Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85292Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 侯欣翰(Hsin-Han Hou) | |
| dc.contributor.author | Yu-Wen Hou | en |
| dc.contributor.author | 侯妤玟 | zh_TW |
| dc.date.accessioned | 2023-03-19T22:55:39Z | - |
| dc.date.copyright | 2022-10-04 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-07-29 | |
| dc.identifier.citation | 1. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 2020;396:p1129-1306. 2. Periodontal disease health care manual. No., 2019 3. López R, Smith PC, Göstemeyer G, Schwendicke F. Ageing, dental caries and periodontal diseases. J Clin Periodontol 2017;44 Suppl 18:S145-s152. 4. Williams RC. Periodontal Disease. New England Journal of Medicine 1990;322:373-382. 5. Page RC, Schroeder HE. Current status of the host response in chronic marginal periodontitis. Journal of Periodontology 1981;52:477-491. 6. Periodontal Disease Centers for Disease Control and Prevention(CDC). Periodontal Disease. Available at: https://www.cdc.gov/oralhealth/conditions/periodontal-disease.html. Accessed: 06/21, 2022. 7. Ong G. Periodontal disease and tooth loss. Int Dent J 1998;48:233-238. 8. Bui FQ, Almeida-da-Silva CLC, Huynh B, et al. Association between periodontal pathogens and systemic disease. Biomed J 2019;42:27-35. 9. Sanz M, Marco Del Castillo A, Jepsen S, et al. Periodontitis and cardiovascular diseases: Consensus report. J Clin Periodontol 2020;47:268-288. 10. Winning L, Linden GJ. Periodontitis and systemic disease. BDJ Team 2015;2:15163. 11. Genco RJ, Evans RT, Ellison SA. Dental research in microbiology with emphasis on periodontal disease. J Am Dent Assoc 1969;78:1016-1036. 12. Socransky SS. Relationship of Bacteria to the Etiology of Periodontal Disease. Journal of Dental Research 1970;49:203-222. 13. Breivik T, Thrane PS, Murison R, Gjermo P. Emotional stress effects on immunity, gingivitis and periodontitis. European journal of oral sciences 1996;104:327-334. 14. Kapila YL. Oral health’s inextricable connection to systemic health: Special populations bring to bear multimodal relationships and factors connecting periodontal disease to systemic diseases and conditions. Periodontology 2000 2021;87:11-16. 15. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol 2018;16:745-759. 16. Hajishengallis G, Lamont RJ. Polymicrobial communities in periodontal disease: their quasi‐organismal nature and dialogue with the host. Periodontology 2000 2021;86:210-230. 17. Mohanty R, Asopa SJ, Joseph MD, et al. Red complex: Polymicrobial conglomerate in oral flora: A review. J Family Med Prim Care 2019;8:3480-3486. 18. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the 'red complex', a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005;38:72-122. 19. Okuda K, Takazoe I. The Role of Bacteroides Gingivalis in Periodontal Disease. Advances in Dental Research 1988;2:260-268. 20. Kimura S, Nagai A, Onitsuka T, et al. Induction of experimental periodontitis in mice with Porphyromonas gingivalis-adhered ligatures. J Periodontol 2000;71:1167-1173. 21. Akkaoui J, Yamada C, Duarte C, et al. Contribution of Porphyromonas gingivalis lipopolysaccharide to experimental periodontitis in relation to aging. Geroscience 2021;43:367-376. 22. How KY, Song KP, Chan KG. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front Microbiol 2016;7:53. 23. Jia L, Han N, Du J, Guo L, Luo Z, Liu Y. Pathogenesis of Important Virulence Factors of Porphyromonas gingivalis via Toll-Like Receptors. Frontiers in Cellular and Infection Microbiology 2019;9. 24. Mysak J, Podzimek S, Sommerova P, et al. Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview. Journal of Immunology Research 2014;2014:476068. 25. Teanpaisan R, Piwat S, Dahlén G. Inhibitory effect of oral Lactobacillus against oral pathogens. Lett Appl Microbiol 2011;53:452-459. 26. Santos AF, Cayô R, Schandert L, Gales AC. Evaluation of MALDI-TOF MS in the microbiology laboratory. Jornal Brasileiro de Patologia e Medicina Laboratorial 2013;49:191-197. 27. Hert DG, Fredlake CP, Barron AE. Advantages and limitations of next-generation sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. Electrophoresis 2008;29:4618-4626. 