請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85301完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊曙榮(Shu-Jung Yang) | |
| dc.contributor.author | Shu-Ting Lin | en |
| dc.contributor.author | 林書廷 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:56:14Z | - |
| dc.date.copyright | 2022-07-29 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-28 | |
| dc.identifier.citation | Adam N. Elmachtoub, Paul Grigas (2021) Smart “Predict, then Optimize”. Management. Science. Arne K. Strauss, Robert Klein, Claudius Steinhart (2018) A review of choice-based. revenue management: Theory and methods. Operational Research: 375-379 Martin Zinkevich (2003) Online Convex Programming and Generalized Infinitesimal Gradient Ascent. Proceedings of Twentieth International Conference on Machine Learning (ICML-2003): 928-936 Xiaocheng Li, Yinyu Ye (2021) Online Linear Programming: Dual Convergence, New. Algorithm, and Regret Bounds Jayanta Mandi, Emir Demirovic, Peter.J Stuckey, Tias Guns (2020) Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems. The Thirty-Fourth AAAI Conference on Artificial Intellegence (AAAI-20) Adam N. Elmachtoub, Jason Cheuk Nam Liang, Ryan McNellis (2020) Decision Trees for Decision-Making under the Predict-then-Optimize Framework. Proceedings of Thirty Seventh International Conference on Machine Learning, Online, PMLR 119 Heyuan Liu, Paul Grigas (2021) Risk Bounds and Calibration for a Smart Predict-then-Optimize Method. Thirty Fifth Conference on Neural Information Processing Systems (NeurIPS 2021): 1-6 Yi-Feng Hung, Ping-Heng Tsai, Gen-Han Wu (2014) Application extensions from the stochastic capacity rationing decision approach. International Journal of Production Research, 52:6, 1695-1710 Thomas Hofmann, Bernhard Scholkopf, Alexander J. Smola (2008) Kernel Methods in Machine Learning. The Annals of Statistics 2008, Vol. 36, No. 3, 1171–1220 Dan Zhang, Larry Weatherfold (2017) Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry. INFORMS Journal on Computing 29(1): 18-35 Anton J. Kleywegt, Alexander Shapiro, Tito Homem-de-Mello (2002) The Sample Average Approximation Method for Stochastic Discrete Optimization. SIAM Journal on Optimization Vol. 12, Iss. 2 Sujin Kim, Raghu Pasupathy, Shane G. Henderson (2015) A Guide to Sample Average Approximation. Handbook of Simulation Optimization pp 207–243 Aydin Alptekinoglu, John H Semple (2016) The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization. Operations Research 64(1) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85301 | - |
| dc.description.abstract | 製造業是台灣的核心產業之一,一直以來,採購與銷售是控制製造業營運成本與獲利來源的探討重點,傳統建模上會從客戶的需求出發,依照客戶的需求決定產品組合,然而在造紙產業、橡膠產業等交貨時間長的傳統產業卻不是如此,需求對決策的擬定影響通常小於原物料價格波動帶來的影響,因此,本篇論文傾向開發有別於傳統從需求端建模的方式,從採購端出發,將主問題切成兩個子問題,即購入再售出,在購入階段,問題會以組合優化問題呈現,採購經理人會從眾多購入憑據中挑選出能使成本極小化的買進策略組合,我們透過機器學習模型進行購買憑據的分類,在「先優化再預測」的框架下對未來的買進數量、成本進行預測,然而,在銷售的環節,則是在接到訂單的同時,需立即作出相對應的決策,屬於在線學習優化問題,結合實務上的資料,致力於開發資料驅動的解方,提供決策者一套穩健的利潤極大化的銷售策略。 | zh_TW |
| dc.description.abstract | Manufacturing is one of the Taiwan's core industries. Procurement and sales have always been the focus of discussion on controlling manufacturing operating costs and profitability. Traditional modeling starts from the demand of consumers and determines the product set based on the demand of consumers. However, this is not the case in traditional industries with long lead time such as the paper industry and rubber industry. The impact of consumer demand on decision-making is usually less than the fluctuation of raw material prices. Thus, different from the traditional way of modeling from the demand side, starting from the purchasing side, the main problem is divided into two sub-problems, namely buying and then selling. In the purchasing stage, the problem will be presented as a classification optimization problem. The procurement manager will select a combination of features which can minimize the set of the raw material buy-in cost. We classify the features through the machine learning model, and predict the future purchase quantity and cost under the framework of smart predict then optimize (SPO). However, In the selling stage, when an order is received, the corresponding decision needs to be made immediately, which belongs to the online learning optimization problem. Combined with practical data, it is committed to developing data-driven solutions and providing decision-makers along with a set of profit-maximizing sales decisions. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:56:14Z (GMT). No. of bitstreams: 1 U0001-2607202200044600.pdf: 7252406 bytes, checksum: 8361740e87530ea77649e73dbbf68f6c (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 謝辭 i 摘要 ii Abstract iii Table of Contents iv List of Figures v List of Tables v 1. Introduction 1 2. Literature Review 2 3. Model Formulation 6 3.1 SPO Framework for Classification Problem 6 3.2 SPO+ loss function 15 3.3 Computational Approach 18 4 Online Linear Programming Model 20 4.1 Problem Formulation 22 4.2 Online Algorithm 27 4.2.1 Assumptions and Regret 27 4.2.2 Computational Approach 33 5 Results 37 5.1 Example 37 5.2 Numerical Analysis 40 5.3 Empirical Study 49 5.3.1 Dataset 49 5.3.2 Results 49 5.4 Benchmark 55 6 Conclusion and future work 58 References 60 Appendix 63 Appendix A – Code 63 Kernel Methods in SVM 63 SPO & Online 68 Benchmark 81 | |
| dc.language.iso | en | |
| dc.subject | 在線線性規劃 | zh_TW |
| dc.subject | 數據驅動優化 | zh_TW |
| dc.subject | 存貨管理 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 營收管理 | zh_TW |
| dc.subject | Online linear programming | en |
| dc.subject | Machine learning | en |
| dc.subject | Data-driven optimization | en |
| dc.subject | Inventory management | en |
| dc.subject | Revenue management | en |
| dc.title | 預測採購與在線學習銷售之最佳化模型 | zh_TW |
| dc.title | Procurement under Smart Predict-then Optimize and Sales under Online Learning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝凱宇(Kai-Yu Hsieh),陳立民(LI-MING CHEN) | |
| dc.subject.keyword | 機器學習,數據驅動優化,在線線性規劃,存貨管理,營收管理, | zh_TW |
| dc.subject.keyword | Machine learning,Data-driven optimization,Online linear programming,Inventory management,Revenue management, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU202201716 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-28 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 商學研究所 | zh_TW |
| dc.date.embargo-lift | 2022-07-29 | - |
| 顯示於系所單位: | 商學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2607202200044600.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
