Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85315
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松(Chao-Sung Lin)
dc.contributor.authorWei-Chen Kuen
dc.contributor.author辜暐宸zh_TW
dc.date.accessioned2023-03-19T22:57:07Z-
dc.date.copyright2022-10-05
dc.date.issued2022
dc.date.submitted2022-07-28
dc.identifier.citation[1] M. Seifollahi, S. H. Razavi, S. Kheirandish, and S. M. Abbasi, 'The Mechanism of η Phase Precipitation in A286 Superalloy During Heat Treatment,' Journal of Materials Engineering and Performance, vol. 22, no. 10, pp. 3063-3069, 2013, doi: 10.1007/s11665-013-0592-1. [2] A. Jena and M. Chaturvedi, 'The role of alloying elements in the design of nickel-base superalloys,' Journal of Materials Science, vol. 19, no. 10, pp. 3121-3139, 1984. [3] I. Choudhury and M. El-Baradie, 'Machinability of nickel-base super alloys: a general review,' Journal of Materials Processing Technology, vol. 77, no. 1-3, pp. 278-284, 1998. [4] J. Safari and S. Nategh, 'On the heat treatment of Rene-80 nickel-base superalloy,' Journal of materials processing technology, vol. 176, no. 1-3, pp. 240-250, 2006. [5] H. Monajati, A. Taheri, M. Jahazi, and S. Yue, 'Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy,' Metallurgical and Materials Transactions A, vol. 36, no. 4, pp. 895-905, 2005. [6] Ó. Martín, P. De Tiedra, and M. San-Juan, 'Combined effect of resistance spot welding and precipitation hardening on tensile shear load bearing capacity of A286 superalloy,' Materials Science and Engineering: A, vol. 688, pp. 309-314, 2017. [7] M. Esfandiari and H. Dong, 'Improving the surface properties of A286 precipitation-hardening stainless steel by low-temperature plasma nitriding,' Surface and Coatings Technology, vol. 201, no. 14, pp. 6189-6196, 2007. [8] S. H. Musavi, B. Davoodi, and S. A. Niknam, 'Environmental-friendly turning of A286 superalloy,' Journal of Manufacturing Processes, vol. 32, pp. 734-743, 2018. [9] H. Dehghan, S. Abbasi, A. Momeni, and A. K. Taheri, 'On the constitutive modeling and microstructural evolution of hot compressed A286 iron-base superalloy,' J. Alloy. Compd., vol. 564, pp. 13-19, 2013. [10] M. Zhao, Z. Guo, H. Liang, and L. Rong, 'Effect of boron on the microstructure, mechanical properties and hydrogen performance in a modified A286,' Materials Science and Engineering: A, vol. 527, no. 21-22, pp. 5844-5851, 2010. [11] H. Solomon and L. Coffin, 'Effects of frequency and environment on fatigue crack growth in A286 at 1100 F,' Fatigue at elevated temperatures, vol. 520, pp. 112-121, 1973. [12] M. Seifollahi, S. Razavi, S. Kheirandish, and S. Abbasi, 'The mechanism of η phase precipitation in A286 superalloy during heat treatment,' Journal of materials engineering and performance, vol. 22, no. 10, pp. 3063-3069, 2013. [13] H. De Cicco, M. Luppo, L. Gribaudo, and J. Ovejero-Garcıa, 'Microstructural development and creep behavior in A286 superalloy,' Materials characterization, vol. 52, no. 2, pp. 85-92, 2004. [14] K. Kobayashi, K. Yamaguchi, M. Hayakawa, and M. Kimura, 'High-temperature fatigue properties of austenitic superalloys 718, A286 and 304L,' International Journal of Fatigue, vol. 30, no. 10-11, pp. 1978-1984, 2008. [15] S. H. Musavi, B. Davoodi, and S. A. Niknam, 'Eco-green machining of superalloy