請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85313完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫珍理(Chen-li Sun) | |
| dc.contributor.author | Ying-Hsi Lin | en |
| dc.contributor.author | 林穎希 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:57:00Z | - |
| dc.date.copyright | 2022-07-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-27 | |
| dc.identifier.citation | [1] M. Bulut, S. G. Kandlikar, and N. Sozbir, 'A review of vapor chambers,' Heat Transfer Engineering, vol. 40, no. 19, pp. 1551-1573, 2018, doi: 10.1080/01457632.2018.1480868. [2] T. G. Theofanous, T. N. Dinh, J. P. Tu, and A. T. Dinh, 'The boiling crisis phenomenon: Part II: Dryout dynamics and burnout,' Experimental Thermal and Fluid Science, vol. 26, no. 6, pp. 793-810, 2002, doi: 10.1016/S0894-1777. [3] X. Cheng, G. Yang, and J. Wu, 'Recent advances in the optimization of evaporator wicks of vapor chambers: From mechanism to fabrication technologies,' Applied Thermal Engineering, vol. 188, 2021, doi: 10.1016/j.applthermaleng.2021.116611. [4] M. Bach, 'Impact of Temperature on Intel CPU Performance,' Puget Systems, October 2014. [5] N. di Francescantonio, R. Savino, and Y. Abe, 'New alcohol solutions for heat pipes: Marangoni effect and heat transfer enhancement,' International Journal of Heat and Mass Transfer vol. 51, no. 25, pp. 6199-6207, 2008, doi: 10.1016/j.ijheatmasstransfer.2008.01.040. [6] R. Savino and D. Paterna, 'Marangoni effect and heat pipe dry-out,' Physics of Fluids vol. 18, p. 118103, 2006, doi: 10.1063/1.2397586. [7] Y. Takata, S. Hidaka, J. M. Cao, T. Nakamura, H. Yamamoto, M. Masuda, and T. Ito, 'Effect of surface wettability on boiling and evaporation,' Energy, vol. 30, no. 2-4, pp. 209-220, 2005, doi: 10.1016/j.energy.2004.05.004. [8] G. Huang, W. Liu, Y. Luo, Y. Li, and H. Chen, 'Fabrication and thermal performance of mesh-type ultra-thin vapor chambers,' Applied Thermal Engineering, vol. 162, 2019, doi: 10.1016/j.applthermaleng.2019.114263. [9] M. J. Gibbons, M. Marengo, and T. Persoons, 'A review of heat pipe technology for foldable electronic devices,' Applied Thermal Engineering, vol. 194, p. 117087, 2021, doi: 10.1016/j.applthermaleng.2021.117087. [10] Z. Sun and H. Qiu, 'An asymmetrical vapor chamber with multiscale micro/nanostructured surfaces,' International Communications in Heat and Mass Transfer, vol. 58, pp. 40-44, 2014, doi: 10.1016/j.icheatmasstransfer.2014.08.027. [11] A. B. Solomon, K. Ramachandran, and B. C. Pillai, 'Thermal performance of a heat pipe with nanoparticles coated wick,' Applied Thermal Engineering, vol. 36, pp. 106-112, 2012, doi: 10.1016/j.applthermaleng.2011.12.004. [12] J. C. Hsieh, H. J. Huang, and S. C. Shen, 'Experimental study of microrectangular groove structure covered with multi mesh layers on performance of flat plate heat pipe for LED lighting module,' Microelectronics Reliability, vol. 52, no. 6, pp. 1071-1079, 2012, doi: 10.1016/j.microrel.2011.11.016. [13] S.