10.1080/09535314.2011.638276 Fereres, E., Orgaz, F., & Gonzalez-Dugo, V. (2011). Reflections on food security under water scarcity. Journal of Experimental Botany, 62(12), 4079-4086. https://doi.org/10.1093/jxb/err165 Genty, A. (2012). Final Database of Environmental Satellite Accounts: Technical Report on their Compilation. World Input-Output Database Deliverable 4.6. https://dataverse.nl/api/access/datafile/199109 Gilmont, E. M., Antonelli, M., & Greco, F. (2015). Opportunity costs of virtual water: a justification for green-water based agricultural capacity growth for economic, social and environmental sustainability [Article]. Italian Journal of Agrometeorology, Special Issue(2015), 49-57. Graham, N. T., Hejazi, M. I., Kim, S. H., Davies, E. G. R., Edmonds, J. A., & Miralles-Wilhelm, F. (2020). Future changes in the trading of virtual water. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17400-4 Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. Food Policy, 35(5), 365-377. https://doi.org/https://doi.org/10.1016/j.foodpol.2010.05.006 Hoekstra, A. Y. (2003). Virtual Water Trade - Proceedings of the International Expert Meeting on Virtual Water Trade. Value of Water Research Report Series No. 12. https://www.waterfootprint.org/media/downloads/Report12.pdf Hoekstra, A. Y., & Hung, P. Q. (2002). Virtual Water Trade - A Quantification of Virtual Water Flows Between Nations in Relation to International Crop Trade. Value of Water Research Report Series No. 11. Huang, A.-C., Lee, T.-Y., Lin, Y.-C., Huang, C.-F., & Shu, C.-M. (2017). Factor Analysis and Estimation Model of Water Consumption of Government Institutions in Taiwan. Water, 9(7), 492. https://doi.org/10.3390/w9070492 Huang, Y.-C., & Lee, C.-M. (2019). Designing an optimal water supply portfolio for Taiwan under the impact of climate change: Case study of the Penghu area. Journal of Hydrology, 573, 235-245. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.03.007 IEA. (2016). World energy statistics https://doi.org/doi:https://doi.org/10.1787/data-00510-en Islam, M. S., Oki, T., Kanae, S., Hanasaki, N., Agata, Y., & Yoshimura, K. (2006). A grid-based assessment of global water scarcity including virtual water trading. Water Resources Management, 21(1), 19-33. https://doi.org/10.1007/s11269-006-9038-y Karar, P., & Mukhopadhyay, S. K. (2018). Growth of Service Sector in India (1983–84 to 2011–12): An Input–Output Analysis. In (pp. 137-153). Springer. https://EconPapers.repec.org/RePEc:spr:prbchp:978-981-13-1507-7_6 Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A., & Rodriguez-Iturbe, I. (2012). Temporal dynamics of blue and green virtual water trade networks. Water Resources Research, 48(7), n/a-n/a. https://doi.org/10.1029/2012wr011959 Lee, S.-H., Yoo, S.-H., Choi, J.-Y., & Mohtar, R. H. (2017). Evaluation of external virtual water export and dependency through crop trade: an Asian case study. Paddy and Water Environment, 15(3), 525-539. https://doi.org/10.1007/s10333-016-0569-4 Lee, Y.-J., Tung, C.-M., Lee, P.-R., & Lin, S.-C. (2016). Personal Water Footprint in Taiwan: A Case Study of Yunlin County. Sustainability, 8(11), 1112. https://doi.org/10.3390/su8111112 Lin, R. (2021). As Taiwan faces its worst-ever water shortage, what more can be done? Commonwealth Magazine. Retrieved June 13, 2022 from https://english.cw.com.tw/article/article.action?id=2940 Liou, R.-W., Lin, H.-c., Chang, C.-C., & Hsu, S.-H. (2016). Unveiling the true value of across-strait trade: The global value chain approach. China Economic Review, 41, 159-180. Liu, C., Kroeze, C., Hoekstra, A. Y., & Gerbens-Leenes, W. (2012). Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecological Indicators, 18, 42-49. Mekonnen, M. M., & Hoekstra, A. Y. (2011a). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577-1600. https://doi.org/10.5194/hess-15-1577-2011 Mekonnen, M. M., & Hoekstra, A. Y. (2011b). National water footprint accounts: the green, blue and grey water footprint of production and consumption. Value of Water Research Report Series No. 50, Volume I and II. https://waterfootprint.org/media/downloads/Report50-NationalWaterFootprints-Vol1.pdf Mekonnen, M. M., & Hoekstra, A. Y. (2011c). The water footprint of electricity from hydropower. Value of Water Research Report Series No. 51. Mekonnen, M. M., & Hoekstra, A. Y. (2015). Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water. Environmental Science & Technology, 49(21), 12860-12868. https://doi.org/10.1021/acs.est.5b03191 Miller, R. E., & Blair, P. D. (2009). Input-Output Analysis: Foundations and Extensions (2 ed.). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511626982 Munroe, D. K., & Biles, J. J. (2005). Regional Science. In K. Kempf-Leonard (Ed.), Encyclopedia of Social Measurement (pp. 325-335). Elsevier. https://doi.org/https://doi.org/10.1016/B0-12-369398-5/00365-0 Oki, T., Yano, S., & Hanasaki, N. (2017). Economic aspects of virtual water trade. ENVIRONMENTAL RESEARCH LETTERS, 12(4), 044002. https://doi.org/10.1088/1748-9326/aa625f Pomponi, F., & Stephan, A. (2021). Water, energy, and carbon dioxide footprints of the construction sector: A case study on developed and developing economies. Water Research, 194, 116935. https://doi.org/10.1016/j.watres.2021.116935 Qasemipour, E., Tarahomi, F., Pahlow, M., Malek Sadati, S. S., & Abbasi, A. (2020). Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis. Sustainability, 12(18), 7424. https://doi.org/10.3390/su12187424 Sikdar, C. (2018). Global Value Chain and Effects of Trade Policy Instruments—A Case of India. In (pp. 293-314). Springer. https://EconPapers.repec.org/RePEc:spr:prbchp:978-981-13-1507-7_11 Stadler, K., Wood, R., Bulavskaya, T., Södersten, C.-J., Simas, M., Schmidt, S., Usubiaga, A., Acosta-Fernández, J., Kuenen, J., Bruckner, M., Giljum, S., Lutter, S., Merciai, S., Schmidt, J. H., Theurl, M. C., Plutzar, C., Kastner, T., Eisenmenger, N., Erb, K.-H., . . . Tukker, A. (2018). EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. Journal of Industrial Ecology, 22(3), 502-515. https://doi.org/10.1111/jiec.12715 Stadler, K., Wood, R., Bulavskaya, T., Södersten, C.-J., Simas, M., Schmidt, S., Usubiaga, A., Acosta-Fernández, J., Kuenen, J., Bruckner, M., Giljum, S., Lutter, S., Merciai, S., Schmidt, J. H., Theurl, M. C., Plutzar, C., Kastner, T., Eisenmenger, N., Erb, K.-H., . . . Tukker, A. (2021). EXIOBASE 3 (3.8.2) [Data set]. Zenodo. https://doi.org/https://doi.org/10.5281/zenodo.5589597 Tariyal, P. (2018). Comparison of Carbon Hotspots of India and China: An Analysis of Upstream and Downstream Supply Chains. In (pp. 225-267). Springer. https://EconPapers.repec.org/RePEc:spr:prbchp:978-981-13-1507-7_9 Tian, X., Sarkis, J., Geng, Y., Qian, Y., Gao, C., Bleischwitz, R., & Xu, Y. (2018). Evolution of China's water footprint and virtual water trade: A global trade assessment. Environment International, 121, 178-188. https://doi.org/https://doi.org/10.1016/j.envint.2018.09.011 Timmer, M. P., Dietzenbacher, E., Los, B., Stehrer, R., & De Vries, G. J. (2015). An Illustrated User Guide to the World Input-Output Database: the Case of Global Automotive Production. Review of International Economics, 23(3), 575-605. https://doi.org/10.1111/roie.12178 Wichelns, D. (2010). An Economic Analysis of the Virtual Water Concept in relation to the Agri-food Sector. In Sustainable Management of Water Resources in Agriculture. OECD Publishing. https://doi.org/https://doi.org/10.1787/9789264083578-8-en Yang, H., Pfister, S., & Bhaduri, A. (2013). Accounting for a scarce resource: virtual water and water footprint in the global water system. Current Opinion in Environmental Sustainability, 5(6), 599-606. https://doi.org/https://doi.org/10.1016/j.cosust.2013.10.003 Yang, H., Wang, L., Abbaspour, K. C., & Zehnder, A. J. B. (2006). Virtual water trade: an assessment of water use efficiency in the international food trade. Hydrology and Earth System Sciences, 10(3), 443-454. https://doi.org/10.5194/hess-10-443-2006 Yeh, H.-F., & Chen, H.-Y. (2022). Assessing the long-term hydrologic responses of river catchments in Taiwan using a multiple-component hydrograph approach. Journal of Hydrology, 610, 127916. https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127916 Yen, M.-H., Liu, D.-W., Hsin, Y.-C., Lin, C.-E., & Chen, C.-C. (2019). Application of the deep learning for the prediction of rainfall in Southern Taiwan. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49242-6 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85389 | - |
dc.description.abstract | none | zh_TW |
dc.description.abstract | International trade plays a key role for achieving food security. However, as commodities are traded, the virtual water embedded in these commodities are also traded. In this paper, it is argued that agricultural imports not only help achieve food security, but also alleviate water scarcity. This study provides a virtual water extension of the World-Input Output Database (WIOD) 2016 release, consisting of three types of virtual water, namely green, blue, and grey, from 2010 to 2014 of 43 countries. As for Taiwan, its actual blue water data is included in the database, instead of estimations. As an application, a multiregional input-output (MRIO) analysis at both national and sectoral levels is conducted for Taiwan, which in 2021 faced its worst water shortage in the past 56 years. The overall virtual water consumed by Taiwan increased by 12% from 2000 to 2010, and as expected, Taiwan, in all types of water is a virtual water importer and is most dependent on imports of green virtual water. There is also an observed increase in blue agricultural virtual water exports. It is suggested that it may be better to decrease the blue virtual water exports instead of increasing it, so that the virtual blue water exported abroad may be reallocated to other sectors that may be in need and that would be able to generate greater productivity than the agricultural sector, particularly under water scarcity conditions. Lastly, the relationship between trade openness, food self-sufficiency, and food security index is described, wherein it is asserted that increased agricultural imports improve both food security and water scarcity conditions. | en |
dc.description.provenance | Made available in DSpace on 2023-03-19T23:16:03Z (GMT). No. of bitstreams: 1 U0001-2207202215091900.pdf: 992586 bytes, checksum: 7fee0650618691366175f2088aeec9e7 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | Abstract ii Table of Contents iii List of Tables iv List of Figures iv 1. INTRODUCTION 1 2. REVIEW OF RELATED LITERATURE 5 2.1. Water Scarcity in Taiwan 5 2.2. Definition of Food Security 6 2.3. Estimation of Virtual Water Trade 7 2.4. Application of Multiregional Input-Output (MRIO) Analysis 12 3. METHODOLOGY 14 3.1. Multi-Regional Input-Output Analysis (MRIO) 14 3.2. Updating the World Input-Output Database (WIOD) Water Accounts 18 3.2.1. Sector A01 – Crop and animal production, hunting and related service 18 3.2.2. Industry-related Sectors 20 3.2.3. Sector D35 – Electricity, gas, steam, and air conditioning supply 20 3.2.4. Households 21 3.2.5. Limitations of the Established Water Accounts for WIOD 2016 Release 21 4. RESULTS AND DISCUSSION 25 4.1. World Virtual Water 25 4.2. Virtual Water Allocation among Major Sectors of Taiwan 28 4.3. Taiwan Agricultural Virtual Water and its Trade 32 4.4. Taiwan Agricultural Virtual Water and Food Security 41 5. CONCLUSION 45 References 48 Appendices 56 | |
dc.language.iso | en | |
dc.title | 台灣虛擬水貿易的角色: 多區域投入產出分析 | zh_TW |
dc.title | The Role of Virtual Water Trade in Taiwan: A Multiregional Input-Output Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 110-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉瑞文(Ruey-wan Liou),張國益(Kuo-I Chang),陳柏琪(Po-Chi Chen),李金全(Kenneth Dy) | |
dc.subject.keyword | none, | zh_TW |
dc.subject.keyword | virtual water trade,multiregional input-output analysis,food security,trade openness, | en |
dc.relation.page | 58 | |
dc.identifier.doi | 10.6342/NTU202201643 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2022-07-25 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業經濟學研究所 | zh_TW |
dc.date.embargo-lift | 2023-07-31 | - |
顯示於系所單位: | 農業經濟學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2207202215091900.pdf | 969.32 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。