A286: Assessment of tool wear morphology and surface topology,' Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 235, no. 9, pp. 1412-1424, 2021. [16] J. Alphonsa, V. Raja, and S. Mukherjee, 'Development of highly hard and corrosion resistant A286 stainless steel through plasma nitrocarburizing process,' Surface and Coatings Technology, vol. 280, pp. 268-276, 2015. [17] K. Kusabiraki, Y. Takasawa, and T. Ooka, 'Precipitation and Growth of .GAMMA.' and .ETA. Phases in 53Fe-26Ni-15Cr Alloy,' ISIJ International, vol. 35, no. 5, pp. 542-547, 1995, doi: 10.2355/isijinternational.35.542. [18] S. Chen, M. Zhao, and L. Rong, 'Role of γ′ characteristic on the hydrogen embrittlement susceptibility of Fe–Ni–Cr alloys,' Corrosion Sci., vol. 101, pp. 75-83, 2015, doi: 10.1016/j.corsci.2015.09.003. [19] H. De Cicco, M. I. Luppo, L. M. Gribaudo, and J. Ovejero-Garcı́A, 'Microstructural development and creep behavior in A286 superalloy,' Materials Characterization, vol. 52, no. 2, pp. 85-92, 2004, doi: 10.1016/j.matchar.2004.03.007. [20] O. Martin, P. De Tiedra, and M. San-Juan, 'Study of influence of gamma prime and eta phases on corrosion behaviour of A286 superalloy by using electrochemical potentiokinetic techniques,' (in English), Mater. Des., Article vol. 87, pp. 266-271, Dec 2015, doi: 10.1016/j.matdes.2015.08.041. [21] J. Alphonsa, V. S. Raja, and S. Mukherjee, 'Development of highly hard and corrosion resistant A286 stainless steel through plasma nitrocarburizing process,' (in English), Surf. Coat. Technol., Article vol. 280, pp. 268-276, Oct 2015, doi: 10.1016/j.surfcoat.2015.09.017. [22] P. De Tiedra, O. Martin, and M. San-Juan, 'Potentiodynamic study of the influence of gamma prime and eta phases on pitting corrosion of A286 superalloy,' (in English), J. Alloy. Compd., Article vol. 673, pp. 231-236, Jul 2016, doi: 10.1016/j.jallcom.2016.02.261. [23] L. Wang et al., 'The effect of eta-Ni3Ti precipitates and reversed austenite on the passive film stability of nickel-rich Custom 465 steel,' (in English), Corrosion Sci., Article vol. 154, pp. 178-190, Jul 2019, doi: 10.1016/j.corsci.2019.04.016. [24] A. R. Brooks, C. R. Clayton, K. Doss, and Y. C. Lu, 'ON THE ROLE OF CR IN THE PASSIVITY OF STAINLESS-STEEL,' Journal of the Electrochemical Society, vol. 133, no. 12, pp. 2459-2464, Dec 1986, doi: 10.1149/1.2108450. [25] Q. L. Wu, W. G. Li, and N. Zhong, 'Corrosion behavior of TiC particle-reinforced 304 stainless steel,' (in English), Corrosion Sci., Article vol. 53, no. 12, pp. 4258-4264, Dec 2011, doi: 10.1016/j.corsci.2011.08.037. [26] Y. Lu and M. Ives, 'Inhibition of transpassive reactions of molybdenum by nitriding,' Corrosion Sci., vol. 33, no. 2, pp. 317-320, 1992. [27] Z. F. Guo, H. Liang, M. J. Zhao, and L. J. Rong, 'Effect of boron addition on hydrogen embrittlement sensitivity in Fe-Ni based alloys,' (in English), Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., Article vol. 527, no. 24-25, pp. 6620-6625, Sep 2010, doi: 10.1016/j.msea.2010.06.073. [28] K. Banerjee, 'The Role of Magnesium in Superalloys—A Review,' Materials Sciences and Applications, vol. 02, no. 09, pp. 1243-1255, 2011, doi: 10.4236/msa.2011.29168. [29] M. Dodaran et al., 'Effect of alloying elements on the gamma ' antiphase boundary energy in Ni-base superalloys,' (in English), Intermetallics, Article vol. 117, p. 15, Feb 2020, Art no. 106670, doi: 10.1016/j.intermet.2019.106670. [30] C. S. Smith, 'SOME ELEMENTARY PRINCIPLES OF POLYCRYSTALLINE MICROSTRUCTURE,' Metallurgical Reviews, vol. 9, no. 1, pp. 1-48, 1964, doi: 10.1179/mtlr.1964.9.1.1. [31] G. Murphy, 'Potential-p H Diagrams: Atlas of Electrochemical Equilibria in Aqueous Solutions. By Marcel Pourbaix. James A. Franklin, Transl. Centre Belge d'Etude de la Corrosion (CEBELCOR), Brussels; Pergamon, New York, 1966. 644 pp., illus. $36,' Science, vol. 154, no. 3756, pp. 1537-1537, 1966. [32] M. G. Fontana and N. D. Greene, 'Corrosion Engineering,' 1967. [33] P. Marcus, Corrosion mechanisms in theory and practice. CRC press, 2011. [34] 楊聰仁, '腐蝕概論,' 防蝕工程, vol. 6, no. 2, pp. 57-65, 1992. [35] 廖啟民, '不銹鋼的沿晶腐蝕和應力腐蝕破裂,' 防蝕工程, vol. 3, no. 1, pp. 4-19, 1989. [36] S. L. Chawla, Materials selection for corrosion control. ASM international, 1993. [37] H. H. Uhlig, 'The adsorption theory of passivity and the flade potential,' Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, vol. 62, no. 6‐7, pp. 626-632, 1958. [38] H. H. Uhlig and P. F. King, 'The Flade Potential of Iron Passivated by Various Inorganic Corrosion Inhibitors,' Journal of The Electrochemical Society, vol. 106, no. 1, p. 1, 1959, doi: 10.1149/1.2427255. [39] A. J. Davenport, L. J. Oblonsky, M. P. Ryan, and M. F. Toney, 'The structure of the passive film that forms on iron in aqueous environments,' Journal of the Electrochemical Society, vol. 147, no. 6, p. 2162, 2000. [40] C. Chao, L. Lin, and D. Macdonald, 'A point defect model for anodic passive films: I. Film growth kinetics,' Journal of the Electrochemical Society, vol. 128, no. 6, p. 1187, 1981. [41] D. D. Macdonald, 'The history of the point defect model for the passive state: a brief review of film growth aspects,' Electrochimica Acta, vol. 56, no. 4, pp. 1761-1772, 2011. [42] H. H. Uhlig, 'Adsorbed and Reaction‐Product Films on Metals,' Journal of the Electrochemical Society, vol. 97, no. 11, p. 215C, 1950. [43] T. Hoar, D. Mears, and G. Rothwell, 'The relationships between anodic passivity, brightening and pitting,' Corrosion Sci., vol. 5, no. 4, pp. 279-289, 1965. [44] H. H. Strehblow, 'Nucleation and repassivation of corrosion pits for pitting on iron and nickel,' Materials and Corrosion, vol. 27, no. 11, pp. 792-799, 1976. [45] P. Marcus and J.-M. Herbelin, 'The entry of chloride ions into passive films on nickel studied by spectroscopic (ESCA) and nuclear (36Cl radiotracer) methods,' Corrosion Sci., vol. 34, no. 7, pp. 1123-1145, 1993. [46] K. Vetter and H. Strehblow, 'Formation and shape of corrosion pits in localized corrosion on iron theoretical results pertaining to localized corrosion,' BERICHTE DER BUNSEN-GESELLSCHAFT FUR PHYSIKALISCHE CHEMIE, vol. 74, no. 10, pp. 1024-+, 1970. [47] N. Sato, 'A theory for breakdown of anodic oxide films on metals,' Electrochimica Acta, vol. 16, no. 10, pp. 1683-1692, 1971. [48] G. Okamoto, 'Passive film of 18-8 stainless steel structure and its function,' Corrosion Sci., vol. 13, no. 6, pp. 471-489, 1973, doi: 10.1016/0010-938x(73)90031-0. [49] S.-X. Li, Y.-N. He, S.-R. Yu, and P.-Y. Zhang, 'Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316L stainless steel,' Corrosion Sci., vol. 66, pp. 211-216, 2013. [50] H. Y. Ha, C. J. Park, and H. S. Kwon, 'Effects of non-metallic inclusions on the initiation of pitting corrosion in 11% Cr ferritic stainless steel examined by micro-droplet cell,' Corrosion Sci., vol. 49, no. 3, pp. 1266-1275, 2007. [51] G. S. Eklund, 'Initiation of pitting at sulfide inclusions in stainless steel,' Journal of the Electrochemical Society, vol. 121, no. 4, p. 467, 1974. [52] M. Baker and J. Castle, 'The initiation of pitting corrosion of stainless steels at oxide inclusions,' Corrosion Sci., vol. 33, no. 8, pp. 1295-1312, 1992. [53] J. Stewart and D. E. Williams, 'The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions,' Corrosion Sci., vol. 33, no. 3, pp. 457-474, 1992, doi: 10.1016/0010-938x(92)90074-d. [54] G. T. Burstein and P. C. Pistorius, 'SURFACE-ROUGHNESS AND THE METASTABLE PITTING OF STAINLESS-STEEL IN CHLORIDE SOLUTIONS,' (in English), Corrosion, Article vol. 51, no. 5, pp. 380-385, May 1995, doi: 10.5006/1.3293603. [55] Y. F. Cheng, M. Wilmott, and J. L. Luo, 'The role of chloride ions in pitting of carbon steel studied by the statistical analysis of electrochemical noise,' Applied Surface Science, vol. 152, no. 3-4, pp. 161-168, 1999, doi: 10.1016/s0169-4332(99)00328-1. [56] D. E. Williams, J. Stewart, and P. H. Balkwill, 'The nucleation, growth and stability of micropits in stainless steel,' Corrosion Sci., vol. 36, no. 7, pp. 1213-1235, 1994. [57] P. Pistorius and G. Burstein, 'Metastable pitting corrosion of stainless steel and the transition to stability,' Philosophical transactions of the royal society of London. Series A: Physical and Engineering Sciences, vol. 341, no. 1662, pp. 531-559, 1992. [58] G. S. Frankel, 'Pitting Corrosion of Metals: A Review of the Critical Factors,' Journal of The Electrochemical Society, vol. 145, no. 6, pp. 2186-2198, 1998, doi: 10.1149/1.1838615. [59] R. Brigham and E. Tozer, 'Temperature as a pitting criterion,' Corrosion, vol. 29, no. 1, pp. 33-36, 1973. [60] R. Ovarfort, 'Critical pitting temperature measurements of stainless steels with an improved electrochemical method,' Corrosion Sci., vol. 29, no. 8, pp. 987-993, 1989. [61] N. Laycock, M. H. Moayed, and R. Newman, 'Metastable pitting and the critical pitting temperature,' Journal of the Electrochemical Society, vol. 145, no. 8, p. 2622, 1998. [62] H. Uhlig and J. Gilman, 'Pitting of 18-8 stainless steel in ferric chloride inhibited by nitrates,' Corrosion, vol. 20, no. 9, pp. 289t-292t, 1964. [63] H. Leckie and H. Uhlig, 'Environmental factors affecting the critical potential for pitting in 18–8 stainless steel,' Journal of the electrochemical society, vol. 113, no. 12, p. 1262, 1966. [64] J. Wang, C. Su, and Z. Szklarska-Smialowska, 'Effects of Cl− concentration and temperature on pitting of AISI 304 stainless steel,' Corrosion, vol. 44, no. 10, pp. 732-737, 1988. [65] M. Moayed and R. Newman, 'Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature,' Corrosion Sci., vol. 48, no. 4, pp. 1004-1018, 2006. [66] C. Dong, H. Luo, K. Xiao, T. Sun, Q. Liu, and X. Li, 'Effect of temperature and Cl− concentration on pitting of 2205 duplex stainless steel,' Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 26, no. 4, pp. 641-647, 2011. [67] A. A. Dastgerdi, A. Brenna, M. Ormellese, M. Pedeferri, and F. Bolzoni, 'Experimental design to study the influence of temperature, pH, and chloride concentration on the pitting and crevice corrosion of UNS S30403 stainless steel,' Corrosion Sci., vol. 159, p. 108160, 2019, doi: 10.1016/j.corsci.2019.108160. [68] J. A. Siegel and P. J. Saukko, Encyclopedia of forensic sciences. Academic Press, 2012. [69] Y. Kainuma, 'The Theory of Kikuchi patterns,' Acta Crystallographica, vol. 8, no. 5, pp. 247-257, 1955, doi: 10.1107/s0365110x55000832. [70] P. Heilmann, W. Clark, and D. Rigney, 'Computerized method to determine crystal orientations from Kikuchi patterns,' Ultramicroscopy, vol. 9, no. 4, pp. 365-371, 1982. [71] W. S. Tait, An introduction to electrochemical corrosion testing for practicing engineers and scientists. PairODocs Publications, 1994. [72] N. G. Thompson and J. H. Payer, DC electrochemical test methods. NACE international, 1998. [73] E. McCafferty, Introduction to corrosion science. Springer Science & Business Media, 2010. [74] S. Esmailzadeh, M. Aliofkhazraei, and H. Sarlak, 'Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: a review,' Protection of metals and physical chemistry of surfaces, vol. 54, no. 5, pp. 976-989, 2018. [75] R. Ke and R. Alkire, 'Surface analysis of corrosion pits initiated at MnS inclusions in 304 stainless steel,' Journal of the Electrochemical Society, vol. 139, no. 6, p. 1573, 1992. [76] A. Chiba, I. Muto, Y. Sugawara, and N. Hara, 'Pit initiation mechanism at MnS inclusions in stainless steel: synergistic effect of elemental sulfur and chloride ions,' Journal of the electrochemical society, vol. 160, no. 10, p. C511, 2013. [77] E. G. Webb and R. C. Alkire, 'Pit initiation at single sulfide inclusions in stainless steel: III. Mathematical model,' Journal of the electrochemical society, vol. 149, no. 6, p. B286, 2002. [78] N. Shimahashi, I. Muto, Y. Sugawara, and N. Hara, 'Effects of corrosion and cracking of sulfide inclusions on pit initiation in stainless steel,' Journal of The Electrochemical Society, vol. 161, no. 10, p. C494, 2014. [79] H. Krawiec, V. Vignal, R. Oltra, and O. Heintz, 'Influence of the chemical dissolution of mns inclusions on the composition of passive films and the local electrochemical behaviour of stainless steels,' in Passivation of Metals and Semiconductors, and Properties of Thin Oxide Layers: Elsevier, 2006, pp. 567-572. [80] M. Nishimoto, I. Muto, Y. Sugawara, and N. Hara, 'Passivity of (Mn, Cr) S inclusions in type 304 stainless steel: The role of Cr and the critical concentration for preventing inclusion dissolution in NaCl solution,' Corrosion Sci., vol. 176, p. 109060, 2020. [81] H. De Cicco, M. Luppo, H. Raffaeli, J. Di Gaetano, L. Gribaudo, and J. Ovejero-García, 'Creep behavior of an A286 type stainless steel,' Materials characterization, vol. 55, no. 2, pp. 97-105, 2005. [82] C. Loier, M. Ottmann, and C. Leymonie, 'Structural transformations and mechanical properties of two non-magnetic alloys (Inconel 718 and ASTM A 286),' Materials Science and Engineering, vol. 63, no. 1, pp. 91-100, 1984. [83] K. Merritt and S. A. Brown, 'Release of hexavalent chromium from corrosion of stainless steel and cobalt—chromium alloys,' Journal of biomedical materials research, vol. 29, no. 5, pp. 627-633, 1995. [84] J. K. Kim, Y. H. Kim, J. S. Lee, and K. Y. Kim, 'Effect of chromium content on intergranular corrosion and precipitation of Ti-stabilized ferritic stainless steels,' Corrosion Sci., vol. 52, no. 5, pp. 1847-1852, 2010. [85] J. Li, T.-K. Zhong, and M. E. Wadsworth, 'Application of mixed potential theory in hydrometallurgy,' Hydrometallurgy, vol. 29, no. 1-3, pp. 47-60, 1992. [86] D. C. Silverman, 'Tutorial on cyclic potentiodynamic polarization technique,' in CORROSION 98, 1998: OnePetro. [87] T. Bellezze, G. Giuliani, and G. Roventi, 'Study of stainless steels corrosion in a strong acid mixture. Part 1: cyclic potentiodynamic polarization curves examined by means of an analytical method,' Corrosion Sci., vol. 130, pp. 113-125, 2018. [88] R. Baboian and G. Haynes, 'Cyclic Polarization Measurements--Experimental Procedure and Evaluation of Test Data,' ed: ASTM International West Conshohocken, PA, USA, 1981. [89] M. E. Orazem and B. Tribollet, 'Electrochemical impedance spectroscopy,' New Jersey, pp. 383-389, 2008. [90] B.-Y. Chang and S.-M. Park, 'Electrochemical impedance spectroscopy,' Annual Review of Analytical Chemistry, vol. 3, no. 1, p. 207, 2010. [91] A. Lasia, 'Electrochemical impedance spectroscopy and its applications,' in Modern aspects of electrochemistry: Springer, 2002, pp. 143-248. [92] S.-M. Park and J.-S. Yoo, 'Peer reviewed: electrochemical impedance spectroscopy for better electrochemical measurements,' ed: ACS Publications, 2003. [93] B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, 'Determination of effective capacitance and film thickness from constant-phase-element parameters,' Electrochimica acta, vol. 55, no. 21, pp. 6218-6227, 2010. [94] C. Briant, 'The effects of sulfur and phosphorus on the intergranular corrosion of 304 stainless steel,' Corrosion, vol. 36, no. 9, pp. 497-509, 1980. [95] H. Ryu, H. Ahn, K. Kim, J. Ahn, J.-Y. Lee, and E. Cairns, 'Self-discharge of lithium–sulfur cells using stainless-steel current-collectors,' Journal of Power Sources, vol. 140, no. 2, pp. 365-369, 2005. [96] S.-H. Jeon, S.-T. Kim, I.-S. Lee, and Y.-S. Park, 'Effects of sulfur addition on pitting corrosion and machinability behavior of super duplex stainless steel containing rare earth metals: Part 2,' Corrosion Sci., vol. 52, no. 10, pp. 3537-3547, 2010. [97] B. Huang, W. Yin, D. Sang, and Z. Jiang, 'Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit,' Applied Surface Science, vol. 259, pp. 664-670, 2012. [98] B. Wilde and J. Armijo, 'Influence of sulfur on the corrosion resistance of austenitic stainless steel,' Corrosion, vol. 23, no. 7, pp. 208-214, 1967.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85315-
dc.description.abstract本研究主要探討A286合金二次相與抗蝕性之關聯,並以商用316L不銹鋼作為實驗對照組。A286合金材料製成參數有四種,分別是980°c固溶化熱處理1小時、980°c固溶化熱處理1小時 + 720°c時效處理12小時、980°c固溶化熱處理1小時+720°c時效處理24小時、980°c固溶化熱處理1小時+720°c時效處理200小時。 微結構分析使用了掃描式電子顯微鏡(SEM),結合能量散射X射線譜(EDX),來了解二次相分布位置,並使用背向散射電子繞射(EBSD)來了解介在物分布情形,最後使用穿透式電子顯微鏡(TEM)確認介在物之結晶結構。980°c固溶化熱處理1小時之試片經過X光繞射儀(XRD)檢測發現基地是FCC沃斯田鐵相。並從顯微結構發現有微米級的TiC、次微米級的碳化物、磷化物。980°c固溶化熱處理1小時+720°c時效處理12小時之試片發現γˈ與η析出相存在,γˈ相主要析出在基地中,而η相主要沿著晶界析出。並隨著熱處理時間增長,γˈ與η相有粗大化現象。 抗蝕性分析使用了動電位極化曲線、循環動電位極化曲線、電化學交流阻抗分析與腐蝕後表面形貌觀察。使用的是三極系統,工作電極為測試之試片、輔助電極為白金、參考電極為飽和甘汞電極(SCE),測試水溶液為3.5wt%氯化鈉水溶液,並以鹽酸調整至pH=2。測試結果為980°c固溶化熱處理1小時之試片有最高孔蝕電位,並隨著熱處理時間增長,孔蝕電位跟著下降,而316L不銹鋼孔蝕電位低於980°c固溶化熱處理1小時之試片。循環動電位極化曲線測試結果為980°c固溶化熱處理1小時+720°c時效處理200小時之試片孔蝕敏感性最高,而當熱處理時間降低,孔蝕敏感性也跟著下降。電化學交流阻抗分析結果為980°c固溶化熱處理1小時之試片有最好抗蝕性質,隨著時效時間增長,抗蝕性有下降趨勢,316L不銹鋼抗蝕性質與980°c固溶化熱處理1小時之試片相差不大。 腐蝕後表面形貌分析發現316L不銹鋼孔時誘發位置為還有硫離子之介在物上,而980°c固溶化熱處理1小時之試片孔蝕初始位置可能為碳化物與磷化物,經過時效處理之試片,孔蝕初始位置就較為複雜,因為二次相有析出相(γˈ與η)與介在物(微米級的TiC、TiN與次微米級的碳化物、磷化物),TiC與TiN為介穩態孔蝕的位置,而穩態孔蝕的誘發位置為次微米級的碳化物與磷化物,且可能和γˈ相有關但和η相無關,因為孔蝕位置並沒有在晶界上發生,而η相都是沿著晶界上析出,故孔蝕與η相並無相關。zh_TW
dc.description.abstractIn this study, the association between the secondary phase and corrosion resistance of A286 alloy was investigated, and commercial 316L stainless steel was used as the experimental control group. There are four parameters, namely, 980°C solidification heat treatment for 1 hour, 980°C solidification heat treatment for 1 hour + 720°C aging treatment for 12 hours, 980°C solidification heat treatment for 1 hour + 720°C aging treatment for 24 hours, and 980°C solidification heat treatment for 1 hour + 720°C aging treatment for 200 hours. The microstructure analysis was performed using scanning electron microscopy (SEM) combined with energy scattering X-ray spectroscopy (EDX) to understand the location of the secondary phase distribution, and backscattering electron microscopy (EBSD) to understand the distribution of the inclusion, and finally transmission electron microscopy (TEM) to confirm the crystalline structure of the inclusion. The base was examined by XRD and found to be FCC austenite iron phase. The microstructure revealed the presence of micron TiC, submicron carbide and phosphide. 980°C solid solution heat treatment for 1 hour + 720°C aging treatment for 12 hours revealed the presence of γˈ and η precipitated phases. The coarsening of γˈ and η phases was observed with the increase of heat treatment time. The corrosion resistance analysis was performed using dynamic potential polarization curves, cyclic dynamic potential polarization curves, electrochemical AC impedance analysis, and post-corrosion surface morphology observation. The working electrode was the test specimen, the auxiliary electrode was platinum, and the reference electrode was a saturated mercury electrode (SCE). The pitting potential of 316L stainless steel is lower than that of the specimen treated with solid solution heat treatment at 980°C for 1 hour. The results of the cyclic dynamic potential polarization curve test showed that the pitting corrosion sensitivity of the specimen treated at 980°C for 1 hour + 720°C for 200 hours was the highest, and as the heat treatment time decreased, the pitting corrosion sensitivity also decreased. The results of electrochemical AC impedance analysis showed that the specimen with 1 hour of solid solution heat treatment at 980°C had the best corrosion resistance, and the corrosion resistance tended to decrease as the aging time increased. The surface morphology analysis after corrosion revealed that the location of the induced pitting corrosion of 316L stainless steel is on the intermediate material with sulfur ions, and the initial location of the pitting corrosion of the specimen treated by solid solution heat treatment at 980°C for 1 hour may be carbide and phosphide, and the initial location of the pore corrosion of the specimen treated by aging is more complicated because the secondary phases are precipitated phases (γˈ and η) and intermediate material (micron TiC, TiN and submicron carbide and phosphide). TiC and TiN are the locations of the meta-stable pitting, while the locations of the stable pitting are the submicron carbides and phosphides, and may be related to the γˈphase but not to the η-phase, because the pore erosion does not occur at the grain boundaries, while the η-phase is precipitated along the grain boundaries, so the pitting corrosion is not related to the η-phase.en
dc.description.provenanceMade available in DSpace on 2023-03-19T22:57:07Z (GMT). No. of bitstreams: 1
U0001-2707202215444800.pdf: 10330739 bytes, checksum: 86e34c079aa9a3b8c51d8fadcdc4f77d (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents誌謝 i 中文摘要 ii ABSTRACT iv 總目錄 vi 圖目錄 x 表目錄 xiv 第一章 前言 1 第二章 文獻回顧 2 2.1 超合金顯微組織與基本性質 2 2.1.1 A286 超合金簡介 2 2.1.2 添加微量元素之影響 2 2.1.3 熱處理對A286超合金之影響 4 2.2 電化學 8 2.2.1 動電位極化曲線 8 2.2.2 Pourbaix Diagram 簡介 8 2.3 腐蝕分類 11 2.3.1 均勻腐蝕(general corrosion) 11 2.3.2 間隙腐蝕(crevice corrosion) 12 2.3.3 孔蝕(pitting corrosion) 12 2.3.4 應力腐蝕(stress corrosion cracking) 13 2.3.5 加凡尼腐蝕(galvanic corrosion) 13 2.3.6 沿晶腐蝕(intergranular corrosion) 14 2.3.7 選擇性腐蝕(selective corrosion) 14 2.3.8 沖蝕(erosion corrosion) 15 2.4 孔蝕理論 15 2.4.1 孔蝕簡介 15 2.4.2 鈍化膜理論 15 2.4.3 鈍化膜崩解機制 16 2.4.4 孔蝕易發生位置 20 2.4.5 介穩態孔蝕性質 (Metastable pitting) 20 2.4.6 穩態孔蝕性質 (Stable pitting) 21 2.5 孔蝕之環境因子影響 21 2.5.1 溫度效應 21 2.5.2 氯離子效應 22 2.5.3 pH值效應 23 第三章 實驗步驟與方法 24 3.1 實驗流程 24 3.2 試片製備 25 3.2.1 材料簡介 25 3.2.2 熱處理流程 25 3.2.3 316L不銹鋼 26 3.2.4 試片前處理 26 3.3 顯微結構分析 28 3.3.1 光學顯微鏡(OM) 28 3.3.2 掃描式電子顯微鏡(SEM) 28 3.3.3 能量散射 X射線譜 (EDX) 29 3.3.4 背向散射電子繞射(EBSD) 30 3.3.5 穿透式電子顯微鏡(TEM) 30 3.3.6 掃描穿透式電子顯微鏡(STEM) 31 3.3.7 X光繞射儀(XRD) 31 3.4 抗蝕性分析 32 3.4.1 動電位極化曲線 33 3.4.2 循環動電位極化曲線 33 3.4.3 電化學阻抗譜(EIS) 34 第四章 實驗結果與討論 36 4.1 A286 超合金之微結構分析 36 4.1.1 固溶化熱處理 36 4.1.2 時效處理 45 4.1.3 316L 不鏽鋼 61 4.2 不同熱處理之電化學分析 63 4.2.1 動電位極化曲線 63 4.2.2 循環動電位極化曲線 65 4.2.3 電化學交流阻抗分析 67 4.2.4 表面腐蝕形貌分析 70 第五章 結論 80 第六章 未來工作 81 參考文獻 82
dc.language.isozh-TW
dc.subject循環動電位極化曲線zh_TW
dc.subjectA286合金zh_TW
dc.subjectη相zh_TW
dc.subjectγˈ相zh_TW
dc.subject動電位極化曲線zh_TW
dc.subject電化學交流阻抗分析zh_TW
dc.subjectη-phaseen
dc.subjectcyclic dynamic potential polarization curveen
dc.subjectelectrochemical AC impedance analysisen
dc.subjectdynamic potential polarization curveen
dc.subjectγˈphaseen
dc.subjectA286 alloyen
dc.titleA286鐵基超合金時效處理和孔蝕行為之研究zh_TW
dc.titleThe Study of Aging Treatment and Pitting Behavior of A286 Iron-based Superalloysen
dc.typeThesis
dc.date.schoolyear110-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡文達(Wen-Ta Tsai),莊東漢(Tung-Han Chuang),張君華(Jun-hua Chang)
dc.subject.keywordA286合金,η相,γˈ相,動電位極化曲線,電化學交流阻抗分析,循環動電位極化曲線,zh_TW
dc.subject.keywordA286 alloy,η-phase,γˈphase,dynamic potential polarization curve,electrochemical AC impedance analysis,cyclic dynamic potential polarization curve,en
dc.relation.page87
dc.identifier.doi10.6342/NTU202201788
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2022-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
dc.date.embargo-lift2022-10-05-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
U0001-2707202215444800.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved