Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85388
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周必泰zh_TW
dc.contributor.advisorPi-Tai Chouen
dc.contributor.author李曜麟zh_TW
dc.contributor.authorYao-Lin Leeen
dc.date.accessioned2023-03-19T23:16:02Z-
dc.date.available2023-07-31-
dc.date.copyright2022-08-02-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationPart I
[1]a) Z.-S. Huang, H. Meier, D. Cao, J. Mater. Chem. C 2016, 4, 2404-2426
b) H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt, L. Sun, Chem. Commun. 2007, 3741-3743
c) G. D. Blanco, A. J. Hiltunen, G. N. Lim, C. B. Kc, K. M. Kaunisto, T. K. Vuorinen, V. N. Nesterov, H. J. Lemmetyinen, F. D’Souza, ACS Appl. Mater. Interfaces 2016, 8, 8481-8490
d) J. V. Vaghasiya, K. K. Sonigara, J. Prasad, T. Beuvier, A. Gibaud, S. S. Soni, J. Mater. Chem. A 2017, 5, 5373-5382.
[2]a) M. Okazaki, Y. Takeda, P. Data, P. Pander, H. Higginbotham, A. P. Monkman, S. Minakata, Chem. Sci. 2017, 8, 2677-2686
b) H. Tanaka, K. Shizu, H. Nakanotani, C. Adachi, J. Phys. Chem. C 2014, 118, 15985-15994
c) I. Marghad, F. Bencheikh, C. Wang, S. Manolikakes, A. Rérat, C. Gosmini, D. hyeon Kim, J.-C. Ribierre, C. Adachi, RSC Adv. 2019, 9, 4336-4343
d) D.-G. Chen, T.-C. Lin, Y.-A. Chen, Y.-H. Chen, T.-C. Lin, Y.-T. Chen, P.-T. Chou, J. Phys. Chem. C 2018, 122, 12215-12221
e) O. Bezvikonnyi, D. Gudeika, D. Volyniuk, V. Mimaite, B. R. Sebastine, J. V. Grazulevicius, J. Lumin. 2019, 206, 250-259.
f) R. S. Nobuyasu, Z. Ren, G. C. Griffiths, A. S. Batsanov, P. Data, S. Yan, A. P. Monkman, M. R. Bryce, F. B. Dias, Adv. Opt. Mater. 2016, 4, 597-607
[3]a) J. Burn, SAGE Publications, 1954
b) J. P. Swazey, Chlorpromazine in psychiatry: a study of therapeutic innovation, The MIT Press, 1974
c) V. V. Coşofreţ, R. P. Buck, Analyst 1984, 109, 1321-1325
d) C.-H. Wu, L.-Y. Bai, M.-H. Tsai, P.-C. Chu, C.-F. Chiu, M. Y. Chen, S.-J. Chiu, J.-H. Chiang, J.-R. Weng, Sci. Rep. 2016, 6, 1-11.
[4]a) Z. Zhou, C. E. Hauke, B. Song, X. Li, P. J. Stang, T. R. Cook, J. Am. Chem. Soc. 2019, 141, 3717-3722.
b) Y. Satoh, L. Catti, M. Akita, M. Yoshizawa, J. Am. Chem. Soc. 2019, 141, 12268-12273
[5]a) J. K. Salunke, F. Wong, K. Feron, S. Manzhos, M. F. Lo, D. Shinde, A. Patil, C. Lee, V. Roy, P. Sonar, J. Mater. Chem. C 2016, 4, 1009-1018
b) G. B. Bodedla, K. J. Thomas, S. Kumar, J.-H. Jou, C.-J. Li, RSC Adv. 2015, 5, 87416-87428
c) A. Bejan, S. Shova, M.-D. Damaceanu, B. C. Simionescu, L. Marin, Crystal Growth & Design 2016, 16, 3716-3730.
d) X.-C. Zeng, J.-Y. Wang, L.-J. Xu, H.-M. Wen, Z.-N. Chen, J. Mater. Chem. C 2016, 4, 6096-6103
[6]Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee, Chem. Mater. 2017, 29, 1946-1963.
[7]a) K. Upadhyay, A. Asthana, R. K. Tamrakar, Res. Chem. Intermed. 2015, 41, 7481-7495
b) T. Rodrigues, C. G. d. Santos, A. Riposati, L. R. Barbosa, P. Di Mascio, R. Itri, M. S. Baptista, O. R. Nascimento, I. L. Nantes, The Journal of Physical Chemistry B 2006, 110, 12257-12265
[8]M. Saucin, A. Van de Vorst, Radiat. Environ. Biophys. 1980, 17, 159-168.