-C. Wu, 'Study of self-rewetting fluid applied to loop heat pipe,' International Journal of Thermal Sciences, vol. 98, pp. 374-380, 2015, doi: 10.1016/j.ijthermalsci.2015.07.024. [14] Y. Hu, T. Liu, X. Li, and S. Wang, 'Heat transfer enhancement of micro oscillating heat pipes with self-rewetting fluid,' International Journal of Heat and Mass Transfer, vol. 70, pp. 496-503, 2014, doi: 10.1016/j.ijheatmasstransfer.2013.11.031. [15] S. Tsang, Z.-H. Wu, C.-H. Lin, and C.-l. Sun, 'On the evaporative spray cooling with a self-rewetting fluid: Chasing the heat,' Applied Thermal Engineering, vol. 132, pp. 196-208, 2018, doi: 10.1016/j.applthermaleng.2017.12.084. [16] S. M. Peyghambarzadeh, H. Hallaji, M. R. Bohloul, and N. Aslanzadeh, 'Heat transfer and Marangoni flow in a circular heat pipe using self-rewetting fluids,' Experimental Heat Transfer, vol. 30, no. 3, pp. 218-234, 2016, doi: 10.1080/08916152.2016.1233148. [17] M. A. Azouni, C. Normand, and G. Petre, 'Surface tension driven flows in a thin layer of a water-n-heptanol solution,' Journal of Colloid and Interface Science, vol. 239, no. 2, pp. 509-516, Jul 15 2001, doi: 10.1006/jcis.2001.7568. [18] L. Cong, J. Qifei, and S. Wu, 'Experimental and theoretical analysis on the effect of inclination on metal powder sintered heat pipe radiator with natural convection cooling,' Heat and Mass Transfer, vol. 53, no. 2, pp. 581-589, 2016, doi: 10.1007/s00231-016-1840-3. [19] B. Markal and K. Aksoy, 'The combined effects of filling ratio and inclination angle on thermal performance of a closed loop pulsating heat pipe,' Heat and Mass Transfer, vol. 57, no. 5, pp. 751-763, 2020, doi: 10.1007/s00231-020-02988-6. [20] J. Huang, J. Xiang, X. Chu, W. Sun, R. Liu, W. Ling, W. Zhou, and S. Tao, 'Thermal performance of flexible branch heat pipe,' Applied Thermal Engineering, vol. 186, 2021, doi: 10.1016/j.applthermaleng.2020.116532. [21] F.-M. Chang, S.-L. Cheng, S.-J. Hong, Y.-J. Sheng, and H.-K. Tsao, 'Superhydrophilicity to superhydrophobicity transition of CuO nanowire films,' Applied Physics Letters, vol. 96, no. 11, 2010, doi: 10.1063/1.3360847. [22] H. S. Lee, 'Heat pipes,' in Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. New Jersey: John Wiley & Sons, 2011, pp. 185-197. [23] S. W. Chi, 'Sonic, entrainment, and boiling limitations,' in Heat Pipe Theory and Practice. New York: McGraw-Hill, 1976, pp. 79-96. [24] J. Luo, K. Ying, and J. Bai, 'Savitzky–Golay smoothing and differentiation filter for even number data,' Signal Processing, vol. 85, no. 7, pp. 1429-1434, 2005, doi: 10.1016/j.sigpro.2005.02.002. [25] T. Bergman, F. Incropera, D. DeWitt, and A. Lavine, Fundamentals of Heat and Mass Transfer, sixth ed. Chichester, United Kingdom: Wiley, 2007, pp. 574-577. [26] National Instruments, NI 9213 Datasheet, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85313 | - |
| dc.description.abstract | 本研究利用自製之開放式平台,以加熱及散熱裝置使兩端產生溫度梯度,模擬熱管之操作情境,並使用不同之自再濕潤流體作為工作流體,觀察並比較其與水在熱傳性能上之差異。此種流體在合適操作環境下顯示了突出的熱傳表現,並展現了獨特的逆Marangoni效應,所獲之結果將提供未來相變化熱傳元件一嶄新的改良與優化之參據。 實驗結果顯示,在低至中熱通量時,自再濕潤流體皆能夠有效的提升實驗系統的熱傳:在低熱通量時 (6.6 W),元件的燒乾時間皆得到了明顯的提升,相較於水,使用自再濕潤流體時可延長13.4%的燒乾時間;而流體在毛細結構中的流動,其毛細作用所造成的壓力梯度會隨著介面的前進而下降,流體前進速度也會因此而漸漸變小,最終停下。然而,自再濕潤流體所擁有的逆Marangoni效應會產生一額外與行進方向相同的作用力,促使流體往熱端集中,改善元件的散熱;在中熱通量時 (10 W),自再濕潤流體亦能有效延長燒乾時間,較高的表面溫度也使自再濕潤流體較早達到逆Marangoni效應之作用溫度區間,進而得以提早加速,然而,由於溫度的提高,自再濕潤流體內的醇類蒸發較快,流體會較容易變回純水,縮短逆Marangoni的作用時間;而在高熱通量時 (13.5 W),各流體皆因過高的表面溫度而快速變回純水,因此所有的熱傳表現皆與純水無異。 本研究亦進行了各流體極限操作功率之探討,實驗結果顯示自再濕潤流體可以將元件之極限操作功率由15 W提升至17 W,增加了13%;極限操作溫度則是由76°C提升至83°C,增加了9.2%,大幅降低了元件在高溫燒乾的可能。 此外,本研究推導出逆Marangoni拉引力與毛細驅動力對於自再濕潤流體在毛細結構中流動的情形。結果顯示,毛細作用主導了流體的流動,而取決於表面張力梯度的方向,Marangoni對流會阻礙或是促進流體的流動,佔比約為毛細作用的5%,然而在實驗的結果中,我們發現Marangoni對流的影響比預期的還要大;而對於0.1%庚醇與0.01%庚醇水溶液而言,濃度越大時會有較強的逆Marangoni對流流速,但是由毛細力造成的速度則較小;濃度越小時則相反。此外,SRWF的種類亦會影響流體的表面張力以及表面張力梯度,因此,如何選取適當的濃度與種類,同時將此兩作用力的優點最大化,將會是優化熱管熱傳表現的重要選擇。 | zh_TW |
| dc.description.abstract | In this study, we evaluated the effectiveness of using self-rewetting fluids (SRWF) in phase-change heat transfer device. By creating a temperature gradient over a copper strip, we simulated the working scenario of a heat pipe, and found the unusual behavior in surface tension of a SRWF was beneficial to fluid replenishment. As the hot zone could be kept wetted, dryout was effectively delayed. The better heat transfer performance was shown within a certain range of heat load. Under low to medium levels of heat load, SRWF performed better compared to that of water. Dryout time was delayed 13.4% under 6.6 W, showing that the inverse-Marangoni convection helped to sustain the fluid velocity and keep the hot zone wetted for a longer duration. However, the long-chain alcohol in the SRWF evaporated faster as heat input increased, and the SRWF immediately became water, deteriorating the cooling performance. We also investigated the maximum operating power of different working fluid and found that the critical heat load of SRWF could be 2 W higher than that of water, proving its potential to improve the heat transfer capability of phase-change heat transfer devices. In addition, we developed a model that incorporated the Marangoni effect on fluid flow in the wicked microstructures. The results indicated that fluid flow was dominated by the capillary force, while the Marangoni convection could act in favor or opposite to the direction of fluid flow. However, the Marangoni effect showed more importance in the experimental results. For the same type of SRWF (0.1wt% Heptanol and 0.01wt% Heptanol for instance), higher content of long-chain alcohol can produce stronger inverse-Marangoni convection due to higher surface tension gradient, but the lower surface tension results in lower capillary force. Hence, the leverage of these two opposite trends would be the key to optimize the SRWF for the better heat transfer performance of the devices in the future. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:57:00Z (GMT). No. of bitstreams: 1 U0001-2707202210484500.pdf: 3260226 bytes, checksum: 72889d4c6575884ac4490f7652117e1a (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 目錄 摘要 iv Abstract vi 目錄 viii 符號索引 xi 表目錄 xiv 圖目錄 xv 第一章 導論 19 1.1 前言 19 1.2 文獻回顧 20 1.2.1 熱管與均溫板 20 1.2.2 Marangoni效應 22 1.2.3 Marongoni對流模型 23 1.2.4 環境對元件之影響 24 1.3 研究目的 26 第二章 實驗架構與不確定性分析 27 2.1 實驗架構 27 2.1.1 溫度梯度實驗平台 27 2.1.2 工作流體及其給予裝置 29 2.1.3 紅外線熱像儀 30 2.1.4 溫度擷取系統 30 2.2 熱管運作原理 31 2.2.1 熱管內部的物理限制 31 2.2.2 蒸氣壓降 32 2.2.3 毛細壓降 33 2.3 實驗量測程序 33 2.3.1 工作流體散熱評估 33 2.3.2 流體遷徙之量化 35 2.3.3 極限操作瓦數評估 36 2.4 實驗數據分析 37 2.4.1 銅片表面溫度梯度計算 37 2.4.2 穩態熱傳分析 37 2.4.3 工作流體之冷卻分析 40 2.4.4 流體遷徙速度分析 41 2.5 不確定性分析 43 2.5.1 溶液濃度之誤差 44 2.5.2 工作流體體積之誤差 45 2.5.3 溫度量測之誤差 45 2.5.4 毛細結構之誤差 46 2.5.5 加熱及冷卻熱傳之誤差 46 2.5.6 銅片表面對流熱傳之誤差 49 2.5.7 工作流體散熱之誤差 49 2.5.8 液體遷徙速度之誤差 50 第三章 實驗結果與討論 52 3.1 工作流體的影響 52 3.1.1 溫度隨時間之變化 52 3.1.2 燒乾時間 53 3.1.3 流體冷卻率 54 3.1.4 流體遷徙速度 55 3.2 輸入功率之影響 57 3.2.1 溫度隨時間之變化 57 3.2.2 燒乾時間 58 3.2.3 流體冷卻率 59 3.2.4 流體遷徙速度 60 3.3 極限操作功率 61 3.4 表面張力梯度與濃度梯度對自再濕潤流體的影響 62 第四章 結論與建議 67 4.1 結論 67 4.2 建議 69 參考文獻 70 附錄 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 毛細拉引力 | zh_TW |
| dc.subject | 相變化散熱元件 | zh_TW |
| dc.subject | 自再濕潤流體 | zh_TW |
| dc.subject | 逆Marangoni對流 | zh_TW |
| dc.subject | 極限操作瓦數 | zh_TW |
| dc.subject | 熱管 | zh_TW |
| dc.subject | heat pipe | en |
| dc.subject | maximum operating power | en |
| dc.subject | capillary force | en |
| dc.subject | inverse-Marangoni effect | en |
| dc.subject | phase-change heat transfer device | en |
| dc.subject | self-rewetting fluid | en |
| dc.title | 應用自再濕潤流體於開放式熱管模型之冷卻能力與逆Marangoni對流之探討 | zh_TW |
| dc.title | Analysis of thermal performance and inverse Marangoni flow on a model heat pipe using self rewetting fluids | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉耀先(Yao-Hsien Liu),黃智永(Chih-Yung Huang) | |
| dc.subject.keyword | 熱管,相變化散熱元件,自再濕潤流體,逆Marangoni對流,極限操作瓦數,毛細拉引力, | zh_TW |
| dc.subject.keyword | heat pipe,phase-change heat transfer device,self-rewetting fluid,inverse-Marangoni effect,maximum operating power,capillary force, | en |
| dc.relation.page | 119 | |
| dc.identifier.doi | 10.6342/NTU202201763 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-29 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202210484500.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