28. Di Resta C, Pipitone GB, Carrera P, Ferrari M. Current scenario of the genetic testing for rare neurological disorders exploiting next generation sequencing. Neural Regen Res 2021;16:475-481. 29. Ammer-Herrmenau C, Pfisterer N, Berg Tvd, et al. Comprehensive Wet-Bench and Bioinformatics Workflow for Complex Microbiota Using Oxford Nanopore Technologies. mSystems 2021;6:e00750-00721. 30. Zaura E, Pappalardo VY, Buijs MJ, Volgenant CM, Brandt BW. Optimizing the quality of clinical studies on oral microbiome: a practical guide for planning, performing, and reporting. Periodontology 2000 2021;85:210-236. 31. Huang C-H, Li S-W, Huang L, Watanabe K. Identification and Classification for the Lactobacillus casei Group. Frontiers in Microbiology 2018;9. 32. Huang C-H, Chen C-C, Liou J-S, et al. Genome-based reclassification of Lactobacillus casei: emended classification and description of the species Lactobacillus zeae. International Journal of Systematic and Evolutionary Microbiology 2020;70:3755-3762. 33. Výrostková J, Regecová I, Kováčová M, Marcinčák S, Dudriková E, Maľová J. Antimicrobial Resistance of Lactobacillus johnsonii and Lactobacillus zeae in Raw Milk. Processes 2020;8:1627. 34. Lim S-D, Kim K-S, Do J-R. Physiological characteristics and ACE inhibitory activity of Lactobacillus zeae RMK354 isolated from raw milk. Food Science of Animal Resources 2008;28:587-595. 35. Zhou M, Yu H, Yin X, Sabour PM, Chen W, Gong J. Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen. PLoS One 2014;9:e89004. 36. Kõll-Klais P, Mändar R, Leibur E, Marcotte H, Hammarström L, Mikelsaar M. Oral lactobacilli in chronic periodontitis and periodontal health: species composition and antimicrobial activity. Oral Microbiol Immunol 2005;20:354-361. 37. Gatej SM, Marino V, Bright R, et al. Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis. J Clin Periodontol 2018;45:204-212. 38. Shimauchi H, Mayanagi G, Nakaya S, et al. Improvement of periodontal condition by probiotics with Lactobacillus salivarius WB21: a randomized, double‐blind, placebo‐controlled study. Journal of clinical periodontology 2008;35:897-905. 39. Wang J, Liu Y, Wang W, et al. The rationale and potential for using Lactobacillus in the management of periodontitis. Journal of Microbiology 2022;60:355-363. 40. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nature Reviews Microbiology 2010;8:481-490. 41. Martínez-García M, Hernández-Lemus E. Periodontal Inflammation and Systemic Diseases: An Overview. Front Physiol 2021;12:709438. 42. Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. International Journal of Oral Science 2019;11:30. 43. Perozini C, Chibebe PC, Leao MV, Queiroz Cda S, Pallos D. Gingival crevicular fluid biochemical markers in periodontal disease: a cross-sectional study. Quintessence Int 2010;41:877-883. 44. Kurtiş B, Develioğlu H, Taner IL, Baloş K, Tekin IO. IL-6 levels in gingival crevicular fluid (GCF) from patients with non-insulin dependent diabetes mellitus (NIDDM), adult periodontitis and healthy subjects. J Oral Sci 1999;41:163-167. 45. Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol 2003;74:391-401. 46. Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. International Journal of Oral Science 2020;12:2. 47. Schett G, Dayer JM, Manger B. Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol 2016;12:14-24. 48. Yucel-Lindberg T, Båge T. Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev Mol Med 2013;15:e7. 49. Arancibia R, Oyarzún A, Silva D, Tobar N, Martínez J, Smith PC. Tumor necrosis factor-α inhibits transforming growth factor-β-stimulated myofibroblastic differentiation and extracellular matrix production in human gingival fibroblasts. J Periodontol 2013;84:683-693. 50. Prosnitz AR, Gruen JR, Bhandari V. The genetics of disorders affecting the premature newborn. In: Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics: Elsevier, 2022:149-185. 51. Tang M, Tian L, Luo G, Yu X. Interferon-Gamma-Mediated Osteoimmunology. Front Immunol 2018;9:1508. 52. Thunell DH, Tymkiw KD, Johnson GK, et al. A multiplex immunoassay demonstrates reductions in gingival crevicular fluid cytokines following initial periodontal therapy. J Periodontal Res 2010;45:148-152. 53. Tymkiw KD, Thunell DH, Johnson GK, et al. Influence of smoking on gingival crevicular fluid cytokines in severe chronic periodontitis. J Clin Periodontol 2011;38:219-228. 