[9]J. R. Huber, W. Mantulin, J. Am. Chem. Soc. 1972, 94, 3755-3760.
[10]M. Hosseinnezhad, K. Gharanjig, S. Moradian, S. Tafaghodi, Arabian J. Chem. 2019, 12, 2069-2076.
[11]K. Pothula, L. Tang, Z. Zha, Z. Wang, RSC Adv. 2015, 5, 83144-83148.
[12]V. Thottempudi, H. Gao, J. n. M. Shreeve, J. Am. Chem. Soc. 2011, 133, 6464-6471.
[13]a) R. Rai, M. Rajput, M. Agrawal, S. Agrawal, Journal of Scientific Research 2011, 55, 1
b) K. Nepali, H.-Y. Lee, J.-P. Liou, J. Med. Chem. 2018, 62, 2851-2893
[14]a) L. Keyser, S. Levine, F. Kaufman, J. Chem. Phys. 1971, 54, 355-363.
b) V. Donnelly, D. Keil, F. Kaufman, J. Chem. Phys. 1979, 71, 659-673
[15]a) J. P. Zobel, J. J. Nogueira, L. González, Chem. Eur. J. 2018, 24, 5379-5387.; b) R. Hurley, A. Testa, J. Am. Chem. Soc. 1966, 88, 4330-4332
c) B. Valeur, Digital Encyclopedia of Applied Physics 2003, 477-531
[16]a) H.-C. Huang, K.-L. Wang, S.-T. Huang, H.-Y. Lin, C.-M. Lin, Biosens. Bioelectron. 2011, 26, 3511-3516.
b) S. K. Panja, N. Dwivedi, S. Saha, RSC Adv. 2016, 6, 105786-105794
[17]O. S. Khalil, H. Bach, S. McGlynn, J. Mol. Spectrosc. 1970, 35, 455-460.
[18]J. V. Caspar, T. J. Meyer, The Journal of Physical Chemistry 1983, 87, 952-957.
[19]K. Skonieczny, I. Papadopoulos, D. Thiel, K. Gutkowski, P. Haines, P. M. McCosker, A. D. Laurent, P. A. Keller, T. Clark, D. Jacquemin, Angew. Chem. Int. Ed. 2020, 59, 16104-16113.
[20]M. Kuss-Petermann, O. S. Wenger, J. Am. Chem. Soc. 2016, 138, 1349-1358.
[21]J. S. Ward, R. S. Nobuyasu, A. S. Batsanov, P. Data, A. P. Monkman, F. B. Dias, M. R. Bryce, Chem. Commun. 2016, 52, 2612-2615.
[22]S. Kumar, M. Singh, J.-H. Jou, S. Ghosh, J. Mater. Chem. C 2016, 4, 6769-6777.
[23]B. V. Rokade, K. R. Prabhu, J. Org. Chem. 2012, 77, 5364-5370.
[24]H. J. Shine, J. J. Silber, R. J. Bussey, T. Okuyama, J. Org. Chem. 1972, 37, 2691-2697.
[25]L. Jensen, in Journal of Polymer Science Part C: Polymer Symposia, Vol. 29, Wiley Online Library, 1970, pp. 47-63.
[26]a) S. Yang, J. Liu, P. Zhou, G. He, The Journal of Physical Chemistry B 2011, 115, 10692-10698
b) S. D. Cummings, R. Eisenberg, J. Am. Chem. Soc. 1996, 118, 1949-1960.; c) Y. Kawanishi, N. Kitamura, S. Tazuke, The Journal of Physical Chemistry 1986, 90, 2469-2475

Part II
[1]a)T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, J. Natl. Cancer Inst. 1998, 90, 889-905
b)T. J. Dougherty, S. L. Marcus, Eur. J. Cancer 1992, 28, 1734-1742;
c)D. E. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer 2003, 3, 380-387.
[2]a)L. B. Josefsen, R. W. Boyle, Theranostics 2012, 2, 916
b)W. Fan, P. Huang, X. Chen, Chem. Soc. Rev. 2016, 45, 6488-6519
c)A. P. Castano, P. Mroz, M. R. Hamblin, Nat. Rev. Cancer 2006, 6, 535-545
d)Á. Juarranz, P. Jaén, F. Sanz-Rodríguez, J. Cuevas, S. González, Clin. Transl. Oncol. 2008, 10, 148-154.
[3]X. Zhao, J. Liu, J. Fan, H. Chao, X. Peng, Chem. Soc. Rev. 2021, 50, 4185-4219.
[4]a)C. S. Foote, Photochem. Photobiol. 1991, 54, 659
b)B. Sauerwein, G. B. Schuster, J. Phys. Chem. 1991, 95, 1903-1906.
[5]a)Y. Cakmak, S. Kolemen, S. Duman, Y. Dede, Y. Dolen, B. Kilic, Z. Kostereli, L. T. Yildirim, A. L. Dogan, D. Guc, Angew. Chem. Int. Ed. 2011, 50, 11937-11941
b)J. R. Darwent, P. Douglas, A. Harriman, G. Porter, M.-C. Richoux, Coord. Chem. Rev.;(Netherlands) 1982, 44.
[6]N. J. Patel, Y. Chen, P. Joshi, P. Pera, H. Baumann, J. R. Missert, K. Ohkubo, S. Fukuzumi, R. R. Nani, M. J. Schnermann, Bioconjugate Chem. 2016, 27, 667-680.
[7]a)O. Fakayode, C. Kruger, S. Songca, H. Abrahamse, O. Oluwafemi, Mater. Sci. Eng. C 2018, 92, 737-744
b)O. J. Fakayode, S. P. Songca, O. S. Oluwafemi, Mater. Lett. 2017, 199, 37-40;
c)M. Pollum, S. Jockusch, C. E. Crespo-Hernandez, J. Am. Chem. Soc. 2014, 136, 17930-17933.
[8]J. Tang, L. Wang, A. Loredo, C. Cole, H. Xiao, Chem. Sci. 2020, 11, 6701-6708.
[9]V.-N. Nguyen, S. Qi, S. Kim, N. Kwon, G. Kim, Y. Yim, S. Park, J. Yoon, J. Am. Chem. Soc. 2019, 141, 16243-16248.
[10]Z. Liu, Y. Gao, X. Jin, Q. Deng, Z. Yin, S. Tong, W. Qing, Y. Huang, J. Mater. Chem. B 2020, 8, 5535-5544.
[11]a)C. Huang, S. Barlow, S. R. Marder, J. Org. Chem. 2011, 76, 2386-2407;
b)F. Zhang, Y. Ma, Y. Chi, H. Yu, Y. Li, T. Jiang, X. Wei, J. Shi, Sci. Rep. 2018, 8, 1-11;
c)G. Li, Y. Zhao, J. Li, J. Cao, J. Zhu, X. W. Sun, Q. Zhang, J. Org. Chem. 2015, 80, 196-203.
[12]a)K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L. Zang, J. Am. Chem. Soc. 2006, 128, 7390-7398;
b)H. Dinçalp, Z. Aşkar, C. Zafer, S. İçli, Dyes Pigm. 2011, 91, 182-191.
[13]a)P. Singh, L. S. Mittal, V. Vanita, K. Kumar, A. Walia, G. Bhargava, S. Kumar, J. Mater. Chem. B 2016, 4, 3750-3759;
b)N. I. Georgiev, A. R. Sakr, V. B. Bojinov, Dyes Pigm. 2011, 91, 332-339;
c)X. Feng, Y. An, Z. Yao, C. Li, G. Shi, ACS Appl. Mater. Interfaces 2012, 4, 614-618.
[14]a)B. Muthuraj, S. Mukherjee, S. R. Chowdhury, C. R. Patra, P. K. Iyer, Biosens. Bioelectron. 2017, 89, 636-644;
b)R. Roy, N. R. Sajeev, V. Sharma, A. L. Koner, ACS Appl. Mater. Interfaces 2019, 11, 47207-47217.
[15]a)F. Yukruk, A. L. Dogan, H. Canpinar, D. Guc, E. U. Akkaya, Org. Lett. 2005, 7, 2885-2887;
b)F. Deng, J. R. Sommer, M. Myahkostupov, K. S. Schanze, F. N. Castellano, Chem. Commun. 2013, 49, 7406-7408.
[16]Z. Zheng, H. Liu, S. Zhai, H. Zhang, G. Shan, R. T. Kwok, C. Ma, H. H. Sung, I. D. Williams, J. W. Lam, Chem. Sci. 2020, 11, 2494-2503.
[17]J. Bhawalkar, N. Kumar, C.-F. Zhao, P. Prasad, J. Clin. Laser. Med. Surg. 1997, 15, 201-204.
[18]a)Q. Zang, J. Yu, W. Yu, J. Qian, R. Hu, B. Z. Tang, Chem. Sci. 2018, 9, 5165-5171;
b)Y. Yuan, G. Feng, W. Qin, B. Z. Tang, B. Liu, Chem. Commun. 2014, 50, 8757-8760; c)J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, T. Hasan, Chem. Rev. 2010, 110, 2795-2838.