54. de Molon RS, Mascarenhas VI, de Avila ED, et al. Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin Oral Investig 2016;20:1203-1216. 55. Oz HS, Puleo DA. Animal models for periodontal disease. J Biomed Biotechnol 2011;2011:754857. 56. Marchesan J, Girnary MS, Jing L, et al. An experimental murine model to study periodontitis. Nature Protocols 2018;13:2247-2267. 57. Rovin S, Costich ER, Gordon HA. The influence of bacteria and irritation in the initiation of periodontal disease in germfree and conventional rats. J Periodontal Res 1966;1:193-204. 58. McKenzie RME, Henry LG, Boutrin MC, Ximinies A, Fletcher HM. Role of the Porphyromonas gingivalis iron-binding protein PG1777 in oxidative stress resistance. Microbiology (Reading) 2016;162:256-267. 59. Cafferata EA, Terraza-Aguirre C, Barrera R, et al. Interleukin-35 inhibits alveolar bone resorption by modulating the Th17/Treg imbalance during periodontitis. J Clin Periodontol 2020;47:676-688. 60. Liberman DN, Pilau RM, Orlandini LF, Gaio EJ, Rösing CK. Comparison of two methods for alveolar bone loss measurement in an experimental periodontal disease model in rats. Brazilian oral research 2011;25:80-84. 61. Park CH, Abramson ZR, Taba M, Jr., et al. Three-dimensional micro-computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol 2007;78:273-281. 62. Matsuda S, Movila A, Suzuki M, et al. A novel method of sampling gingival crevicular fluid from a mouse model of periodontitis. J Immunol Methods 2016;438:21-25. 63. Yu H, Zhang T, Lu H, et al. Granulocyte colony-stimulating factor (G-CSF) mediates bone resorption in periodontitis. BMC Oral Health 2021;21:299. 64. Zotta T, Ricciardi A, Ianniello RG, et al. Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group. PLOS ONE 2014;9:e99189. 65. Zotta T, Parente E, Ricciardi A. Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry. Journal of Applied Microbiology 2017;122:857-869. 66. Belibasakis GN, Bostanci N. The RANKL‐OPG system in clinical periodontology. Journal of clinical periodontology 2012;39:239-248. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/85292 | - |
| dc.description.abstract | 牙周病於全球具有相當高的盛行率,患者又以老年人口佔有較高的比例。其病症包括牙齦發炎、齒槽骨喪失甚至是牙齒的脫落,近來更是有許多研究顯示牙周病與全身性系統疾病的高度相關,使其對人體健康的影響更加不容小覷。造成牙周病常見的主要原因是口內微生物的菌群失衡,致病菌持續激化宿主的免疫發炎反應,進而導致牙周組織的喪失。因此,在牙周病新興治療的研究中,口腔微生物學便成為現今牙周病的重要主題。在我們過去的研究裡,以第三代定序的系統(Oxford Nanopore Technologies)對牙周病及非牙周病患者的牙齦下牙菌斑進行總體基因體定序分析,其中,我們發現乳桿菌屬中的Lactobacillus zeae (L. zeae) 在牙周病患者的數量比非牙周病患者高出24倍;然而,其他研究則提出數種乳酸桿菌對口腔致病菌有抑制的效果,Lactobacillus rhamnosus GG更是顯著減少了牙周病已知致病菌Porphyromonas gingivalis (P. gingivalis)所造成的牙周損傷,被視為牙周益生菌。因此,關於L. zeae在牙周病中所扮演的角色有待研究證實。 我們在結紮線誘導牙周炎的小鼠模型中,於牙齦單獨或同時接種L. zeae 以及 P. gingivalis,並取下小鼠的上顎骨作為後續實驗分析之檢體,利用微電腦斷層掃描、免疫組織染色法與抗酒石酸酸性磷酸酶染色法分別對齒槽骨的喪失程度、嗜中性白血球浸潤程度以及活化蝕骨細胞的數量進行檢測。同時,採集小鼠口內患處的牙齦溝液進行蛋白質多重免疫分析,觀測其免疫發炎因子的分泌。結果顯示,接種L. zeae 的組別會引起更嚴重的齒槽骨喪失、嗜中性白血球浸潤以及活化蝕骨細胞的數量。在蛋白質多重免疫分析結果中,免疫發炎因子(腫瘤壞死因子-α、白血球介素-6、白細胞介素-1β、干擾素-γ、單核細胞趨化蛋白-1) 在接種L. zeae 的小鼠中也有較高的表現量。在本研究中,L. zeae 於誘導牙周炎的小鼠口內顯著地增加了牙周病的病理表現,因此,我們認為L. zeae在牙周病患者口腔中可能扮演著加劇牙周病進程的角色。 | zh_TW |
| dc.description.abstract | The prevalence of periodontal disease (PD) is considerably high worldwide. Besides, the elderly accounts for a greater proportion among the PD patients. The main symptoms of PD including inflamed gums, reduced alveolar bone, and even the tooth loss. PD is taken much more seriously by people not only because of these influences but also its close association with numerous systemic diseases indicated in recent studies. The main cause of PD development is the imbalanced of oral microbiota which is called dysbiosis. The pathogens interfere with the host immune system and cause the consequent tissue destruction. Therefore, oral microbiology undoubtedly becomes a major topic in the novel therapeutics for PD. In our previous study, we used the third-generation sequencing system (the Oxford Nanopore Technologies) to analyze metagenome in the subgingival dental plaque from PD and non-PD patients. Notably, the number of Lactobacillus zeae (L. zeae) in PD group is 24 times more than the non-PD group. However, multiple species of Lactobacillus are said to have inhibition effects against oral pathogens. Lactobacillus rhamnosus GG (LGG) even reduces the periodontal damage caused by the well-known PD pathogen Porphyromonas gingivalis (P. gingivalis) and LGG is further regarded as periodontal probiotics. As a result, researches for uncovering the roles of L. zeae in PD are unquestionably needed. We inoculated L. zeae and P. gingivalis independently and also simultaneously into the gingiva of the ligature-induced periodontitis mice. The maxillae tissues of mice were collected for further analysis. Afterwards, micro computed tomography (micro-CT) analysis, immunohistochemistry (IHC) staining, and tartrate-resistant acid phosphatase (TRAP) staining were respectively used for evaluating the loss extent of alveolar bone, the infiltration extent of neutrophils, and the number of activated osteoclasts. Also, gingival crevicular fluid (GCF) in the lesion site of mice was collected for Multiplex assay to assess the secretion of inflammatory cytokines. The result showed that L. zeae inoculated group exhibited more serious alveolar bone resorption, significant neutrophil infiltration, and elevated activated osteoclast number. Additionally, the high expression of inflammatory cytokines including tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, interferon-gamma, and monocyte chemoattractant protein-1 could also be seen in L. zeae inoculated mice. In this study, L. zeae exacerbates the pathological manifestation of periodontal disease in ligature-induced periodontitis mice. We deduced that L. zeae might play roles that accelerate the progression of PD. | en |
| dc.description.provenance | Made available in DSpace on 2023-03-19T22:55:39Z (GMT). No. of bitstreams: 1 U0001-2707202211313000.pdf: 2712869 bytes, checksum: af3ac9ac59f0ceac5b10e2868691fa3a (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii Abstract v Contents vii List of Figures x List of Tables xi 1. Introduction 1 1.1 Periodontal disease 1 1.2 Periodontal pathogen: Porphyromonas gingivalis 2 1.3 Bacterial identification 3 1.4 Lactobacillus zeae 4 1.5 Periodontal host response of periodontitis 5 1.6 Ligature induced periodontitis mice model 7 1.7 Specific aim 8 2. Materials and methods 9 2.1 Bacteria 9 2.2 Quantification and bacterial liquid cultures preparation 9 2.3 Animals 10 2.4 Mouse model of periodontitis 10 2.5 Quantification of alveolar bone resorption 11 2.6 Gingival crevicular fluid (GCF) collection 12 2.7 Multiplex analysis 12 2.8 Animal tissue preparation 13 2.9 Hematoxylin and Eosin staining (H&E stain) 13 2.10 Immunohistochemistry (IHC) stain 14 2.11 Tartrate-resistant acid phosphatase (TRAP) staining 15 3. Results 17 3.1 Bacteria detection 17 3.2 Bacteria growth 17 3.3 Alveolar bone loss 18 3.4 Histological analysis 19 H&E staining 19 IHC staining 20 TRAP staining 20 3.5 Expression of inflammatory cytokines 21 4. Discussion 23 5. Figures 28 6. Tables 43 7. Reference 44 | |
| dc.language.iso | en | |
| dc.subject | 牙周病 | zh_TW |
| dc.subject | 結紮線誘導牙周炎小鼠 | zh_TW |
| dc.subject | Lactobacillus zeae | zh_TW |
| dc.subject | Porphyromonas gingivalis | zh_TW |
| dc.subject | 第三代定序 | zh_TW |
| dc.subject | Third-generation sequencing | en |
| dc.subject | Porphyromonas gingivalis | en |
| dc.subject | Lactobacillus zeae | en |
| dc.subject | Ligature-induced periodontitis mice | en |
| dc.subject | Periodontal disease (PD) | en |
| dc.title | 口腔Lactobacillus zeae加劇小鼠中牙周病的病理表現 | zh_TW |
| dc.title | Oral Lactobacillus zeae exacerbates the pathological manifestation of periodontal disease in a mouse model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 110-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳漪紋(Yi-Wen Chen),葉秋月(Chiou-Yueh Yeh) | |
| dc.subject.keyword | 牙周病,結紮線誘導牙周炎小鼠,Lactobacillus zeae,Porphyromonas gingivalis,第三代定序, | zh_TW |
| dc.subject.keyword | Periodontal disease (PD),Ligature-induced periodontitis mice,Lactobacillus zeae,Porphyromonas gingivalis,Third-generation sequencing, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU202201765 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2022-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-07-28 | - |
| Appears in Collections: | 口腔生物科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-2707202211313000.pdf Access limited in NTU ip range | 2.65 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