[19]T. Zhang, R. Lan, C.-F. Chan, G.-L. Law, W.-K. Wong, K.-L. Wong, Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E5492-E5497.
[20]A. J. Tilley, R. D. Pensack, T. S. Lee, B. Djukic, G. D. Scholes, D. S. Seferos, J. Phys. Chem. C 2014, 118, 9996-10004.
[21]a)S. Thiele, J. Mungalpara, A. Steen, M. M. Rosenkilde, J. Våbenø, Br. J. Pharmacol. 2014, 171, 5313-5329;
b)H. Tamamura, K. Hiramatsu, S. Ueda, Z. Wang, S. Kusano, S. Terakubo, J. O. Trent, S. C. Peiper, N. Yamamoto, H. Nakashima, J. Med. Chem. 2005, 48, 380-391;
c)Y. Yoshikawa, K. Kobayashi, S. Oishi, N. Fujii, T. Furuya, Bioorg. Med. Chem. Lett. 2012, 22, 2146-2150;
d)K. Kobayashi, S. Oishi, R. Hayashi, K. Tomita, T. Kubo, N. Tanahara, H. Ohno, Y. Yoshikawa, T. Furuya, M. Hoshino, J. Med. Chem. 2012, 55, 2746-2757.
[22]a)M. Jung, J. Rho, Y. Kim, J. Jung, Y. Jin, Y.-G. Ko, J. Lee, S. Lee, J. Lee, M. Park, Oncogene 2013, 32, 209-221;
b)M. C. Smith, K. E. Luker, J. R. Garbow, J. L. Prior, E. Jackson, D. Piwnica-Worms, G. D. Luker, Cancer Res. 2004, 64, 8604-8612;
c)B. Furusato, J. S. Rhim, Chemokine Receptors in Cancer 2009, 31-45.
[23]J.-P. Sun, A. D. Hendsbee, A. J. Dobson, G. C. Welch, I. G. Hill, Org. Electron. 2016, 35, 151-157.
[24]G. Klebe, F. Graser, E. Hädicke, J. Berndt, Acta Crystallogr., Sect. B: Struct. Sci 1989, 45, 69-77.
[25]a)T. Ozturk, E. Ertas, O. Mert, Chem. Rev. 2007, 107, 5210-5278;
b)L. Legnani, L. Toma, P. Caramella, M. A. Chiacchio, S. Giofre, I. Delso, T. Tejero, P. Merino, J. Org. Chem. 2016, 81, 7733-7740.
[26]M. El‐Sayed, J. Chem. Phys. 1963, 38, 2834-2838.
[27]K. Schmidt, S. Brovelli, V. Coropceanu, D. Beljonne, J. Cornil, C. Bazzini, T. Caronna, R. Tubino, F. Meinardi, Z. Shuai, J. Phys. Chem.A 2007, 111, 10490-10499.
[28]a)R. A. Marcus, N. Sutin, Biochim. Biophys. Acta BBA - Rev. Bioenerg. 1985, 811, 265-322;
b)T. J. Penfold, E. Gindensperger, C. Daniel, C. M. Marian, Chem. Rev. 2018, 118, 6975-7025.
[29]a)R. Bonnett, D. McGarvey, A. Harriman, E. J. Land, T. Truscott, U. J. Winfield, Photochem. Photobiol. 1988, 48, 271-276;
b)J. F. Lovell, T. W. Liu, J. Chen, G. Zheng, Chem. Rev. 2010, 110, 2839-2857;
c)E. D. Sternberg, D. Dolphin, C. Brückner, Tetrahedron 1998, 54, 4151-4202.
[30]D. R. Kearns, Chem. Rev. 1971, 71, 395-427.
[31]M. Wozniak, F. Tanfani, E. Bertoli, G. Zolese, J. Antosiewicz, Biochim. Biophys. Acta, Lipids Lipid Metab. 1991, 1082, 94-100.
[32]a)P. Bilski, A. Belanger, C. Chignell, Free Radical Biol. Med. 2002, 33, 938-946; b)K.-i. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima, T. Nagano, J. Biol. Chem. 2003, 278, 3170-3175.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85388-
dc.description.abstract第一部分
量子產率小於1%的吩噻嗪限制了它做更多的應用而硝基已知的螢光淬滅基,有趣的是當我們將兩者結合在一起時會組成電荷囀移態進而增強螢光放射。首先將在吩噻嗪3號為上分別接上推電子基 (OMe) 和拉電子基 (CN, CHO, NO2) 命名為PTZ-OMe, PTZ-CN, PTZ-CHO and PTZ-NO2, 理論計算顯示PTZ 和PTZ-OMe的過度態是由π軌域的HOMO 到π*軌域與未成對電子混成的LUMO而成,使得其過度態屬於軌域部分禁止的,對比之下拉電子基可以降低硫的未成對電子軌域使其無法影響到π*軌域,讓PTZ-CN, PTZ-CHO and PTZ-NO2 屬於π-π*軌域允許的過度態,而計算結果與光物理性質相符合,相比於PTZ和PTZ-OMe的不放光,吩噻嗪接上拉電子基使得放光增強,值得一提的是PTZ-NO2在非極性溶劑下具有100%的螢光量子產率。最後在電化學分析上,我們發現拉電子基可以降低LUMO的能量讓硫的未成對電子軌域無法參與第一激發態的過渡。這個研究證明一個良好的分子設計去調控吩噻嗪衍生物的過度態進而影響到其放光。

第二部分
烷基或苯基為取代基於苯苝二酰亞胺為主體設計一個具有同步顯影追蹤與針對性光動力療法的分子。經過硫化反應之後得到一取代至四取代硫的產物,在此研究中我們以苯基取代的苯苝二酰亞胺為主體命名為1S-PDI-D, 2S-cis-PDI-D, 2S-trans-PDI-D, 3S-PDI-D 和 4S-PDI-D。在所有的硫化分子中光物理性質跟氮上取代基與硫化數量有相關。在吸收光譜中,主要的吸收峰屬於S0 →S2 (ππ*)的過度態並且會隨著硫化數增加而紅移。最低能階單重態S1 (nπ*)屬於過度態禁止的構型而且其能階與硫化數量與不同取代基有關,在本篇中苯基取代硫化苯苝二酰亞胺的能階低於烷基取代的苯苝二酰亞胺。在室溫下的正常氣體或是除氣條件下,所有的合成的硫化化合物皆不放螢光。經由瞬態吸收光譜與理論計算的支持下,激發態具有超快的系間交叉S1 (nπ*) → T1 (ππ*)將能量轉移到三重態。由理論計算可得最低階三重態的能量排序為1S-PDI-D (1.10 eV) > 2S-cis-PDI-D (0.98 eV) ~ 2S-trans-PDI-D (0.98 eV) > 3S-PDI-D (0.87 eV) > 4S-PDI-D (0.77 eV),而1S-PDI-D比單氧激發態更高因此具有100%的單氧產率並以此為基底作成兩個目標化合物:第一是將兩端接上具有選擇性的胜肽FC131命名為1S-FC131,第二是一端接FC131一端接Cyanine 5 命名為Cy5-1S-FC131。在細胞實驗,1S-FC131 具有光動力療法且能夠辨認A549細胞而非另外三種正常細胞(WI-38, IMR90 and HEL299)。Cy5-1S-FC131 被證實具有中等選擇性光動力療法與同步螢光顯影在癌細胞中,在A549 xenografted 腫瘤老鼠中,兩種藥物皆具有良好的抗腫瘤能力。
zh_TW
dc.description.abstractPart I
Phenothiazine (PTZ) with weak fluorescent quantum yield (>1% in cyclohexane) limit its derivatives for extensive application. Besides, a strong electron withdrawing group, nitro group (NO2), was a popular fluorescent quencher. Unexpectedly, we combined both moieties together to form strong charge transfer model to enhance their emission. First, PTZ were coupled with electron-donating group (OMe) and electron-withdrawing group (CN, CHO, NO2) at 3 position to form PTZ-OMe, PTZ-CN, PTZ-CHO and PTZ-NO2, respectively. Second, theoretical calculation showed that the transitions of PTZ-OMe and PTZ were mainly from HOMOs of π orbitals to LUMOs dominated by π mixed with nonbonding orbitals of sulfur, meaning its transition were partially forbidden. Conversely, the modification of electron withdrawing groups could reduce their energy levels of the nonbonding orbital from sulfur on PTZ, therefore blocking the incorporation of nonbonding orbital of sulfur with their π* orbital of PTZ to LUMO, and hence their allowed π-π* transition becomes major transition. Third, the series compounds were synthesized and measured their photophysical properties. The phenothiazines with EWGs displayed increased fluorescence rather than PTZ or PTZ-OMe. Worth to talk about that, PTZ-NO2 attained 100% photoluminescent quantum yield in the nonpolar solvent. Last, in electrochemical analysis, we found that the EWGs reduced the LUMO’s energy, which prevent nonbonding of sulfur incorporating in the first excited state. This research developed a series of PTZ analogues with a tunable transition and emission through a wise molecular design.

part II
Bearing an aim of simultaneous imaging tracking and targeted photodynamic therapy (PDT), the core chromophore 3,4,9,10-perylenetetracarboxylic diimide (PDI) is anchored by alkyl or phenyl substituents at the imide N-site, followed by delicate thionation, yielding a comprehensive series of thione products. In this study, the phenyl derivatives endowed with n= 1, 2, 3 and 4 thione groups, namely 1S-PDI-D, 2S-cis-PDI-D, 2S-trans-PDI-D, 3S-PDI-D and 4S-PDI-D, respectively, are the main focus. For all studied nS-PDIs, the photophysical properties are dependent of the N-substitution and number of anchored thiones, where the observed prominent lower lying absorption is assigned to be the S0 →S2 (ππ*) transition and is red shifted significantly upon increasing number of thione. The lowest lying singlet state is ascribed to an S1(nπ*) configuration, which is a transition forbidden state and its energy depends on not only the thione group but also the N-substitution, being lower in N-phenyl substitution (cf. N-alkyl substitution) at the same number of thione substitution among all nS-PDIs. All synthesized nS-PDIs are virtually non-emissive in both aerated and degassed solution at room temperature. Supported by femtosecond transient absorption and computation, the excited-state relaxation is dominated by fast S1(nπ*) → T1(ππ*) intersystem crossing (ISC), resulting in ~100% triplet population. The lowest lying T1(ππ*) energy is calculated to be in the order of 1S-PDI-D (1.10 eV) > 2S-cis-PDI-D (0.98 eV) ~ 2S-trans-PDI-D (0.98 eV) > 3S-PDI-D (0.87 eV) > 4S-PDI-D (0.77 eV), where the T1 energy of 1S-PDI-D is close but higher than that (0.97 eV) of the 1O2 1Δg state, rendering 100% yield of 1O2. 1S-PDI-D is further modified by two synthetic strategies: 1. its conjugation with peptide FC131 on the two terminal sides, forming 1S-FC131 and 2. the linkage of peptide FC131 and Cyanine5 dye on each terminal side, yielding Cy5-1S-FC131. In vitro experiments prove that 1S-FC131 is able to recognize A549 cells out of other three lung normal cells (WI-38, IMR90 and HEL299) and perform effective PDT. Cy5-1S-FC131 further demonstrate modest selective PDT and simultaneous fluorescence imaging on the cancer cells. In vivo, both molecular composites also demonstrate outstanding antitumor ability in A549 xenografted tumor mouse.
en
dc.description.provenanceMade available in DSpace on 2023-03-19T23:16:02Z (GMT). No. of bitstreams: 1
U0001-2207202211344900.pdf: 8495695 bytes, checksum: f7db9b017cd58baf38f29eeacb9e6fcf (MD5)
Previous issue date: 2022
en
dc.description.tableofcontentsPart I. Tuning Electron-Withdrawing Strength on Phenothiazine Derivatives: Achieving 100% Photoluminescence Quantum Yield by NO2 Substitution
1.1 Introduction - 1 -
1.2 Results and Discussions - 4 -
1.2.1 Theoretical Calculation - 4 -
1.2.2 Synthetic Methods - 8 -
1.2.3 Photophysical Properties - 11 -
1.2.4 Cyclic Voltammetry Analysis - 16 -
1.3 Conclusion - 19 -
1.4 Reference - 20 -
1.5 Supporting Information - 24 -
1.5.1 Photophysical Results - 24 -
1.5.2 Computational Approach - 30 -
1.5.3 Synthetic Procedure - 33 -
1.5.4 Crystal Data and Structure - 44 -
 
Part II. Comprehensive Thione Derived Perylene Diimides and Their Bio-Conjugation for Simultaneous Imaging Tracking and Targeted Photodynamic Therapy
2.1 Introduction - 53 -
2.2 Results and Discussions - 57 -
2.2.1 Design Strategy - 57 -
2.2.2 Steady state spectra and assignment - 59 -
2.2.3 Photosensitization - 68 -
2.2.4 Synthesis Methods - 70 -
2.2.5 Cell Viability and Cell Apoptosis - 75 -
2.2.6 In Vivo Antitumor Effect - 80 -
2.3 Conclusion - 84 -
2.4 Ethical Statement - 84 -
2.5 Reference - 85 -
2.6 Supporting Information - 89 -
2.6.1 Synthetic Procedure - 89 -
2.6.2 Spectrum - 130 -
2.6.3 Theoretical Calculation - 135 -
2.6.4 Cell Culture - 144 -
2.6.5 In vivo Experiment - 148 -
 
Figure Contents
Part I. Tuning Electron-Withdrawing Strength on Phenothiazine Derivatives: Achieving 100% Photoluminescence Quantum Yield by NO2 Substitution
Figure 1- 1 Chemical structures of PTZ and its analogues modified at C3-position. - 3 -
Figure 1- 2 Ground-state and excited-state optimized structure with bending angle, which was defined as follow. Red plane was calculated from six carbons in the left benzene ring, green plane was calculated from six carbons in the right benzene ring, and the bending angle (𝜃) was defined as the smaller angle between red and green plane. - 4 -
Figure 1- 3 (a) Ground-state (b) Excited-state optimization of LUMO (upper) and HOMO (lower) orbitals for five compounds in cyclohexane. - 6 -
Figure 1- 4 (a) Synthesis routes of five titled molecules. (b) The appearance of titled compounds under regular indoor light. - 8 -
Figure 1- 5. the proposed mechanism of nitration - 9 -
Figure 1- 6 Crystals and N-C distances in PTZ-OMe, PTZ, PTZ-CHO and PTZ-NO2 - 10 -
Figure 1- 7 Steady-state absorption spectra (dashed line), recorded as a function of the extinction coefficient, and photoluminescence spectra (solid line) of five compounds in various solvents at room temperature. - 11 -
Figure 1- 8 Cyclic voltammograms of five titled molecules. Reduction curves of PTZ derivatives were irreversible since they were easily oxidized. - 16 -
Figure 1- 9 HOMO/LUMO of five compounds in cyclic voltammetry - 17 -
Figure 1- 10 Mechanism of five compounds - 18 -

Part II. Comprehensive Thione Derived Perylene Diimides and Their Bio-Conjugation for Simultaneous Imaging Tracking and Targeted Photodynamic Therapy
Figure 2- 1 Schematic illustration of the process from assembly (630-700 nm) and disassembly (5-15nm) of 1S-FC131 and Cy5-1S-FC131 in buffer solution, causing cell apoptosis under irradiation. - 55 -
Figure 2- 2 (a) Various R substitutes and structure of R substituted nS-PDIs. Note that R=2,6-dimethylphenyl has good solubility. Therefore, the name of nS-PDIs is specifically for those R=2,6-dimethylphenyl. (b) The depiction of general mechanism of the Lawesson’s reaction - 57 -
Figure 2- 3 Absorption spectra (in terms of ԑ values) of PDI, nS-PDI-Ps (n=1 and 2) and nS-PDI-Ds (n= 1-4) in toluene. - 59 -
Figure 2- 4 The energy, electronic configuration and the associated frontier molecular orbitals for each state of (a) 1S-PDI-D and (b) 1S-PDI-P optimized at the ground state (S0) - 62 -
Figure 2- 5 (a) Temporal evolution of 1S-PDI-D in toluene. (b) The relaxation dynamics of the transient absorption for 1S-PDI-D at various selected wavelengths. λex: 575 nm. - 65 -
Figure 2- 6 (a) The 1O2 1Δg → 3Σg- (0,0) emission spectrum of nS-PDI-Ds are currently available in the lab. (b) The energy and relaxation diagram of nS-PDIs and their corresponding O2 sensitization process. Note: the x-axis was an arbitrary coordinate. - 68 -
Figure 2- 7 Retrosynthesis of 1S-FC131 and Cy5-1S-FC131 - 70 -
Figure 2- 8 Synthesis of 1S-FC131 and Cy5-1S-FC131 - 71 -
Figure 2- 9 (a)Absorbance spectrum of 1S-PDI-D and 1S-NO2 in toluene and 1S-FC131 and Cy5-1S-FC131 in DMSO (b) 1O2 emission spectrum of 1S-PDI-D and 1S-NO2 in deuterated benzene and 1S-FC131 and Cy5-1S-FC131 in deuterated DMSO (c) Size distributions of 1S-FC131 (8 μM) in DMSO or PBS buffer detected by DLS.(d) Size distribution of Cy5-1S-FC131 (24 μM) in water before and after FBS protein (1/5 volume ratio) by DLS. - 72 -
Figure 2- 10 (a)Change of DPBF at 415nm under different concentration of 1S-FC131 and irradiation time (b)Cell viability of A549 cell after treatment with 8 μM 1S-FC131and irradiation in 8 minutes (c)Cell viability of different cell lines after treatment of 8μM 1S-FC131 and irradiation with 8 minutes (d) Confocal imaging of A549 cells stained with Calcein AM (2 μM) (500-530 nm) and PI (2 μM) (620-650 nm). (Scar bar:50 μm) - 75 -
Figure 2- 11 (a)Changes of DPBF at 415 nm under different concentration of Cy5-1S-FC131 and irradiation time (λex: 590 nm). (b)Cell viability of A549 cell after 24-hr treatment with 24 μM Cy5-1S-FC131 and irradiation for 8 minutes. (c)Cell viability of different cell lines after 24-hr treatment of 24 μM Cy5-1S-FC131 and irradiation for 8 minutes.(d)Confocal imaging of A549 cells stained with Calcein AM (2 μM) (500-530 nm), PI (2 μM) (620-650 nm) and Cy5 (650-700nm)(scale bar: 50 μm). - 78 -
Figure 2- 12 (a) Schematic of experimental design to examine in vivo effectiveness of 1S-FC131 on the tumor shrinkage. (b) Body weight curves of 4 groups in 14 days after PDT treatment. (c) Curves for relative size of tumor in tumor-bearing mice of four groups in 14 days after PDT treatment. (d) Tumor weight of 4 groups removed from the sacrificed mice at the study endpoint day. (e) Tumors of 4 groups removed from the scarified mice at the study endpoint, day 14 (14 days after PDT treatment). - 80 -
Figure 2- 13 (a)IVIS spectrum of Cy5-1S-FC131 results after 14 days. (b)Body weight curves of 4 groups. (c)Curves for relative size of tumor in tumor-bearing mice of four groups. (d)Tumor weight of 4 groups removed from the sacrificed mice at 14th day. (e)Tumors appearance of 4 groups removed from the sacrificed mice at 14th day. - 82 -

 
Table Contents
Part I. Tuning Electron-Withdrawing Strength on Phenothiazine Derivatives: Achieving 100% Photoluminescence Quantum Yield by NO2 Substitution
Table 1- 1 Calculated wavelength (λ), oscillator strength (f) and orbital transition for five titled molecules with m062x - 6 -
Table 1- 2 Absorption and emission of five titled compounds - 12 -
Table 1- 3 Photophysical data in cyclohexane - 14 -
Table 1- 4 Electrochemical properties - 16 -


Part II. Comprehensive Thione Derived Perylene Diimides and Their Bio-Conjugation for Simultaneous Imaging Tracking and Targeted Photodynamic Therapy
Table 2- 1. Photophysical data of nS-PDI-Ds in toluene obtained by either measurement or calculation. - 63 -
Table 2- 2 The measured kisc and calculated SOC, λ and deduced kisc of various nS-PDI-Ds. - 67 -
Table 2- 3 Photophysical data of 1S-PDI, 1S-NO2, 1S-FC131 and Cy5-1S-FC131.- 74 -
-
dc.language.isoen-
dc.subject顯影zh_TW
dc.subjectFC131zh_TW
dc.subject苯苝二酰亞胺zh_TW
dc.subject光動力療法zh_TW
dc.subject選擇性zh_TW
dc.subject未成對電子軌域zh_TW
dc.subject電荷轉移zh_TW
dc.subject硝基zh_TW
dc.subject吩噻嗪zh_TW
dc.subjectCy5zh_TW
dc.subjectimagingen
dc.subjectphenothiazineen
dc.subjectnitro groupen
dc.subjectcharge transferen
dc.subjectnonbonding orbitalen
dc.subjectPerylene diimideen
dc.subjectFC131en
dc.subjectCy5en
dc.subjectphotodynamic therapyen
dc.subjectselectivityen
dc.title合成與探索發色團之光物理性質與光動力療法應用zh_TW
dc.titleSynthesis and Exploitation of Chromophores for Their Photophysics and Application of Photodynamic Therapyen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree博士-
dc.contributor.author-orcid0000-0003-3385-7820
dc.contributor.oralexamcommittee何佳安;汪根欉;吳耀庭;洪文誼zh_TW
dc.contributor.oralexamcommitteeJa-an Annie Ho;Ken-Tsung Wong;Yao-Ting Wu;Wen-Yi Hungen
dc.subject.keyword吩噻嗪,硝基,電荷轉移,未成對電子軌域,苯苝二酰亞胺,FC131,Cy5,光動力療法,選擇性,顯影,zh_TW
dc.subject.keywordphenothiazine,nitro group,charge transfer,nonbonding orbital,Perylene diimide,FC131,Cy5,photodynamic therapy,selectivity,imaging,en
dc.relation.page148-
dc.identifier.doi10.6342/NTU202201631-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-07-25-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2023-07-31-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf8.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved